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Tis study aimed to isolate, purify, and characterize a potential thermophilic cellulase-producing bacterium from the Himalayan
soil. Eleven thermophilic bacteria were isolated, and the strain PANG L was found to be the most potent cellulolytic producer.
Morphological, physiological, biochemical, and molecular characterization identifed PANG L as Bacillus licheniformis. Tis is the
frst study on the isolation of thermostable cellulase-producing Bacillus licheniformis from the Himalayan soil. Tis bacterium was
processed for the production of cellulase enzyme. Te optimum conditions for cellulase production were achieved at 45°C after
48 h of incubation at pH 6.5 in media-containing carboxymethyl cellulose (CMC) and yeast extract as carbon and nitrogen
sources, respectively, in a thermo-shaker at 100 rpm.Te enzyme was partially purifed by 80% ammonium sulphate precipitation
followed by dialysis, resulting in a 1.52-fold purifcation. Te optimal activity of partially purifed cellulase was observed at
a temperature of 60°C and pH 5. Te cellulase enzyme was stable within the pH ranges of 3–5 and retained 67% of activity even at
55°C. Cellulase activity was found to be enhanced in the presence of metal ions such as Cd2+, Pb2+, and Ba2+. Te enzyme showed
the highest activity when CMCwas used as a substrate, followed by cellobiose.TeKm andVmax values of the enzyme were 1.8mg/
ml and 10.92 μg/ml/min, respectively. Te cellulase enzyme obtained from Bacillus licheniformis PANG L had suitable
catalytic properties for use in industrial applications.

1. Introduction

Cellulose is a fbrous, tough, crystalline, and linear polymer
of D-glucose units linked by β-1, 4-glycosidic bonds [1, 2]. It
is a major component of plant material and the most
abundant renewable source of energy [3, 4]. Tis cellulose is
of major economic value in developing methods for suc-
cessfully treating and using cellulosic wastes as cheap carbon
sources [5]. Cellulases, a group of glycosyl hydrolases, can
efciently hydrolyze cellulose into fermentable sugar
through the synergistic action of endoglucanase, exogluca-
nase, and β-glucosidase [6, 7].

Cellulases are used in a variety of industries, including
food, brewing, pharmaceuticals, pulp and paper,

detergents, textiles, leather, waste treatment, feed, and
agriculture [3, 8–10]. Tey are commonly produced by
bacteria, archaea, prokaryotes, plants, animals, and fungi
[11, 12]. Comparatively, bacterial species have higher
growth rates, high enzyme thermostability, better ex-
pression systems, and resistance to extreme environ-
ments [13, 14].

Recently, thermophilic bacteria have attracted a lot of
attention as a source of cellulolytic enzymes. Te hy-
drolysis of cellulose by thermophiles has various ad-
vantages such as greater stability, increased specifc
activity, inhibition of microbial growth, and easier mass
transfer [15–17]. Termophilic cellulose-degrading bac-
teria have been isolated from diverse sources such as soil
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[18], compost systems [19], goldmines [20], wastewaters
[21], and extreme environments such as hot springs
[22, 23]. Several thermophilic Bacillus strains, including
B. vallismortis RG-07 [24], Bacillus sp. SMIA-2 [14],
Bacillus and Geobacillus strains [16], and B. halodurans
CAS 1 [25], have been reported for cellulolytic activities.

Te Himalayas are highly diversifed regions and have
multiple stress conditions such as temperature fuctuations,
excessive UV exposure, nutrient scarcity, and low oxygen
and air pressure [26–28]. Te evolution of microorganisms
in response to these pressures has given rise to their unique
biochemical and physiological diversity with innovation and
unique traits [29]. Terefore, the present study was con-
ducted to isolate and optimize the medium for potential
thermostable cellulase-producing bacteria and to purify and
characterize the produced enzyme according to various
parameters.

2. Materials and Methods

2.1. Isolation of Termophilic Bacteria. Te soil samples
were collected from three diferent areas of the Sol-
ukhumbu District, Nepal, namely, Pangboche (altitude
3450m, latitude 27°51.426 N, and longitude 86°47.640 E),
Lobuche (altitude 4960 m, latitude 27°57.269 N, and
longitude 86°48.89 E), and Makalu Barun National Park
(altitude 3700 m 27°39.29 N and longitude 87°45.52 E).
One gram of soil sample was suspended in 9ml of sterile
Milli-Q water and serially diluted under sterile condi-
tions. Te diluted cultures were evenly spread on nutrient
agar (NA) plates and incubated at 55°C for 24 h. Te pure
cultures on the NA medium were transferred to a freshly
prepared NA slant with 20% glycerol and stored at
−20°C [30].

2.2. Assessment of Enzymatic Production. Te pure isolates
were streaked on CMC agar plates and incubated at 55°C for
24 h [31]. Te plates were stained with 0.1% congo-red
solution for 15min and washed with 1M NaCl for
destaining [32]. Te bacterial isolates were also screened for
other industrially important enzymes like amylase, lipase,
caseinase, pectinase, and gelatinase [33–36]. Te cultures
were inoculated in nutrient broth (NB) at 55°C. For enzyme
production, 1ml of the culture was inoculated in 10ml of
CMC broth and incubated overnight at 55°C under shaking
conditions at 100 rpm [37].

2.3. Morphological, Physiological, and Biochemical Charac-
terization of the Isolates. Te selected cellulase-producing
bacterial isolate was identifed by performing Gram staining
and several biochemical and carbohydrate utilization
tests [38].

2.4. Amplifcation of the 16S rDNA Gene Using PCR.
Te DNA was extracted and quantifed by NanoDrop. Te
16S rDNA gene was amplifed by PCR from the genomic
DNA of the strain using universal primer pair fD1

(5′-AGAGTTTGATCCTGGCTCAG-3′) and rP2 (5′-ACG
GCTACCTTGTTACGACTT-3′). Amplifcation of DNA
was carried out under the following conditions: de-
naturation at 94°C for 2min followed by 35 cycles of 94°C for
1min, 55°C for 1min, 72°C for 2min, and a fnal extension at
72°C for 10min. Amplifed PCR products of bacterial iso-
lates were analyzed by electrophoresis on 1% agarose gel at
80V for 30min, stained with ethidium bromide, and vi-
sualized in a gel documentation system [39]. Te PCR
products were purifed using exonuclease shrimp alkaline
phosphatase (Exo-SAP) kit protocol and then sequenced by
using BigDye Terminator Cycle Sequencing kit (Applied
Biosystems, CA). Te sequencing results were compared
using the basic local alignment search tool (BLAST) on
NCBI and 16S rRNA gene sequence homology evaluation
carried out using GenBank data. A phylogenetic tree was
constructed using MEGA 6.0 [40].

2.5. Optimization of Culture Conditions on Cellulase Activity.
Te optimization of various physicochemical parameters of
growth conditions was carried out for maximum cellulase
production. Te efect of a single parameter was determined
at a time by keeping the rest of the parameters constant. Te
major parameters and their efects on cellulase production
were determined by measuring the incubation period
(24–120 h), pH (3–11), temperatures (30–70°C), and various
agitation speeds (static, 50, 100, 150, and 200 rpm). Various
carbon sources tested included CMC, xylose, maltose,
glucose, fructose, starch, sucrose, and cellobiose. Diferent
types of nitrogen sources such as potassium nitrate, am-
monium sulphate, tryptone, ammonium nitrate, ammonium
chloride, peptone, yeast extract, and beef extract were ex-
amined for their efects on growth and enzyme production.
For each step, the enzyme activity was assayed to determine
the optimal yield [41].

2.6. Extraction of Crude Enzyme. Te isolated bacterial
strain was cultured in CMC broth and incubated at 45°C for
48 h under shaking conditions (100 rpm). Te culture was
centrifuged at 10,000 rpm for 10min at 4°C, and the su-
pernatant was used as a crude enzyme for cellulase activity
assay and partial purifcation [22].

2.6.1. Cellulase Assay. Cellulase activity was determined by
measuring the amount of reducing sugar liberated from
CMC using the 3, 5-dinitrosalicylic acid (DNS) method [42].
Te enzyme assay mixture was prepared by mixing 500 μl of
crude enzyme solution with 500 μl of 1% (w/v) CMC dis-
solved in 0.1M phosphate bufer at pH 7. Te mixtures were
incubated at 45°C for 15min. Te reactions were stopped by
adding 1ml of DNS reagent. All the mixtures were heated in
boiling water at 100°C for 5min for color development, and
the optical density was measured at 540 nm. All of the cel-
lulase assays were performed in triplicate.Te enzyme activity
was determined by using a calibration curve for glucose. One
unit (U) of the enzyme activity is defned as the amount of
enzyme that releases 1 μmol of glucose per minute [43].
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2.7. Partial Purifcation of Cellulase. Partial purifcation of
the crude enzyme was carried out by fractionation using
ammonium sulphate (20–80%) followed by dialysis Te
crude enzyme was precipitated with ammonium sulphate
overnight at 4°C in a magnetic stirrer and centrifuged at
10,000 rpm for 15min at 4°C to collect the pellets.Te pellets
were resuspended in a small amount of 0.1M phosphate
bufer, pH 7, and dialyzed overnight for 24 h at 4°C against
the same sample bufer by using snakeskin-pleated dialysis
tubing [22]. Protein concentrations in the crude sample were
estimated by using the biuret method with bovine serum
albumin as a standard [44].

2.8. Characterization of the Enzyme

2.8.1. Efect of Temperature and pH on Enzyme Activity
and Stability. Te optimum temperature of the enzyme
was determined by incubating the mixture of the enzyme
and 1% CMC in 0.1M phosphate bufer and pH 7 for
15 min at diferent temperatures ranging from 30°C to
90°C. Te heat stability of the enzyme was determined by
incubating the enzyme in 0.1M phosphate bufer and
pH 7 for 60 min at temperatures ranging from 30°C to
90°C for a period of 1 h. Te residual activity of each
sample for the hydrolysis of CMC was then calculated
under assay conditions [22].

Te optimum pH of the cellulase was determined by
incubating the mixture of the enzyme and 1% CMC in the
presence of bufers: 0.1M acetate bufer (pH 3–5), 0.1M
phosphate bufer (pH 6–8), and 0.1M glycine NaOH bufer
(pH 9–11). Te reaction mixtures were incubated at 60°C for
15min. For the determination of pH stability, the enzyme
was incubated in diferent bufers at diferent pH ranges
(pH 3–11) for 1 h at 60°C [22].

2.8.2. Efect of Incubation Time, Various Metal Ions, Diferent
Substrates, and Time Stability on Enzyme Activity. Te
optimum incubation time of the enzyme was determined
by incubating the mixture of the enzyme and 1% CMC in
0.1M phosphate bufer and pH 7 at optimum tempera-
tures (60°C) for 15, 30, 45, 60, 75, and 90min. Te enzyme
activity at each incubation time was monitored using the
DNS assay [22]. Te efect of various metal ions on the
enzyme activity was determined by the presence of Na+,
K+, EDTA, Mn2+, Ca2+, Ba2+, Fe2+, Fe3+, Zn2+, Mg2+,
Ni2+, Co2+, Pb2+, and Cd2+ metal ions. Te concentration
of each metal ion was 10mM in 0.1M acetate bufer
pH 5 [22].

Te specifcity of the cellulase substrate was determined
by testing diferent substrates, namely, CMC, flter paper,
and cellobiose substrate [45].Te enzymes were kept at 25°C,
4°C, and −20°C for 25 days, and the residual cellulase ac-
tivities were measured at intervals of fve days [46].

2.8.3. Enzyme Kinetics. Te Km and Vmax values were de-
termined by plotting velocity against substrate concentra-
tion CMC (5–30mg/ml). Te data were plotted and kinetic

constants were calculated. Calculations were also performed
using the Lineweaver–Burk plot [47].

2.9.DataAnalysis. All the measurements were conducted in
triplicate, and the values were reported as mean± S.D.
GraphPad Prism 8.4.3 andMS-Excel 2013 were used for data
analysis and graphical illustrations.

3. Results

3.1. Isolation and Screening for Cellulase Production.
Eleven thermophilic bacterial strains were isolated from the
Himalayan soil. All the isolates produced cellulase, amylase,
gelatinase, and lipase enzymes. Nine isolates produced
caseinase, while pectinase was not reported in any of the
isolates. Te isolate coded PANG L showed maximum
cellulase activities (0.044± 0.004U/ml) and was processed
further (Table 1).

3.2. Characterization and Identifcation of PANG L Bacterial
Isolate. Te morphological, physiological, and biochemical
test results of PANG L are shown in Tables 2–4 as well as in
Figure 1. Te concentration of DNA for the PANG L was
269 μg/ml with purity (A260/A280) value of 1.79. Te am-
plifed PCR product was l.5 Kb which was further purifed
and sequenced (Figure 2(a)). Te 16S rDNA gene sequence
of PANG L exhibited maximum homology (99%) with strain
B. licheniformis. Te 16S rDNA sequence was submitted to
Gene bank with the accession number OQ455938.
According to the phylogenetic tree, the isolate PANG L was
closely related to the B. licheniformis strain ATCC 14580
(Figure 2(b)). Based on these results, the isolate was des-
ignated as B. licheniformis strain PANG L.

3.3. Optimization of B. licheniformis PANG L Culture Con-
ditions and Enzyme Activity. Te optimum incubation pe-
riod, pH, temperature, agitation, carbon, and nitrogen
sources were determined to improve the overall growth and
enzyme production (Figure 3). Te enzyme-producing
ability of the isolate increased with the fermentation pe-
riod up to 48 h (0.034± 0.002U/ml) thereafter, it declined
(Figure 3(a)). Te optimum enzyme production
(0.058± 0.008U/ml) was recorded at pH 6.5. A sharp de-
crease in the cellulase activity was observed below and above
this pH (Figure 3(b)). Te maximum cellulase activity
(0.083± 0.001U/ml) was found to be at 45°C (Figure 3(c)).
Te optimum agitation rate for higher cellulolytic enzyme
production (0.089± 0.003U/ml) was observed at 100 rpm
while the production was the least at 200 rpm (Figure 3(d)).
CMC was found to be the most suitable carbon source, which
recorded a maximum enzyme activity of (0.085± 0.004U/ml)
followed by cellobiose (0.072± 0.008U/ml) (Figure 3(e)).
Among all nitrogen sources, the maximum cellulase activity
(0.103± 0.005U/ml) was observed when yeast extract was
used as a source of nitrogen. Potassium nitrate
(0.012± 0.002U/ml) was found to be the least efective ni-
trogen source (Figure 3(f)).
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3.4. Partial Purifcation of Cellulase. Ammonium sulphate
precipitation of the crude enzyme was standardized, and the
maximum activity was observed at 80% saturation. Tere-
fore, 80% ammonium sulphate was used and no other
concentration was applied. Te crude enzyme exhibited
a specifc activity of 0.271U/mg, whereas the ammonium
sulphate precipitated and dialyzed enzyme showed a specifc
activity of 0.344U/mg with 1.26 and 0.413U/mg with 1.52-
fold enhancement, respectively (Table 5).

3.5. Partial Characterization of Cellulase Enzyme

3.5.1. Efect of Temperature and pH on Enzyme Activity and
Stability. Te optimum cellulase activity was observed at an
incubation temperature of 60°C but gradually declined this
temperature. Regarding the thermal stability of the cellulase
enzyme, it retained 67% of its activity after preincubating at
55°C for 1 h. When the temperature was increased to 75°C,
the activity reduced by 35% (Figure 4(a)). Based on the
results of the pH activity and stability in Figure 4(b), it is
observed that the maximum cellulase activity was main-
tained at pH 5 in 0.1M sodium acetate bufer and the activity
decreased as the pH increased towards alkalinity. Te en-
zyme retained more than 70% of its activity over the
pH range of 3–6. More than 50% of the activity of the
cellulase was maintained at a broad pH range, ranging from
pH 7 to 10 after 1 hr.

3.5.2. Efect of Incubation Time, Metal Ions, Substrates, and
Storage Stability on Enzyme Activity. Te optimum in-
cubation time with the substrate 1% CMC in 0.1M phos-
phate bufer, pH 7 was found to be 45min. Further
incubation for more than 45min resulted in a gradual loss of
the enzymatic activity (Figure 5(a)). Te activity of the
enzyme increased in the presence of Cd2+ followed by
Pb2+and Ba2+, respectively, whereas the presence of man-
ganese and calcium ions signifcantly decreased the activity
of the enzyme (Figure 5(b)).

Te enzyme showed the highest activity towards CMC
(100%) and moderate activity towards cellobiose (77.48%)
and the least activity towards flter paper (36.32%)
(Figure 5(c)). Te enzyme retained 72% of activity after
storing at 25°C for 25 days, while 98.8% of the activity was
recorded for the enzyme stored at −20°C. About 8% loss of
activity was recorded at 4°C (Figure 5(d)).

Table 1: Quantitative screening of cellulase enzyme.

Isolates’ codes Enzyme activity (U/ml)
mean± standard deviation

MBN A 0.028± 0.007
MBN B 0.030± 0.001
MBN CP 0.014± 0.008
MBN CW 0.013± 0.006
MBN DP 0.003± 0.007
MBN DW 0.042± 0.004
LOB P 0.019± 0.003
LOB W 0.029± 0.003
PANG P 0.016± 0.003
PANG W 0.026± 0.002
PANG L 0.044± 0.004

Table 2: Morphological and physiological characteristics.

Characteristics B. licheniformis PANG L
results

Cell morphology
Shape Rod
Colony
Color Pale
Margin Irregular
Surface Flat
Consistency Rough
Light transmission Opaque
Gram’s staining Gram-positive
Spore Subterminal endospore
Motility Motile
Anaerobic growth Positive
NaCl
7% NaCl Positive
10% NaCl Positive
Growth at diferent temperature 30 to 65°C

Table 3: Phenotypic characteristics.

Biochemical tests B. licheniformis PANG L
results

Catalase Positive
Oxidase Positive
Indole Negative
Methyl red Negative
Voges–Proskauer Positive
Citrate utilization Positive
Oxidative/fermentative Positive
Urea hydrolysis Negative
Nitrate reduction Positive
H2S production Negative

Table 4: Substrate fermentation test.

Carbohydrate utilization test B. licheniformis PANG L
results

Cellobiose Positive
Dextrose Positive
Dulcitol Negative
Esculin Positive
Fructose Positive
Cellulose Positive
Galactose Negative
Glucose Positive
Glycerol Positive
Glycogen Negative
Inositol Negative
Lactose Positive
Maltose Positive
Mannose Positive
Rafnose Negative
Starch Positive
Salicin Positive
Sorbitol Negative
Sucrose Positive
Xylose Positive
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3.5.3. Enzyme Kinetics. Kinetic analysis with CMC revealed
the Km and Vmax values 1.8mg/ml and 10.92 μg/ml/min,
respectively, by the Lineweaver–Burk plot (Figure 6).

4. Discussion

Te demand for microbial cellulase enzymes is continuously
increasing due to their tremendous importance in the
bioenergy and bioprocessing industries. Te use of novel
cellulase from various thermophiles could improve ther-
mophilic cellulase production in the industrial process [48].
Te present study focused on the search for high cellulase-
producing thermophilic bacterial isolates from the Hima-
layan soil. Te studies conducted by Marchant et al. [49] and

Takur et al. [50] reported thermophilic microorganisms
from cold environments. Eleven isolates were able to grow at
55°C. Each thermophilic isolate produced thermostable
hydrolytic enzymes such as lipase, cellulase, amylase,
caseinase, and gelatinase. Tis showed that soil-derived
bacterial isolates were the source of extracellular enzymes.
Other studies have also reported hydrolytic activities in
several thermophilic bacterial strains [51, 52]. Based on the
quantitative cellulase assay, isolate PANG L exhibited higher
cellulase activity among the isolated strains. Te obtained
cellulase activity was lower than that of other studies con-
ducted by Ladeira et al. [14] and Kazeem et al. [53], in-
dicating that the PANG L strain is a moderate cellulase
producer. Te morphological, physiological, biochemical,

(a) (b) (c)

Indole Methyl red Voges-Proskauer Citrate Urease Oxidative Fermentative

(d) (e)

Dextrose Dextrose
control

Manitol Manitol
control

Maltose Maltose
control

Dulcitol Dulcitol
control

Sucrose Sucrose
control

(f ) (g)

Figure 1: B. licheniformis PANG L and its characteristics: (a) colonies of B. licheniformis PANG L on NA, (b) cellulase activity of
B. licheniformis PANG L on CMC agar, (c) amylase activity, (d) biochemical test, (e) growth on 10% NaCl, (f ) substrate fermentation test,
and (g) esculin test.
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Figure 2: Characterization of the B. licheniformis PANG L isolate: (a) visualization of PCR-amplifed B. licheniformis PANG L 16S rDNA
bands on agarose gel, lanes 1, 2, 3, 4, 5, 6, 7, and 8: sample, lane 9: negative control and lane M: DNA ladder (Takara Dye Plus of 250 bp) and
(b) phylogenetic tree for B. licheniformis PANG L and other related strains. Te tree was obtained using the 16S rDNA sequence retrieved
from the database by using the neighbor-joining method. Te bootstrap values were generated from 1000 replicates.
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Figure 3: Continued.
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and molecular characterization confrmed PANG L as
B. licheniformis. In previous studies, B. licheniformis has
been reported to produce cellulase enzymes, including
B. licheniformis 2D55 [53], B. licheniformis AMF-07 [54],
and B. licheniformis JK7 [55].

Optimization of fermentation conditions can improve
cellulase production and play a signifcant role in an in-
dustrial bioprocess [56]. Te fermentation process was

carried out for up to 120 h. Te results revealed that max-
imum enzyme production was obtained at 48 h. Te slight
reduction in the cellulolytic activity after 48 h might be due
to either unavailability of nutrients or inhibition by toxic
components present in the medium [57]. Te study con-
ducted by Shahid et al. [58] reported a similar trend in
cellulase production by Bacillus sp. Temperature is a crucial
factor that controls bacterial physiology and enzyme
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Figure 3: Optimization of B. licheniformis PANG L culture parameters and enzyme activity: efects of (a) incubation period, (b) pH,
(c) temperature, (d) agitation, (e) carbon sources, and (f) nitrogen sources on cellulase production.

Table 5: Purifcation profle of cellulase from B. licheniformis PANG L.

Purifcation step Cellulase activity (U/ml) Protein (mg/ml) Specifc activity (U/mg) Purifcation fold
Crude 0.106± 0.003 0.39± 0.04 0.271 1
80% ammonium sulphate pool 0.179± 0.002 0.52± 0.03 0.344 1.26
Dialysis 0.112± 0.002 0.271± 0.05 0.413 1.52
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Figure 4: Efects of temperature and pH on cellulase activity and stability (a) temperature and (b) pH.
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production ability [59]. Te optimum cellulase production
was obtained at 45°C. However, several other studies
revealed that the cellulase production was achieved at 50°C
by Bacillus subtilis K-18 [18] and at 40°C by B. subtilis [60].
In the case of pH, maximum cellulase production was ob-
served at pH 6.5. A similar result was also found for
B. licheniformis MVS1 by previous researchers [61].

Agitation is another factor that plays an important role
in the transfer rate of nutrients and oxygen, the increased
aerobic metabolism of microbes, and cell aggregate dis-
persion [62]. Te current study showed that the maximum
enzyme production was observed at an agitation rate of
100 rpm. At increased agitation, the enzyme may get inac-
tivated due to the shearing of the bacterial cell [63]. Te
choice of the cheapest substrate is of great importance for the
production of enzymes. CMC was found to be the best
carbon source for the maximum production of cellulase,
which is similar to other studies [64, 65]. Tis might be due
to the activation of regulatory mechanisms responsible for
higher cellulase production [48]. Organic nitrogen sources
result in better cellulase production as compared to in-
organic sources. Tis enhancement may be due to other
nutrients and growth stimulators in the organic nitrogen
source besides nitrogen [66]. Te fndings agreed with the
results of Shahid et al. [58], who reported that organic ni-
trogen sources were more suitable for optimizing cellulase
production by B. megaterium than inorganic sources.
Trough this successive selection of incubation time,
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temperature, pH, agitation, carbon, and nitrogen source,
a 1.7-fold increase in the cellulase activity was obtained for
the strain PANG L.

Te efect of temperature on the cellulase activity was
determined at diferent temperatures ranging from 30°C to
90°C. Te maximum enzyme activity was observed at 60°C
indicating that the enzyme is moderately thermostable. Te
fndings were also consistent with those obtained from
Bacillus strains M-9 [67], Bacillus subtilis [68], and
B. megaterium BM05 [58] lower than that for B. vallismortis
RG-07 65°C [24] and B. licheniformis JK7 70°C [55]. Te
concern of thermal inactivation of the enzyme is often
experienced in industrial processes [46]. Hence, enzyme
stability is a critical issue on an industrial scale.Te thermal
stability of the cellulase indicated that the enzyme retained
67% activity up to 55°C. Terefore, it was concluded that
the enzyme was moderately thermostable and could have
a promising industrial application. In the case of pH, the
optimal enzyme activity was found at pH 5 representing the
acidophilic nature of the enzyme. Te same trend was also
obtained from Bacillus strain M-9 [67]. On the contrary,
Kim et al. [69] reported that Bacillus sp. HSH-910 was
optimally active at alkaline pH. Te enzyme showed good
stability toward acidic pH ranges of 3–6. Bischof et al. [70]
reported that cellulase from B. licheniformis was more
stable under acidic conditions. Te optimum incubation
time with the substrate was found to be 45min and de-
clined thereafter. Te decrease in the cellulase activity
beyond 45min may be due to the thermal denaturation of
the enzyme.

Metal ions can form complexes with proteins and
other molecules related to enzymes and act as donors or
acceptors of electron as structural regulators [71]. Te
cellulase activity was stimulated in the presence of metal
ions such as Pb2+, Cd2+, and Ba2+. Te partial inhibition
was observed in Ni2+ and Zn2+. In accordance with the
study conducted by Gaur and Tiwari [24], there is partial
inhibition of cellulase observed in the presence of Ni2+
and Zn2+. However, the activity was strongly inhibited by
Mn2+ and Ca2+ in the study reported by Bacillus strain
[64]. Te enzyme exhibited a high activity toward CMC.
Te substrate specifcity of CMC indicates that the enzyme
might be an endo-β-1, 4-glucanase [14]. Islam and Roy
[41] also found the same characteristics of enzymes
produced by Paenibacillus sp. Te Km and Vmax values
were found to be 1.8 mg/ml and 10.92 μg/ml/min, in-
dicating that the enzyme has a high afnity towards CMC
due to its low Km value. Te results difer from some
earlier studies in which the Km value was higher at 7.2 mg/
ml [45] and 1.923mg/ml [24]. Te important and desir-
able quality for industrial applications is the capacity to
retain enzymes at room and/or refrigerated temperatures
without signifcant loss of activity. From this study, it was
observed that the enzyme was stable at room temperature
for less than 10 days after which a slight decline was
observed. Te enzyme was stable at −20°C. Tis implies
that the room temperature was less suitable for enzyme
storage, resulting in a decrease in the enzyme activity.

However, Islam et al. [72] reported that 68% of activities
were retained at room temperature after 28 days for
cellulase from a Bacillus sp.

5. Conclusions

A cellulase-producing bacterium, B. licheniformis strain
PANG L, showed an optimum activity at a temperature of
60°C and pH 5, with good stability at pH ranges of 3–5,
indicating its thermo-acidic nature. Considering its stability
at elevated temperatures and acidic conditions, the cellulase
from B. licheniformis strain PANG L could be desirable for
bioconversion processes and industrial applications. Besides
cellulase, B. licheniformis strain PANG L also produced
important hydrolytic enzymes for various substrates such as
lipids, proteins, and starch indicating its potential for var-
ious industrial applications.
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