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Bitis arietans (Puf adder),Naja haje (Egyptian cobra), andNaja pallida (Red spitting cobra) venoms were tested for antimicrobial
activity. Tis evaluation employed disc difusion and microbroth dilution techniques. Gram-positive bacteria (Bacillus cereus and
Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, and Salmonella typhi) were used.
Aztreonam (30 µg), cefpodoxime (10 µg), cefoxitine (30 µg), streptomycin (25 µg), ceftriaxone (30 µg), nalidixic acid (30 µg),
tetracycline (30 µg), and sulfamethoxazole (25 µg) were used as controls. All tests were conducted in triplicate (n� 3). Results. Te
activity of B. arietans venom against Gram-negative bacteria was signifcantly lower (p< 0.001) than that of controls. Te efcacy
of B. arietans venom and sulfamethoxazole against both Gram-positive and Gram-negative bacteria was not signifcantly diferent
(p> 0.9999). Te efcacy of B. arietans venom against Gram-positive bacteria was signifcantly lower (p< 0.001) than cefoxitin,
streptomycin, and tetracycline. Te efcacy of N. haje venom against Gram-negative bacteria was signifcantly lower (p< 0.001)
than that of controls.Tere was no signifcant diference in the antimicrobial efcacy ofN. haje venom and controls against Gram-
positive bacteria (p � 0.3927 to p � 0.9998). Tere was no signifcant diference in the efcacy of N. pallida venom and controls
against Gram-negative bacteria (p � 0.3061 to p � 0.9981). Tere was no signifcant diference in the efcacy of N. pallida venom
and controls against Gram-positive bacteria (p � 0.2368 to p> 0.9999). Conclusions. Of all the tested venoms, only Naja pallida
venom showed good efcacy against both Gram-positive and Gram-negative bacteria.

1. Background

Bacillus cereus, Staphylococcus aureus, Escherichia coli,
and Klebsiella pneumoniae are some of the pathogens of
medical importance in the developing World [1–4]. Tese
pathogens have been implicated in food poisoning [5, 6],
sepsis [7], and neonatal infections [8, 9]. Reports on drug
resistance for clinical isolates of these pathogens are rife
in the scientifc literature [10–12]. Terefore, new and
innovative therapies are urgently required to mitigate the
unfolding AMR crisis. Venom from animals comprises
a complex cocktail of pharmacological molecules that

could help bolster the ranks of the current antimicrobial
agents. Bitis arietans (puf adder, a viper), Naja haje
(Egyptian cobra, a nonspitting cobra), and Naja pallida
(Red spitting cobra, a spitting cobra) are snakes of
medical importance in Subsaharan Africa [13]. Venom
from these snakes could be useful in combating medically
important pathogens in the region including Bacillus
cereus, Staphylococcus aureus, Escherichia coli, and
Klebsiella pneumoniae. However, data to support their
efcacy against common bacterial pathogens are not
available. Te aim of the present study was therefore to
determine the antibacterial activities of venoms from
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Bitis arietans, Naja haje, and Naja pallida against Bacillus
cereus, Staphylococcus aureus, Escherichia coli, and
Klebsiella pneumoniae.

2. Materials and Methods

2.1. Venom. Venoms from Bitis arietans (Puf adder), Naja
haje (Egyptian Cobra), and Naja pallida (Red spitting Co-
bra) were collected from wild-caught snakes at the East
African Venom Supplies (Kenya).Tey were lyophilized and
stored at −4°C at the Pharmacology and Toxicology Lab,
Faculty of Veterinary Medicine, University of Nairobi. Each
of the lyophilized venoms were accurately weighed (0.25 g)
in an analytical balance and triturated using a pestle and
mortar. Te triturated venoms were transferred to 10mL
volumetric fasks and made up to the mark with phosphate
bufered saline to make a 25mg/mL concentration.

2.2. Microbial Cultures. Standard microbial cultures of
E. coliATCC 25922,K. pneumoniaeATCC 700603, S. aureus
ATCC 25923, B. cereus ATCC 11778, and S. typhi ATCC
6539 were obtained from the Research Unit of the Bacte-
riology Lab at the Faculty of VeterinaryMedicine, University
of Nairobi. All the bacteria were subcultured in Mueller
Hinton Agar (MHA) for susceptibility testing after 24 hours.

2.3. Antimicrobial Discs. Antimicrobial discs were prepared
by punchingWhatman Filter paper number 1 using an ofce
paper punch. Te prepared discs were sterilized by auto-
claving at 121°C for 15minutes. Te discs were then soaked
for 5minutes in the prepared venom concentrations (25mg/
mL) using Petri dishes. Te venom-soaked discs were then
gently picked using forceps and dried in an oven at 37°C for
30minutes.

2.4. Growth Media. Mueller Hinton Agar (MHA) was
prepared by dissolving 19 g of the media in distilled water,
heating in an oven to boil and dissolve for 5minutes. Tis
was followed by sterilization via an autoclave at 121°C for
15minutes. Te medium was allowed to cool in a 45°C water
bath, poured into plates under the sterile laminar fow hood,
and left to solidify for 10minutes. Te prepared Mueller
Hinton Agar (MHA) plates were transferred to an oven and
allowed to dry at an angle of 45°C for 10minutes.

2.5. Microbial Inoculum. 0.85% normal saline was placed in
the same tubes as used in the McFarland standard and
sterilized by autoclaving at 121°C for 15minutes. Te in-
oculum of the microorganisms was prepared by suspending
isolated bacterial colonies from the pure microbial sub-
cultures in 0.85% normal saline, and the turbidities were
standardized to 0.5 McFarland units.

2.6. Antimicrobial Activity Assay. Te disk difusion test and
minimum inhibitory concentration (MIC) determination
were used to screen for antibacterial activity according to
standard techniques described in previous publications

[14–16]. In brief, the bacterial strains were grown in tryp-
ticase soy agar at 37°C for 16–18 hours before being adjusted
to 0.5 McFarland standards (1.5×108 colony forming unit/
mL) with sterile normal saline [14–16]. A sterile swab was
dipped into the inoculum, and excess inoculums were re-
moved by pressing frmly against the side of the tube above
the liquid level. Te swab was streaked three times across the
surface of Mueller−Hinton agar plates [14–16]. Each snake
venom solution was prepared at a concentration of 25mg/
mL by dissolving it in sterile deionized water. 1 µL solutions
of the prepared venom concentration were applied to
Whatman paper discs (6mm diameter) and placed on
bacterial culture in the triplicate assay, which was then
incubated for 16–24 hours at 35± 2°C [14–16]. Te zones of
inhibition around the discs were measured using a digital
Vernier caliper. Distilled water discs were used as the
negative control. Positive controls included aztreonam
(30 µg), cefpodoxime (10 µg), cefoxitin (30 µg), streptomycin
(25 µg), ceftriaxone (30 µg), nalidixic acid (30 µg), tetracy-
cline (30 µg), and sulfamethoxazole (25 µg). Te snake
venoms with the largest inhibition zone diameters were
chosen for minimum inhibitory concentration (MIC) de-
termination [14–16]. Te Clinical Laboratory Standards
Institute (CLSI 2014) broth microdilution method was used
for theMIC test [14–16].Te culture was diluted to 106 CFU/
mL after 3 hours of the bacterial growth. Te snake venom
was diluted twice with Mueller−Hinton broth, and then the
diluted bacterial culture was added to achieve a fnal con-
centration ranging from 0.39mg/mL to 25.0mg/mL. After
16–18 hours of incubation at 35± 2°C, the MIC was defned
as the lowest concentration of venom or antibiotic pre-
venting the visible bacterial growth when compared to the
positive growth control (medium plus bacteria without
venom or antibiotic) with high turbidity and to the negative
growth control (medium plus bacteria without venom or
antibiotic) [14–16].

2.7. Data Analysis. Data on the zones of inhibition of
conventional antibiotics and venoms against Gram-positive
and Gram-negative bacteria were summarized on MS Excel
2016 spreadsheet and imported into GraphPad Prism. Two-
Way Analysis of Variance (ANOVA) and Dunnet’s post hoc
test were then performed with p< 0.05 considered
signifcant.

3. Results

Figure 1 illustrates the efect of conventional antibiotics and
venoms on selected bacteria. Table 1 shows the mean size of
the clearing zones or zones of inhibition values of venoms
and conventional antibiotics against Gram-positive and
Gram-negative bacteria.

Te efect of the conventional antibiotics and venoms on
E. coli was in the order ATM>CRO>TCY>CPD>CXT>
NAL>SMZ> STM>NHV>NPV>BAV as shown in Table 1.
Te efect of the conventional antibiotics and venoms on
K. pneumoniae was in the order TCY>CRO>CXT>
NAL>STM>ATM>CPD>NHV>NPV> SMZ∼BAV as

2 International Journal of Microbiology



shown in Table 1.Te efect of the conventional antibiotics and
venoms on S. aureus was in the order STM>TCY>CRO>
CXT>NHV>NPV>ATM∼CPD∼NAL∼SMZ∼BAV as
shown in Table 1.Te efect of the conventional antibiotics and
venoms on B. cereus was in the order STM>TCY>CXT>
CRO>NPV>NHV>ATM∼CPD∼NAL∼BAV as shown in
Table 1. Te efect of the conventional antibiotics and venoms
on S. typhi was in the order CRO>CXT> STM>
TCY>NHV>NPV>ATM∼NAL∼SMZ∼BAV as shown in
Table 1.

Figure 2 is a comparison of the antibacterial efect of
venom from Bitis arietans venom and conventional

antibacterial agents against Gram-negative bacteria. Te
efect of B. arietans venom on E. coli was signifcantly lower
(p< 0.001) than the efect of cefpodoxime, cefoxitin,
streptomycin, ceftriaxone, nalidixic acid, tetracycline, and
sulfamethoxazole as shown in Figure 2. Te efect of
B. arietans venom on K. pneumoniae was signifcantly lower
(p< 0.001)than the efect of cefpodoxime, cefoxitin, strep-
tomycin, ceftriaxone, nalidixic acid, tetracycline, and sul-
famethoxazole as shown in Figure 2.Tere was no signifcant
diference (p> 0.9999) in the efect of Bitis arietans venom
and Sulfamethoxazole on K. pneumoniae as shown in
Figure 2.

Figure 1: Illustration of the zones of inhibition produced by conventional antibiotics and venoms on selected bacteria. SA: Staphylococcus
aureus, ST: Salmonella typhi, NP: Naja pallida, EC: Escherichia coli, KP: Klebsiella pneumoniae (n� 3).

Table 1: Antibacterial efect of conventional antibiotics and venoms against gram-positive and gram-negative bacteria.

Microorganism
Inhibition zone (mm)a

BAV NHV NPV ATM CPD CXT STM CRO NAL TCY SMZ
E. coli 0.0± 0.0 7.6± 0.5 6.3± 0.8 28.6± 2.2 25.1± 0.9 22.6± 1.1 14.0± 0.4 28.2± 0.6 21.7± 0.7 25.8± 1.0 15.9± 0.2
K. pneumoniae 0.0± 0.0 6.8± 0.2 5.8± 0.7 14.0± 0.2 12.6± 0.2 17.4± 0.3 15.3± 1.8 19.9± 0.6 15.6± 0.3 20.8± 0.3 0.0± 0.0
S. aureus 0.0± 0.0 12.1± 1.7 9.7± 0.5 0.0± 0.0 0.0± 0.0 22.5± 0.7 29.4± 1.8 25.0± 3.0 0.0± 0.0 26.9± 0.7 0.0± 0.0
B. cereus 0.0± 0.0 9.8± 0.7 10.8± 0.7 0.0± 0.0 0.0± 0.0 25.2± 0.6 33.0± 1.7 14.6± 0.5 0.0± 0.0 32.8± 0.8 25.0± 2.2
S. typhi 0.0± 0.0 7.7± 1.7 6.2± 0.5 0.0± 0.0 20.7± 0.6 20.0± 0.1 10.2± 0.4 29.8± 0.4 0.0± 0.0 9.3± 0.2 0.0± 0.0
aTe values represent inhibition zone in millimeters, after 24 h incubation performed in triplicate assays. BAV: Bitis arietans venom; NHV; Naja haje venom;
NPV: Naja pallida venom; ATM: aztreonam; CPD: cefpodoxime; CXT: cefoxitin; STM: streptomycin; CRO: ceftriaxone; NAL: nalidixic acid; TCY: tet-
racycline; SMZ: sulfamethoxazole.
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Figure 3 shows a comparison of the antibacterial efect of
Bitis arietans venom and conventional antimicrobial agents
against Gram-positive bacteria. Te efect of B. arietans
venom on S. aureus was signifcantly lower (p< 0.001) than
the efect of cefoxitin, streptomycin, ceftriaxone, and tet-
racycline as shown in Figure 3. Tere was no signifcant
diference (p> 0.9999) in the efect of Bitis arietans venom,
aztreonam, cefpodoxime, nalidixic acid, and sulfamethox-
azole on S. aureus as shown in Figure 3. Te efect of
B. arietans venom on S. typhi was signifcantly lower
(p< 0.001) than the efect of aztreonam, cefpodoxime,
cefoxitin, streptomycin, ceftriaxone, and tetracycline as
shown in Figure 3. Tere was no signifcant diference
(p> 0.9999) in the efect of Bitis arietans venom, nalidixic
acid, and sulfamethoxazole on S. typhi as shown in Figure 3.

Figure 4 shows a comparison of the antibacterial efect of
Naja haje venom and conventional antimicrobial agents
against Gram-negative bacteria. Te efect of N. haje venom
on E. coli and K. pneumoniae was signifcantly lower
(p< 0.001) than the efect of aztreonam, cefpodoxime,

cefoxitin, ceftriaxone, nalidixic acid, tetracycline, and sul-
famethoxazole as shown in Figure 4.

Figure 5 is a comparison of the antibacterial activity of
Naja haje venom and conventional antimicrobial agents
against Gram-positive bacteria. With regard to B. cereus,
there was no signifcant diference between the efect of Naja
haje venom and aztreonam (p � 0.6857), Naja haje venom
and cefpodoxime (p � 0.7388),Naja haje venom and cefoxitin
(p � 0.9356), Naja haje venom and ceftriaxone (p � 0.3927),
Naja haje venom and nalidixic acid (p � 0.6857), Naja
haje venom and tetracycline (p � 0.4081), and Naja haje
venom and sulfamethoxazole (p � 0.9445) as shown in
Figure 5. With regard to S. aureus, there was no signifcant
diference between the efect of Naja haje venom and
aztreonam (p � 0.4023), Naja haje venom and cefpodoxime
(p � 0.4699), Naja haje venom and cefoxitin (p � 0.9998),
Naja haje venom and ceftriaxone (p � 0.9067), Naja haje
venom and nalidixic acid (p � 0.9958),Naja haje venom and
tetracycline (p � 0.4023), and Naja haje venom and sulfa-
methoxazole (p � 0.9787) as shown in Figure 5. With regard
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Figure 2: A comparison of the antibacterial efect of Bitis arietans venom and conventional antibacterial agents against gram negative
bacteria.
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to S. typhi, there was no signifcant diference between the
efect of Naja haje venom and aztreonam (p � 0.6349), Naja
haje venom and cefpodoxime (p � 0.8358), Naja haje
venom and cefoxitin (p � 0.9829), Naja haje venom and
ceftriaxone (p � 0.9999), Naja haje venom and nalidixic acid
(p � 0.3946), Naja haje venom and tetracycline (p � 0.8931),
and Naja haje venom and sulfamethoxazole (p> 0.9999) as
shown in Figure 5.

Figure 6 is a comparison of the antibacterial efects of
Naja pallida venom and conventional antimicrobial agents
against Gram-negative bacteria. With regard to E. coli, there
was no signifcant diference between the efect of Naja
pallida venom and aztreonam (p � 0.3439), Naja pallida
venom and cefpodoxime (p � 0.3061), Naja pallida venom
and cefoxitin (p � 0.8041), Naja pallida venom and cef-
triaxone (p � 0.3725),Naja pallida venom and nalidixic acid
(p � 0.8608), Naja pallida venom and tetracycline
(p � 0.5628), and Naja pallida venom and sulfamethoxazole
(p � 0.9971) as shown in Figure 6. With regard to
K. pneumoniae, there was no signifcant diference between
the efect ofNaja pallida venom and aztreonam (p � 0.9993),
Naja pallida venom and Cefpodoxime (p � 0.9981), Naja

pallida venom and Cefoxitin (p � 0.9804), Naja pallida
venom and ceftriaxone (p � 0.9967), Naja pallida venom
and nalidixic acid (p � 0.9144), Naja pallida venom and
tetracycline (p � 0.9955), and Naja pallida venom and
sulfamethoxazole (p � 0.8690) as shown in Figure 6.

Figure 7 is a comparison of the antibacterial efects of
Naja pallida and conventional antimicrobial agents against
Gram-positive bacteria. With regard to B. cereus, there was
no signifcant diference between the efect of Naja pallida
venom and aztreonam (p � 0.5583), Naja pallida venom
and cefpodoxime (p � 0.6217), Naja pallida venom and
cefoxitin (p � 0.9741), Naja pallida venom and strepto-
mycin (p � 0.5142), Naja pallida venom and ceftriaxone
(p> 0.9999), Naja pallida venom and nalidixic acid
(p � 0.5583), Naja pallida venom and tetracycline
(p � 0.5310), and Naja pallida venom and sulfamethoxazole
(p � 0.9786) as shown in Figure 7.

With regard to S. aureus, there was no signifcant dif-
ference between the efect of Naja pallida venom and
aztreonam (p � 0.6964), Naja pallida venom and cefpo-
doxime (p � 0.7483), Naja pallida venom and cefoxitin
(p � 0.9882), Naja pallida venom and streptomycin
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Figure 3: A comparison of the antibacterial efect of Bitis arietans venom and conventional antimicrobial agents against gram positive
bacteria.
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(p � 0.6744), Naja pallida venom and ceftriaxone
(p � 0.9386), Naja pallida venom and nalidixic acid
(p � 0.6964), Naja pallida venom and tetracycline
(p � 0.8535), and Naja pallida venom and sulfamethoxazole
(p � 0.6964) as shown in Figure 7.

With regard to S. typhi, there was no signifcant dif-
ference between the efect of Naja pallida venom and
aztreonam (p � 0.4423), Naja pallida venom and cefpo-
doxime (p � 0.6779), Naja pallida venom and cefoxitin
(p � 0.9281), Naja pallida venom and streptomycin
(p> 0.9999), Naja pallida venom and ceftriaxone
(p � 0.2368), Naja pallida venom and nalidixic acid
(p � 0.9688), Naja pallida venom and tetracycline
(p> 0.9999), and Naja pallida venom and sulfamethoxazole
(p � 0.9688) as shown in Figure 7.

Table 2 is a summary of the minimum inhibitory con-
centration of Naja haje venom against some Gram-positive
and Gram-negative bacteria.

4. Discussion

In 2017, the World Health Organization published a list of
antibiotic resistant bacteria. Tis list was dubbed as the
“WHO priority pathogen list.” It is divided into three key
priorities based on the urgency and need for new antibiotics,

i.e., priority 1: critical, priority 2: high, and priority 3:
medium.

In the present study, we evaluated the antimicrobial
activities of Bitis arietans, Naja haje, andNaja pallida against
Gram-positive (B. cereus, S. aureus, and S. typhi) and Gram-
negative (E. coli and K. pneumoniae). Organisms such as
E. coli and K. pneumoniae are WHO priority 1 (critical)
pathogens while organisms such as S. typhi and S. aureus are
WHO priority 2 (high) pathogens.

Te clinical and laboratory standard institute (CLSI) has
developed zone diameter and minimum inhibitory con-
centration breakpoints of various antibiotics when tested
against various pathogens [17]. Based on these breakpoints,
it is possible to determine whether the pathogens are sen-
sitive, intermediate, or resistant to a test substance/com-
pound [17]. When these criteria are considered, E. coli was
found to be sensitive to aztreonam, cefpodoxime, cefoxitin,
ceftriaxone, nalidixic acid, and tetracycline. K. pneumoniae
was sensitive to streptomycin and tetracycline but resistant
to sulfamethoxazole, aztreonam, and cefpodoxime. S. aureus
was sensitive to cefoxitin, streptomycin, ceftriaxone, and
tetracycline but resistant to cefpodoxime, nalidixic acid, and
sulfamethoxazole. S. typhi was sensitive to cefoxitin and
ceftriaxone but resistant to aztreonam, sulfamethoxazole,
nalidixic acid, streptomycin, and tetracycline.
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Figure 4: A comparison of the antibacterial efect ofNaja haje venom and conventional antimicrobial agents against gram negative bacteria.
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Culture samples from fangs, fang sheaths, and the oral
cavities of venomous snakes have been shown to have an
array of microbes such as Bacillus subtilis, Morganelli
morganii, and coagulase-negative Staphylococci. Others in-
clude Pseudonomas, Staphylococcus, Salmonella, Strepto-
cocci, Enterobacter, Escherichia, Citrobacter, Proteus, and
Clostridium sp which are all potentially pathogenic [18–21].
It is expected that snake mouth bacteria may be inoculated
during a dry bite or envenomation resulting in infection.
However, it is fascinating that snakebite victims rarely sufer
from complications arising from bacterial infections [21].
One of the frst reports to evaluate the antimicrobial
properties of snake venom was by Glaser in 1948 [22]. Since
then, the feld has grown exponentially to the point that
individual snake venom proteins are being explored for
antimicrobial activity [23–27].

Te results of the present study suggest that both Gram-
positive and Gram-negative bacteria were resistant to
B. arietans venom as no inhibition was observed in the
antibacterial assay. Tese results are contrary to those of Al-
Asmari and colleagues who reported that Bitis arietans

venom from captive bred snakes in Saudi Arabia was ef-
fective against S. aureus, E. fecalis, and P. aeruginosa [28].

Elapid venoms (e.g.,Naja haje andNaja pallida venoms)
have been reported to have signifcantly higher percentages
of three fnger toxins (3FTx’s) than viperid venoms (Bitis
arietans venom) [29, 30]. Te three fnger toxins (3FTx’s)
have been reported to have higher specifc activity towards
the lipids contained within the Gram-positive plasma
membranes than those found in Gram-negative bacterial
membranes [31]. Not unexpectedly, the elapid venoms
studied were more efective than at inhibiting Gram-positive
bacteria than Gram-negative bacteria. Similar observations
were made by Charvat and colleagues [32].

Te exact mechanism of antimicrobial activity of 3FTxs
is not known. However, it is postulated that 3FTxs cause
membrane destabilization and release of cytoplasmic ma-
terials in bacteria [32–34]. L-amino acid oxidases (LAAOs)
in venoms have also been implicated in morphological al-
terations in bacteria including disruption of the mito-
chondrial membranes leading to total destruction and/or
loss of organelles [35, 36].
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Figure 5: A comparison of the antibacterial efects ofNaja haje venom and conventional antimicrobial agents against gram positive bacteria.
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5. Conclusions

In conclusion, these fndings suggest thatNaja haje andNaja
pallida venoms have better antibacterial activity than some
of the antibiotics which are currently in use for microbial
infections. However, the venom of Bitis arietans appears to
be inefective against common bacterial pathogens.

5.1. Limitations. A limited number of venoms (from one
viper, one spitting cobra, and one nonspitting cobra) was
used in this study. Future studies should employ a broader

range of snake venoms including those from the Mambas
and colubrids found in Subsaharan Africa.
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Figure 7: A comparison of the antibacterial efects of Naja pallida and conventional antimicrobial agents against gram positive bacteria.

Table 2: Minimum inhibitory concentration of Naja haje venom
against some gram positive and gram negative bacteria.

Microorganism MIC (mg/mL)
B. cereus 1.72± 0.00
E. coli 0.96± 0.45
K. pneumoniae 1.33± 0.00
S. aureus 1.25± 0.00
S. typhi 1.03± 0.55
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