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Infuenza pandemic with H1N1 (H1N1pdms) causes severe lung damage and “cytokine storm,” leading to higher mortality and
global health emergencies in humans and animals. Explaining host antiviral molecular mechanisms in response to H1N1pdms is
important for the development of novel therapies. In this study, we organised and analysed multimicroarray data for mouse lungs
infected with diferent H1N1pdm and nonpandemic H1N1 strains. We found that H1N1pdms infection resulted in a large
proportion of diferentially expressed genes (DEGs) in the infected lungs compared with normal lungs, and the number of DEGs
increased markedly with the time of infection. In addition, we found that diferent H1N1pdm strains induced similarly innate
immune responses and the identifed DEGs during H1N1pdms infection were functionally concentrated in defence response to
virus, cytokine-mediated signalling pathway, regulation of innate immune response, and response to interferon. Moreover,
comparing with nonpandemic H1N1, we identifed ten distinct DEGs (AREG, CXCL13, GATM, GPR171, IFI35, IFI47, IFIT3,
ORM1, RETNLA, and UBD), which were enriched in immune response and cell surface receptor signalling pathway as well as
interacted with immune response-related dysregulated genes during H1N1pdms. Our discoveries will provide comprehensive
insights into host responding to pandemic with infuenza H1N1 and fnd broad-spectrum efective treatment.

1. Introduction

With the evolution, reassortment, and transmission of in-
fuenza virus, infuenza pandemics caused severe pneumonia
and higher mortality, leading to public health emergence
and economic losses [1]. Infuenza H1N1 strains have
resulted in two pandemics in history spreading worldwide
and killing many individuals [2, 3]. H1N1pdm1918 and
H1N1pdm2009 originated from a series of reassortments
among avian, swine, and human infuenza viruses and then
transmitted to humans, leading to acute lung injury [4, 5].
Infuenza virus reassortments usually afect the efcacy of
vaccination, which is the most efcient approach to prevent
and control infuenza circulation [6], and only four

anti-infuenza drugs (oseltamivir, zanamivir, peramivir, and
baloxavir) were used, although the usage of these drugs may
lead to the emergence of resistant infuenza strains [7–11].
Terefore, novel broad-spectrum treatments are needed to
be explored and developed.

A large number of host factors and cellular processes, for
example, host dependency factors, host restriction factors,
apoptosis, and autophagy are involved in the replication
cycle of infuenza virus [12–16]. It was all known that faced
with infection, host will quickly respond to virus clearance
and tissue function maintenance for the host survives by
releasing antiviral signalling [17]. Host antiviral responses
activated by infuenza virus infection, in turn, can prevent
viral infection by inhibiting the fusion of viral and host
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membranes, inducing viral protein degradation and
strengthening the innate immune response and antiviral
signalling of MAVS [18–20]. Moreover, host apoptosis di-
rectly targets infuenza virus-infected cells [21] and auto-
phagy induces damaged oranges containing viral particles
into the lysosome for viral elimination [22]. But the virus can
employ host compounds and processes to promote its
replication and induce lung injury. Sialic acid receptor on
the host cell surface is a key for the initiation of infuenza
virus infection that depends on cellular endocytosis [23, 24].
Host factors CMAS and ST3GAL4 knockout inhibited the
synthesis of sialic acid receptors [25]. Glucosylceramidase
(GBA) regulates infuenza virus entry and cellular endo-
cytosis [26]. Additionally, infuenza virus infection induces
the release of proinfammatory cytokines that promote in-
fuenza virus-related lung injury [27]. Tese data indicate
that the interaction between the host and virus is complex.
Tus, the releasing mechanisms of virus-host interaction are
particularly important, and analyses of the lung tran-
scriptomic pattern in response to viral infections are a useful
paradigm.

In this study, we performed an integrative analysis of
transcriptomic expression profle data of mouse lung to
assess host response patterns to diferent H1N1pdm strains
and identify diferentially expressed genes (DEGs). Ten,
gene ontology and pathway enrichment analyses were
performed to clarify the function of these assessed DEGs,
and protein-protein interaction (PPI) network analysis was
also conducted and revealed key genes. We identifed dis-
tinct dysregulated genes during H1N1pdms infection. Tese
results contribute to understanding the host response
mechanisms to H1N1pdm virus.

2. Methods

2.1. Data Collection and Identifcation of DEGs.
Microarray datasets, including GSE43764, GSE40091,
GSE63786, GSE67241, GSE70882, GSE38112, GSE70445,
GSE44595, GSE70502, GSE57008, GSE99189, GSE99190,
GSE77600, GSE158270, and GSE62169 [28–39] (Table 1),
were selected based on infection time and strains. Moreover,
these datasets contained at least three duplicate samples in
each group. Te raw expression matrix fles were down-
loaded by using GEOquery package in R, and then the
mRNA expression profle datasets of lung infected with
infuenza H1N1 virus were analysed with the limma package
[40] to identify diferentially expressed genes (DEGs) based
on the selection criteria of adj. p value <0.05 and the absolute
value of log2 (fold change) >1. A heatmap of the DEGs in R
software was drawn with the pheatmap package, and the
Venn diagram for the overlapped DEGs was drawn with the
VennDiagram package.

2.2. Analysis of Gene Ontology and Pathway Enrichment.
To explain the role of DEGs in response to H1N1 virus
infection, gene ontology (GO) enrichment analysis for the
biological process was performed using the cluster profler
package [41] in R software, and a p value <0.05 was

considered statistically signifcant. Reactome pathway and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis were combined to evaluate the
functional pathways of the H1N1-associated genes by KEGG
and Reactome databases with p value <0.05 [42, 43].

2.3. Protein-Protein Interaction (PPI) Analysis and Network
Construction. Te commonDEGs were selected for protein-
protein interaction analysis by using the STRING database
(https://string-db.org/). Ten, the cluster analysis of the PPI
network was performed with theMCL infation parameter in
STRING. Te signifcant cluster networks were exported to
Cytoscape for further visualization processing [44].

3. Results

3.1. Transcriptomic Profles of the H1N1pdm2009-Infected
Mouse Lung. Te mRNA expression profles of the mouse
lung infected with a pandemic infuenza virus (H1N1pdm09)
were performed in here. Tree independent datasets
(GSE43764, GSE40091, and GSE63786) with A/California/04/
2009 H1N1 infection (a subtype of H1N1pdm09) were in-
tegrated to identify diferentially expressed genes (DEGs)
using the limma package. Te result showed that a subtype of
H1N1pdm09, A/California/04/2009 H1N1, produced nu-
merous DEGs at three-day postinfection (3 dpi) and a time-
dependent increase of DEGs was detected after 5/6 dpi
(Figures 1(a) and 1(d), Supplementary data1). Moreover, to
look for the functional characteristics of these DEGs, gene
ontology (GO) classifcation and pathway enrichment anal-
ysis were performed. Consistently, we found that
H1N1pdm09-induced DEGs in both 3 dpi and 5 dpi were
mainly associated with the response to virus and innate
immune process, where a part of DEGs showed a role in
organelle fssion and nuclear division process in 5/6 dpi
(Figures 1(b) and 1(e)). KEGG pathway analysis indicated
that these DEGs were overrepresented in pathways associated
with viral protein interaction with cytokine and cytokine
receptors, NOD-like receptor signalling, and infuenza A
(Figures 1(c) and 1(f)). Furthermore, collecting all DEGs in
3 dpi and 5/6 dpi, we identifed 231 commonDEGs, including
19 downregulated and 209 upregulated genes in response to
H1N1pdm09 infection (Supplementary data1). Te down-
regulation was observed for genes (1500035N22Rik,
1700012B09Rik, 2410066E13Rik, Aass, Abcg5, Asgr1, Cd207,
Ces1f, Cyp2a4, Cyp4f15, F2, Fabp1, Fmo3, Hepacam2,
Hmgcs2, PiPOx, Pon1, Scgb1c1, and Uox) involved in the L-
lysine catabolic process to acetyl-CoA, acetyl-CoA metabolic,
carboxylic acid catabolic, and small molecule catabolic pro-
cess, while the biological process terms of the upregulated
genes were enriched in response to virus, negative regulation
of the viral process, and regulation of innate immune re-
sponse. With MCL infation parameters based on the
STRING database, protein-protein interaction (PPI) net-
works were generated (p value <1.0e− 16). 173 of the
upregulated DEGs were divided into fve signifcant clusters
(Figure 2). STAT1, Cxcl10, and IRF7 nodes have the highest
degree of connectivity (degree≥ 90) in the PPI networks.
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In addition, to identify whether other subtypes of
H1N1pdm09 strain show a similar transcriptomic profle,
three independent microarray datasets of the mouse lung
responding to two diferent strains of H1N1pdm09 (A/
Jena/5258/09 and A/California/7/2009) infection were
jointly analysed (Supplementary data2). A similar con-
clusion was reached that the number of overlapped DEGs
(42 in 3 dpi and 109 in 5 dpi) in all two datasets was
correlated with time points after infection (Figures 3(a)
and 3(b), Supplementary data2). We found that all
overlapped DEGs were upregulated and displayed in
a volcano plot (Figure 3(c)). Furthermore, functional

enrichment and PPI network analysis of these DEGs
indicated that genes in Cluster1 were involved in the
cytokine-mediated signalling pathway, neutrophil che-
motaxis, and infammatory response, when genes in
Cluster2 mainly played a role in the type I interferon
signalling pathway, defence response, and innate immune
response in both 3 dpi and 5 dpi (Figures 4(a) and 4(b)).
Integrated with gene expression profles in diferent
strains of H1N1pdm2009, we fnally identifed 38 and 87
overlapped DEGs in all analysed datasets infected with
H1N1pdm09 strains at 3 dpi and 5 dpi, respectively
(Supplementary data3).

Table 1: Microarray datasets of transcriptomic profles.

Dataset Platform Infuenza strain Mouse Time point
(days) Lethal infection

GSE43764 GPL13912 A/California/04/2009 6-week-old female BALB/c 3, 6 days [28] No
GSE40091 GPL7202 A/California/04/2009 6- to 8-week-old female BALB/c 3, 5 days [29] No
GSE63786 GPL7202 A/California/04/2009 5-week-old female C57BL/6Js 3, 5 days [30] No
GSE67241 GPL6885 A/Jena/5258/09 7- to 8-week-old female BALB/c 3, 5 days [31] No
GSE70882 GPL6246 A/California/07/2009 7-week-old female C57BL/6Js 3, 5 days [32] No
GSE38112 GPL7202 A/BrevigMission/1/18 8- to 10-week-old female BALB/c 3, 5 days [33] No
GSE70445 GPL7202 A/BrevigMission/1/18 8- to 9-week-old female BALB/c 3, 5 days [34] No
GSE57008 GPL1261 A/Puerto Rico/8/34 5- to 7-week-old female C57Bl/6 3 days [35] No
GSE99189 GPL16570 A/Puerto Rico/8/34 8- to 12-week-old female C57Bl/6 3 days [36] No
GSE99190 GPL16570 A/Puerto Rico/8/34 8- to 12-week-old female C57Bl/6 3 days [36] No
GSE77600 GPL11202 A/Puerto Rico/8/34 8- to 12-week-old female C57Bl/6 3 days [37] No
GSE158270 GPL21163 A/Puerto Rico/8/34 6-week-old female BALB/c 5 days [38] No
GSE62169 GPL16570 A/Puerto Rico/8/34 7- to 8-week-old female BALB/c 5 days [39] No
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Figure 1: Identifcation and function enrichment analysis of diferentially expressed genes (DEGs) of the lung during H1N1pdm2009
infection. (a, d) Gene expression profle analyses of the infected lung with A/California/04/2009 strains indicating the common and distinct
gene sets in 3 day-postinfection and 5/6 day-postinfection via Venn diagram; (b, e) Gene ontology analysis showing the biological process of
DEGs; (c, f ) pathway enrichment analysis of DEGs.
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Figure 2: Te protein-protein interaction (PPI) clusters of upregulated DEGs based on the MCL infation parameter in the STRING
database. 173 of the upregulated DEGs were divided into fve signifcant clusters.
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Figure 3: Gene expression profle analyses of the infected lung with other H1N1pdm2009 strains. (a, b) Gene expression profle analyses of
the infected lung with three other H1N1pdm2009 strains indicating the common and distinct gene sets in 3 dpi and 5 dpi via Venn diagram;
(c) volcano plot representation of DEGs in three diference microarray datasets (GSE63786, GSE67241, and GSE70882). Red and blue
colours indicate the genes increased or decreased expression, respectively. Te overlapped DEGs are separately displayed.
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Figure 4: Functional enrichment and PPI network of the overlapped DEGs. (a) 15 DEGs in 3dpi were constructed using the STRING database and
divided into one cluster and (b) PPI network of 69 DEGs in 5dpi was constructed, and the roles of these genes were enriched in defense response.
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3.2. Diferential Gene Expression Profle between the
H1N1pdm1918-Infected Lung and Healthy Controls.
Another pandemic infuenza virus 1918 H1N1 strain
(H1N1pdm1918) caused the deadly infuenza pandemic and
severe lung injury. To explore the regulatory mechanism of
lung in-host defence against H1N1pdm1918 virus infection,
we performed a comparative gene expression profling by
using the publicly available array expression profling

datasets (GSE38112 and GSE70445). A direct comparison
analysis of up or down trends in expression showed that
there were 263 and 650 overlapped DEGs in 3 dpi and 5 dpi,
respectively (Figures 5(a) and 5(d), Supplementary data4).

Importantly, H1N1pdm1918-induced DEGs represented
the similar function characteristic with those DEGs in
H1N1pdm09 (Figures 5(b) and 5(e)). Compared with DEGs
in 3 dpi that were mostly involved in the innate immune
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Figure 5: Global transcriptomic profles change of the lung during H1N1pdm1918 infection. (a, d) Heatmap of diferentially expressed
patterns of genes in the H1N1pdm1918-infected lung from twomicroarray datasets (GSE38112 andGSE70445); (b, e) gene ontology analysis
showing the biological process of DEGs; (c, f ) KEGG pathways of the DEGs. Signifcant top 20 enriched by diferentially expressed genes
were shown.
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process, those DEGs in 5 dpi were enriched in adaptive
immunity-related antigen processing and presentation and
phagosome process (Figures 5(c) and 5(f )). To reveal
whether there are common dysregulated genes during
H1N1pdm1918 virus infection, we continuously analysed
time-course gene expression profling in 3 dpi and 5 dpi. 192
overlapped DEGs were identifed with Venn diagrams
(Figure 6(a) and Supplementary data4) and signifcantly
enriched in host defence, immune system, and interferon
signalling. Additionally, the diferential protein-protein
interaction network was constructed and showed two sig-
nifcant clusters: one cluster (80 genes) enriched interferon
signalling and antiviral mechanism by IFN-stimulated
genes, another cluster (24 genes) enriched chemokine re-
ceptor binding chemokines and regulating of IFNG sig-
nalling (Figures 6(b) and 6(c)). By integrating all DEGs in
H1N1pdms, we acquired 32 and 74 dysregulated genes at
3 dpi and 5 dpi, respectively (Supplementary data4).

3.3. Identifcation of Distinct DEGs in H1N1pdm Strains
Compared with Nonpandemic H1N1. To make clear
H1N1pdms-induced distinct host responses, gene expres-
sion profles of lungs infected with nonpandemic H1N1
(nH1N1pdm) were analysed and then compared with the
DEGs induced by H1N1pdms. Similarly, a direct compar-
ison of up or down trends showed that infection of
nH1N1pdm triggered a strong and persistent innate im-
mune response due to the production of many innate
immune-related upregulated genes (Figures 7(a) and 7(d),
Supplementary data5). Te biological process enrichment
analysis of 296 DGEs in 3 dpi and 342 DEGs in 5 dpi showed
signifcant enrichment of response to virus, defence re-
sponse to virus, and response to interferon-gamma
(Figures 7(b) and 7(e)). KEGG analysis showed a signif-
cant enrichment of upregulated genes involved in the NOD-
like receptor signalling pathway, Toll-like receptor signalling
pathway, TNF signalling pathway, and cytokine-cytokine
receptor interaction (Figures 7(c) and 7(f)). Besides, we
found that DEGs in H1N1pdms infection were completely
present in nonpandemic H1N1 infection at 3 dpi, while only
ten distinct DEGs (AREG, CXCL13, GATM, GPR171, IFI35,

IFI47, IFIT3, ORM1, RETNLA, and UBD) in H1N1pdm
strains infection were identifed in comparison with non-
pandemic H1N1 at 5 dpi (Figures 8(a) and 8(b)), suggesting
that H1N1pdm induces host distinct response in the later
stage of infection. Moreover, we found that these distinct
DEGs were continuously upregulated in H1N1pdms in-
fection, while there was no change or rapid up- and
-downregulation in nH1N1pdms infection. Furthermore,
the biological process of these distinct DEGs was involved in
immune response and cell surface receptor signalling
pathway, and these distinct DEGs can interact with immune
response-related dysregulated genes (Figure 8(c)).

4. Discussion

H1N1 infuenza pandemic (H1N1pdms) causes severe
public health emergency, resulting in severe pneumonia and
high mortality rates. Te diferent strains of H1N1pdms can
show distinct infection patterns and interaction with the
host, suggesting that the study of H1N1pdms-host in-
teraction is essential. Due to higher genetic mutations and
reassortment, the diferent strains of H1N1pdms can utilize
diferent mechanisms to induce host injury.Tus, explaining
the host response to H1N1pdms infection and identifying
critical genes and signalling pathways will provide novel
treatment strategies in infuenza pandemic. In this study, we
performed multiple gene expression profles and used
bioinformatical approaches to investigate host responses to
diferent H1N1pdms and identify distinct diferentially
expressed genes in H1N1pdms infection compared with
nonpandemic H1N1.

H1N1pdms elicit acute hyperinfammatory response,
causing lung damage and respiratory failure as well as death
[45], and host resistance and tolerance to H1N1pdms-induced
lung injury refer to host genes’ expression level [46]. However,
the mechanisms of hyperinfammatory activation during
H1N1pdms infection and the interaction of host-H1N1pdms
are unclear. Our transcriptomic profling and biological pro-
cesses analysis explored that H1N1pdms-induced dysregulated
genes were mainly involved in defence to infection, chemokine
receptors binding chemokines, and regulating of IFNG sig-
nalling. Importantly, most of ten identifed distinct DEGs
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Figure 7: Identifcation and function enrichment analysis of diferentially expressed genes (DEGs) of the lung during A/PR/8/34 infection.
(a, d) Gene expression profle analyses of the infected lung with A/PR/8/34 strains indicating the common and distinct gene sets in 3 dpi and
5 dpi via Venn diagram; (b, e) gene ontology analysis showed the biological process of DEGs; (c, f ) cell signalling pathway analyses showing
pathway enrichment of the DEGs. Signifcant top 20 enriched by diferentially expressed genes were shown.
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(AREG, CXCL13, GATM, GPR171, IFI35, IFI47, IFIT3,
ORM1, RETNLA, and UBD) in H1N1pdms infection in our
study are involved in host response to viruses, and the dis-
covery of these molecular biomarkers may provide new in-
sights into diagnosis and treatment against H1N1pdms
infection. IFI35, IFI47, and IFIT3 are associated with the
immune and defence process. IFI35 can increase H5N1 in-
fuenza disease and has been identifed as a promising bio-
marker and therapeutic target for syndromes induced by
SARS-CoV-2 or infuenza virus [47, 48].

Amphiregulin (AREG) is an epidermal growth factor
that plays an important role in regulating virus-infected lung
repair [49]. AREG expression has been reported in epithelial
cell layers and various immune cells, including dendritic

cells, neutrophiles, and CD4+ T cells [50, 51], and is con-
stitutively upregulated in response to infammation or in-
fection [52]. AREG can promote alveolar remodelling and
integrity during infuenza virus infection. Innate lymphoid
cells (ILCs) that are critical in immune response and tissue
homeostasis can produce AREG, which in turn restores lung
function and airway remodel [53]. Previous studies have
shown that infuenza viruses bind to sialic acid receptors and
then lead to the activation of EGFR, promoting virus entry
[54], suggesting that AREG-EGFR signalling could function
in host immune response to infuenza virus and tissue
tolerance. In addition, C-X-C motif chemokine ligand 13
(CXCL13) is also involved in receptor-mediated signalling
pathways, except for its proinfammatory function [55].
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Figure 8: Identifcation of the distinct DEGs in H1N1pdms strains compared with nH1N1pdms. (a, b) Venn diagram showing the distinct
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HIV-1-infected and COVID-19 patients have higher levels
of plasma and serum CXCL13 concentration, and CXCL13
has been identifed as a biological signature of COVID-19
patients and HIV-1 patients [56–58]. Moreover, high levels
of CXCL13 expression have been proved to be associated
with pulmonary fbrosis that is the prominent feature of
infection with 2009 pandemic infuenza A (H1N1) virus
[59, 60], suggesting that CXCL13may play an important role
in pulmonary diseases caused by infuenza virus infection
and still need to be further investigated. Resistin-like alpha
(RETNLA), a cysteine-rich secreted family of Fizz/Resis-
tin-like molecules and a M2 macrophage marker that
modulates lung fbrosis and infammation, has been revealed
to act as a marker of activated macrophages and involved in
the immune response-induced pulmonary vascular
remodelling [61–63]. It is all known that the mRNA levels of
RETNLA can refect M2 macrophage polarization and in-
fuenza virus infection-induced cell apoptosis [64]. Our
result shows the upregulated RETNLA expression in
H1N1pdms, indicating that H1N1pdms infection may in-
crease M2 macrophage apoptosis. In addition, over-
expression of RETNLA can decrease allergic lung
infammation by reducing infltration of immune cells and
T2 cytokine production, suggesting that the host may in-
crease RETNLA expression to trigger M2 macrophage po-
larization and promote lung repair during H1N1pdms
infection [65]. A previous study has shown that glycine
amidinotransferase (GATM) was upregulated in M2-
polarized macrophages. GATM deletion inhibited the ex-
pression of RETNAL and blocked M2 polarization [66].
Based on these, we speculate that GATM may regulate
RETNLA to afect M2 macrophage polarization during
H1N1pdms infection.

Te interaction between DEGs and transcription factors
(TFs) was explored to know about how the DEGs regulate
infuenza virus at the transcriptional level. Our analysis of
the TFs-DEGs network found that BATF2 was the most
signifcant TF as the regulator of DEGs. We found that
BATF2 was upregulated during H1N1pdms infection. In
previous analysis, BATF2 is an important regulator of the
innate immune system and has high expression in human
lung structural cells infected with infuenza [67], indicating
that BATF2 could play a critical role in host antiviral im-
mune, but further studies are needed.

5. Conclusion

In our study, based on integration microarray datasets of the
mouse lung infected with diferent H1N1pdms, host cells
perform the similar immune response to diferent
H1N1pdms. We further identifed ten distinct DEGs
(AREG, CXCL13, GATM, GPR171, IFI35, IFI47, IFIT3,
ORM1, RETNLA, and UBD) diferentially expressed genes
during H1N1pdms infection compared with nonpandemic
H1N1. Tese distinct dysregulated genes may have impor-
tant regulation efects, and our future work will focus on
revealing the function of these distinct dysregulated genes
during infuenza virus infection for the development of
novel treatment strategies.

Data Availability

All data utilized in this manuscript are available online from
their respective databases.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

BXWang andWH Zhang collected and analysed the data, X
Dong and H Zheng analysed the data, JJ Wu and J Zhang
reviewed and edited this manuscript, A Zhou and HB Cheng
designed this research and drafted this manuscript, and A
Zhou supported the fnance. All authors contributed to the
analysis and evaluation of the results. Te authors Baoxin
Wang, Hao Zheng, and Xia Dong have contributed equally
to this work. All authors contributed to the article and
approved the submitted version.

Acknowledgments

Tis work was supported by the National Natural Science
Foundation of China (81902073) and Hubei Key Laboratory
of Animal Embryo and Molecular Breeding (KLAEMB-
2021-01), Wuhan Polytechnic University, Knowledge In-
novation Project of Wuhan Science and Technology Bureau
(2022020801020397), and High Quality Development of
Seed Industry of Hubei Province (HBZY2023B007).

Supplementary Materials

Supplementary data1: the DEG in A/California/04/2009
H1N1 infection. Supplementary data2: the DEG in two
diferent strains of H1N1pdm09 (A/Jena/5258/09 and
A/California/7/2009). Supplementary data3: the overlapped
DEGs in all analysed datasets infected with H1N1pdm09
strains at 3dpi and 5dpi. Supplementary data4:
H1N1pdm1918-induced DEGs. Supplementary data5: the
DEGs induced by nH1N1pdm. (Supplementary Materials)

References

[1] R. Elderfeld and W. Barclay, “Infuenza pandemics,” Ad-
vances in Experimental Medicine & Biology, vol. 719, pp. 81–
103, 2011.

[2] N. P. Johnson and J. Mueller, “Updating the accounts: global
mortality of the 1918–1920 “Spanish” infuenza pandemic,”
Bulletin of the History of Medicine, vol. 76, no. 1, pp. 105–115,
2002.

[3] J. K. Taubenberger and D. M. Morens, “Infuenza: the once
and future pandemic,” Public Health Reports, vol. 125, no. 3,
pp. 15–26, 2010.

[4] A. H. Reid, T. G. Fanning, J. V. Hultin, and J. K. Taubenberger,
“Origin and evolution of the 1918 “Spanish” infuenza virus
hemagglutinin gene,” Proceedings of the National Academy of
Sciences, vol. 96, no. 4, pp. 1651–1656, 1999.

[5] I. Mena, M. I. Nelson, F. Quezada-Monroy et al., “Origins of
the 2009 H1N1 infuenza pandemic in swine in Mexico,” Elife,
vol. 5, 2016.

10 International Journal of Microbiology

https://downloads.hindawi.com/journals/ijmicro/2024/6631882.f1.zip


[6] P. Buchy and S. Badur, “Who and when to vaccinate against
infuenza,” International Journal of Infectious Diseases, vol. 93,
pp. 375–387, 2020.

[7] S. Kumar, S. Goicoechea, S. Kumar et al., “Oseltamivir analogs
with potent anti-infuenza virus activity,” Drug Discovery
Today, vol. 25, no. 8, pp. 1389–1402, 2020.

[8] J. Wang-Jairaj, I. Miller, A. Joshi et al., “Zanamivir aqueous
solution in severe infuenza: a global Compassionate Use
Program,” Infuenza and Other Respiratory Viruses, vol. 16,
no. 3, pp. 542–551, 2022.

[9] C. X. Zhang, Y. Tu, X. C. Sun et al., “Peramivir, an anti-
infuenza virus drug, exhibits potential anti-cytokine storm
efects,” Frontiers in Immunology, vol. 13, Article ID 856327,
2022.

[10] F. Dufrasne, “Baloxavir marboxil: an original new drug
against infuenza,” Pharmaceuticals, vol. 15, no. 1, p. 28, 2021.

[11] A. Lackenby, C. I. Tompson, and J. Democratis, “Te po-
tential impact of neuraminidase inhibitor resistant infuenza,”
Current Opinion in Infectious Diseases, vol. 21, no. 6,
pp. 626–638, 2008.

[12] M. Zhang, M. Liu, S. Bai et al., “Infuenza A virus-host
specifcity: an ongoing cross-talk between viral and host
factors,” Frontiers in Microbiology, vol. 12, Article ID 777885,
2021.

[13] E. Staller and W. S. Barclay, “Host cell factors that interact
with infuenza virus ribonucleoproteins,” Cold Spring Harb
Perspect Med, vol. 11, no. 11, Article ID a038307, 2021.

[14] P. Mehrbod, S. R. Ande, J. Alizadeh et al., “Te roles of
apoptosis, autophagy and unfolded protein response in ar-
bovirus, infuenza virus, and HIV infections,” Virulence,
vol. 10, no. 1, pp. 376–413, 2019.

[15] L. Martin-Sancho, S. Tripathi, A. Rodriguez-Frandsen et al.,
“Restriction factor compendium for infuenza A virus reveals
a mechanism for evasion of autophagy,” Nat Microbiol, vol. 6,
no. 10, pp. 1319–1333, 2021.

[16] J. McKellar, A. Rebendenne, M. Wencker, O. Moncorgé, and
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