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Te development of anthropic activities during recent years has led to an increase in nutrient fuxes in the Rı́o Grande de Comitán
and Montebello Lakes National Park, Mexico. In turn, this has modifed the dynamics of the biotic community, specifcally
favoring the presence of cyanobacteria tolerant to contamination. Te continual and massive presence of Planktothrix species
(spp.) in the system suggests a potential detrimental impact for economic issues and human health. In this study, we identify the
morphological and molecular characteristics of Planktothrix populations from seven tropical (1,380–1,740masl, 23.0–25.5°C) and
calcareous lakes and two ponds from a water treatment plant. We also assess the ecological drivers that could be related to the
presence of cyanotoxins in the system. Te ecological preferences, morphology, 16S rRNA structure, and 16S-23S rRNA internal
transcribed spacer found evidence for three species: P. agardhii distributed in neutral to slightly basic water (pH� 7.7–8.7), and
P. spiroides and Planktothrix sp. in alkaline waters (pH� 9.1). Te presence of the mcyE gene and its validation by liquid
chromatography confrmed the presence of two microcystin variants (MC-RR and MC-LR) in at least three populations of
P. agardhii.Tese microcystins put the health of the ecosystem and its inhabitants at risk, a condition that should be addressed and
resolved with a water management and detoxifcation strategy in the basin.

1. Introduction

Cyanobacteria of the genus Planktothrix Anagnostidis et
Komárek have been cited as abundant and frequent

components in freshwater lake communities, known to form
cyanobacterial blooms in temperate, tropical, and boreal cli-
mates throughout the world [1, 2]. Te genus is characterized
by trichomes that are solitary, rarely in small, irregular, and
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easily disintegrating fascicles (groups) (mainly in blooms),
straight and isopolar, with aerotopes through the whole cell
volume, and the end cells widely rounded or slightly narrowed.
Te systematic position of Planktothix species has been
controversial due to morphological similarities and over-
lapping morphometric variation given the morphological
plasticity within the genus [1, 3]. Molecular evidence using 16S
rRNA sequences was a major contribution to delimiting and
separating the Planktothix genus from Oscillatoria [4]. From
morphological and molecular evidence, 21 species are cur-
rently recognized in the genus worldwide, but controversy still
surrounds fve species [5]. Suda et al. [3] established a new
genus Planktothricoides, composed of the type species
Planktothricoides raciborskii (originally Planktothrix racibor-
skii), as well as a new species Planktothrix pseudagardhii, two
genera that are clearly delimited in genetic terms.

Planktothrix populations have the ability to produce
secondary metabolites, including cyanotoxins, microcystins
(MCs), a group of hepatotoxins whose ecological role is not
well understood [6]. According to the World Health Orga-
nization (WHO) [7], prolonged exposure to MCs produces
phosphatase inhibition, which, in humans, induces liver
hypertrophy and tumor-promoting activity. For this reason,
international regulations established that the permissible limit
for MCs (estimated based on the most common variant) in
drinking water must be less than 1 μgL−1 [8]. Nutrient
concentrations, as well as the parameters that promote the
synthesis of MCs, are essential for assessing the potential
presence of cyanobacterial blooms, particularly in Plankto-
thrix populations [9–11]. For example, Gagała et al. [12]
reported blooms of P. agardhii (Gomont) Anagnostidis et
Komárek having concentrations of total nitrogen (TN) above
1.5mg/dm3, total phosphorus (TP) greater than 0.1mg/dm3,
and a TN : TP ratio of 29 :1, in temperatures 18–30°C and in
a pH of 6–9. Catherine et al. [13] and Teubner et al. [14]
argued that massive growth is promoted at ratios of 16 TN :1
TP. Other studies have revealed signifcant growths at low TN
concentrations (0.62–0.74mg/L) and soluble reactive phos-
phorus (SRP) levels between 1 and 20 µg/L [9]. However,
some studies in lakes have shown that even when waters have
recovered to mesotrophic or oligotrophic levels, blooms
persist, suggesting that other ecological factors also play an
important role [15]. With respect to factors afecting toxin
production, Van de Waal et al. [16] found that an increase in
TN is related to MC-RR synthesis.

In Mexico, P. agardhii has been previously reported in
hypereutrophic lakes. Komárek and Komárková-Legnerová
[17] and Pineda-Mendoza et al. [18] analyzed the taxonomic
and molecular characteristics of P. agardhii in Xochimilco
and Chapultepec urban lakes in Mexico City. Likewise,
Vasconcelos et al. [19] reported this species in the Valle de
Bravo dam and detected MCs using ELISA. According to
Vasconcelos et al. [19], visible blooms of P. agardhii were
present in Cuemanco, Mexico City, an artifcial water
channel used for sports and recreational activities. Molecular
and chemical analyses found MCs in Cuemanco to be 4.9 µg
MC-LR eq/L. Tis concentration is comparable to those
found in many countries where a potential risk to human
health has been confrmed [20–24]. In tropical areas of the

Mexican southeast, the presence of cyanobacteria has been
frequently reported in the Montebello Lakes National Park,
where blue-green waters with diferent color intensities are
commonly observed [25]. Te detection of MC-LR in three
lakes by ELISA immunoassays was found to be related to the
presence of Limnothrix, Planktothrix, and Raphidiopsis spp.
as potential producers of the toxin [26]. Te lake area of the
national park is subject to anthropogenic pressures such as
tomato cultivation, which increases the supply of nutrients
to the lakes. In addition, the area supplies water to adjacent
towns and bears the impact of a growing tourism industry.
While these studies represent important contributions to
our understanding of cyanobacterial blooms, very few
studies in Mexico have characterized the structures of these
blooms at a biological and ecological level to determine the
causes of their proliferation and their potential efects on the
ecosystem. In this sense, the aim of this study is to identify
themorphological andmolecular characteristics of recurrent
populations of Planktothrix and the ecological disturbances
that could be related to the presence of cyanotoxins in the
Rı́o Grande de Comitán sub-basin and Montebello Lakes
National Park, Mexico.

2. Material and Methods

Te Rı́o Grande de Comitán sub-basin is located in the
National Hydrological Region No. 30 Grijalva-Usumacinta,
State of Chiapas [27]. It lies between 16°04′40″–16°10′20″
LN and 91°37′40″–91°47′40″ LW and spans an elevation of
1,380−1,740masl. Te climate is characterized as temperate
humid and warm humid, with abundant rains in the
summer [28]. Te main tributary of the sub-basin is the Rı́o
Grande, which runs through urban and agricultural areas
until it fows into the Montebello Lakes National Park
(Figure 1). Te karst origin of the region promotes the
circulation of underground water that communicates with
a complex system of 59 lagoons [29]. Tis area is of great
ecological, cultural, and economic importance for the re-
gion, leading to it becoming established as a protected
natural area by presidential decree published in the Diario
Ofcial de la Federación on December 16, 1959, and later
designated as a RAMSAR site in 2003. Since 2003, however,
color changes have been observed in the lakes, reportedly
related to the increase in phytoplankton biomass as a con-
sequence of the increasing eutrophication of the lakes
[26, 30, 31]. Te human communities surrounding these
lakes utilize the water for both direct use and consumption,
as well as for agricultural and silvopastoral activities [28, 32].

2.1. Ecological Characterization. Fieldwork was performed
during the rainy season (August 2019), corresponding to the
most favorable growth period for cyanobacterial populations in
the region [25], in six natural lakes and one sedimentation
pond in a water treatment plant from the Rı́o Grande de
Comitán sub-basin and Montebello Lakes National Park
(Table 1). Te sampled lakes were selected based on the
presence of blue-green coloration as a possible indicator of
cyanobacterial blooms. Temperature, pH, specifc conductance,
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dissolved oxygen, orthophosphate, ammonium, and nitrates
were measured for each reservoir with YSI electrodes (Ohio,
USA). We sampled one liter per site to monitor water quality
and health hazards of recreational waters and the accumulation
of algal matter at the downwind end of the lake or shore. Te
sampled water was kept cold (4°C) for algal isolation and
subsequent cultivation in the laboratory. Later, algal samples
were preserved in 4% formalin to preserve the useful cyto-
logical structures for taxonomic identifcation. Abundances of
each morphospecies were estimated in quadruplicate

subsamples in a Neubauer chamber (depth of 0.1mm and
0.0025mm2 in area) and calculated using the following
equation: Abundance (cel/ml)� amount of cells/number of
quadrants× 10,000.

To determine water quality in the lakes, one-liter samples
of water were collected in sterile polypropylene fasks for
bacteriological analyses, stored at 4°C, and processed within
24 h of collection using the membrane fltration technique
[33]. Membrane flters (cellulose acetate, 0.45 μm, Millipore
MF type HA) were placed in Petri dishes with 2.5mL of
membrane fecal coliform agar medium and incubated at
35°C for 24 h and with Kenner fecal Streptococcus agar for
fecal Enterococci and incubated at 44.5°C for 48 h [33].

2.2. Morphological Characterization. For each site sampled,
three laminas were observed and their abundance quantifed
with a Neubauer chamber according to Hötzel and Croome
[34]. Specimens collected within sites were measured to
determine the morphometric characteristics determined
previously to be of taxonomic importance: length and
thickness of trichomes, and width and length of vegetative
cells [1, 2]. Measurements of morphometric characteristics
were made in the most abundant populations collected
(Balamtetik, Chaj Chaj, and water treatment plant) in
replicates for 60 individuals. Diferences in morphometric
characters between populations were evaluated by one-way
analysis of variance (ANOVA, p≤ 0.05) followed by Tukey’s
tests to know which means are statistically diferent from
each other. Tests were performed with the STATISTICA v.
3.0 statistical package.

2.3. Molecular Characterization (16S rRNA Gene).
Molecular analyses were carried out on the fve samples with
the highest cell concentrations (Table 1). DNA extractions
were performed using the QIAGEN DNeasy UltraClean
Microbial Extraction Kit following the manufacturer’s
protocol. Te feld samples were concentrated with GF/F
flters and pretreated to facilitate cell rupture, which con-
sisted of three freeze/thaw cycles with liquid nitrogen and
heating on an AccuBlock (Labnet International Inc.) at 65°C.
Between each cycle, a drill and plastic pistil were used. Te
presence of DNA was confrmed by electrophoresis (0.8%
agarose gel), and DNA concentration was measured using
a microplate spectrophotometer (Epoch: BioTek In-
struments Inc., USA).

Amplifcation of the 16S rRNA gene was performed by
PCR using Biometra Tone Termal Cyclers (Analytik Jena,
Göttingen, Germany). Te following reaction master mix
was used: milli-Q water, 10x PCR bufer, Cl2Mg (50mM),
deoxyribonucleotide triphosphate (50 μM dNTP), bovine
serum albumin (BSA, 0.1%), DNA polymerase (Ultratools
DNA Polymerase: 1 unit/μL, and Termo Scientifc
DreamTaq DNA Polymerase: 20 and 500 units/μl). Te
primers (10 pM) used include the oligonucleotides 27F (5′-
AGAGTTTGATCCTGGCTCAG-3′) [35] and 23Sr (5′-CTT
CGCCTCTGTGTGCCTAGGT-3′) [36]. Subsequently, an
agarose gel electrophoresis (1.5%) was performed to reveal
the PCR product. Once the DNA bands were obtained, the

Table 1: Type of sample used for molecular analysis and positive
toxin extracts of Planktothrix populations in the Rı́o Grande de
Comitán sub-basin and Montebello Lakes National Park.

Site Code (clone) Sample type
Molecular analysis
Balamtetik 40-1 BLTK19 Field

Chaj Chaj
41-1 CHAJ19 Field
41-2 CHAJ19

C22 Strain

Bosque Azul B22 Strain
2B22 Strain

Paso del Soldado D16 Strain

Water treatment plant 44-2 EFTR19 Field
43-3 PTRA19 Field

Cyanotoxin analysis (HPLC-UV and mcyE gene)
Bosque Azul BAZUL Strain
San Lorenzo SNLZ Strain
Paso del Soldado PSOLD Strain

Rio Grande de Comitan
sub-basin

N

91°48'

Mexico

Chiapas state

91°40'
16°10'

16°05'

Figure 1: Sampling sites of Planktothrix populations in six natural
lakes and one sedimentation pond in a water treatment plant
(PTAR) within the Rı́o Grande de Comitán sub-basin and Mon-
tebello Lakes National Park, Mexico. Water treatment plant
(PTAR), Balamtetik (BLTK), Chaj Chaj (CHAJ), San Lorenzo
(SNLZ), Chilpotrero (CPTO), Paso del Soldado (PSOLD), Bosque
Azul (BAZUL), and La Encantada (LECTD).
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PCR product was purifed using theWizard SV Gel and PCR
Clean-up System Kit (Promega). Subsequently, the cloning
procedure using the pGEM-T Easy Vector System Ligation
Kit (Promega) was carried out to ensure the greatest
obtention of copies of the genetic material and the greatest
representativeness of the algal community. Te trans-
formation process was carried out using 100 µL of the
competent bacteria strain Escherichia coli (DH5a) (Promega).
Te transformed bacteria were inoculated (250 μL) in Petri
dishes with solid LB medium [37], ampicillin (0.1mg/mL), X-
Gal: 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside
(0.04mg/mL), and IPTG: isopropyl-β-D-1-thiogalacto
pyranoside (0.5mM) [38]. Te cultures were incubated at
37°C for 24 hours. Subsequently, the positive clones (presence
of the insert) were recognized by their white coloration and
reseeded in LBmedium.Negative clones (blue colonies without
insert) were discarded. Te presence of the insert was
confrmed by PCR and electrophoresis [38]. Te reaction
master mix used was the following: milli-Q water, 10x PCR
bufer, Cl2Mg (50mM), deoxyribonucleotide triphosphate
(50μM dNTP), and DNA polymerase (Ultratools DNA Po-
lymerase: 1 unit/μL and Termo Scientifc DreamTaq DNA
Polymerase: 20 and 500 units/μl). As primers (10 pM), the
oligonucleotides T7 (5′-TAATACGACTCACTATAGGG-3′)
and SP6 (5′-ATTTAGGTGACACTATAG-3′) [39] were used.

Once the presence of the insert was confrmed, the
transformed bacteria were cultured in liquid LB medium
with ampicillin at 37°C and horizontal movement of 250 rpm
for 24 hours. Afterward, the extraction and purifcation of the
plasmids was carried out using theWizard Plus SVMinipreps
DNA Purifcation System Kit (Promega). Once the plasmid
DNA was obtained, its concentration was measured (Epoch:
BioTek Instruments Inc., USA), before fnally be sent for
sequencing [38]. Te sequencing process was carried out at
the DNA Synthesis and Sequencing Unit (USSDNA) of the
Institute of Biotechnology-UNAM (National Autonomous
University of Mexico) and the Complutense University of
Madrid (Genomic Unit-CAI). Te primers used for se-
quencing were T7 (5′-TAATACGACTCACTATAGGG-3′),
SP6 (5′-ATTTAGGTGACACTATAG-3′) [39], and 684F (5′-
GTGTAGCGGTGAAATGCGTAGA-3′) [40].

2.3.1. Taxonomic Identifcation from the Sequences Obtained.
Te sequences obtained were assembled using the BioEdit
7.2 program [41] to obtain consensus sequences, before
a subsequent BLASTanalysis (Basic Local Alignment Search
Tool: https://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequences
with identity percentages above 98% similarity were con-
sidered. Together with the results of the morphological
identifcation, a taxonomic identity was obtained for the
populations of cyanobacteria analyzed. A phylogenetic tree
was built with the sequences obtained for each of the study
populations, incorporating similar sequences identifed by
the BLASTanalysis and additional sequences of some genera
pertaining to closely related taxonomic groups (https://
www.cyanodb.cz/ and https://www.ncbi.nlm.nih.gov/).
Once the sequence matrix had been constructed, a multiple
alignment was performed using the BioEdit program,

followed by a manual revision in the PhyDE-1 V 0.9971
program [42]. Manual alignment was performed under the
criterion of maximum parsimony. Next, phylogenies were
constructed in the MEGA V.7.0.26 program [43], using the
following algorithms: (1) Neighbor Joining, (2) Maximum
Parsimony, and (3) Maximum Likelihood. To confrm the
genetic variation between species, the RNA-ITS region was
analyzed. Sequences from the rRNA-ITS region of
P. rubescens (De Candolle ex Gomont) Anagnostidis et
Komárek, P. paucivesiculata Gaget, Welker, Rippka et de
Marsac, P. agardhii, and P. pseudagardhii Suda et Watanabe
were obtained from GenBank and aligned using the Clus-
talW multiple alignment program in BioEdit. Te analysis
was performed in the online program CIPRES (phylo.org)
using the PAUP tool on XSEDE, under default parameters.

2.4. Isolation and Strains. To confrm the genetic identity
and toxicity of Planktothrix populations, samples were
isolated from three sites within the study area: Bosque Azul,
San Lorenzo, and Paso del Soldado, on July 10, 2023 (Ta-
ble 1). Unialgal trichomes from the cyanobacterial samples
were isolated using a Pasteur pipette under the Olympus
SC31 microscope (Japan) and cultured in Petri dishes
containing BG11-agar medium. All isolates were sub-
sequently cultivated at 20°C under a 12 :12 h (light : dark)
cycle with a photon fux density of 40–45 μmol photons
m2 s−1 from white fuorescent lamps. Living cultures were
maintained in the laboratory culture collection at the
Universidad Autónoma de Madrid, Spain.

2.4.1. Cyanotoxin Gene Detection and Chemical
Characterization. To screen for the presence of MC bio-
synthesis gene clusters, the peptide synthetase-encoding gene
mcyEwas selected as a target.Te following reactionmastermix
was used: milli-Q water, 10x PCR bufer, Cl2Mg (50mM),
deoxyribonucleotide triphosphate (50μM dNTP), and DNA
polymerase (QIAGENDNAPolymerase:1 unit/μL andTermo
Scientifc DreamTaqDNA Polymerase: 20 and 500 units/μl). As
primers (10 pM), the oligonucleotides HEPF (5′-TTTGGGGTT
AACTTTTTTGGGCATAGTC-3′) and HEPR (5′-AATTCT
TGAGGCTGTAAATCGGGTTT-3′) [44] were used.

Te PCR products were checked by agarose gel elec-
trophoresis (1.5%), and the purifcation and cloning of
amplifed DNA fragments followed previously described
procedures. To determine the DNA concentration of the
samples, plasmid DNA obtained from the cloning was
measured using a NanoDrop UV spectrophotometer. Te
genes were sequenced on a Sanger 3730xl Sequencer
(Termo Fisher Scientifc, MA, USA). Partial sequences were
compared to those available in the NCBI database using
BLASTn, while the BLAST X tool (blast.ncbi.nlm.nih.gov/
Blast.cgi) was used for mcyE gene.

Toxins were extracted from 50mL culture samples and
fltered throughWhatman GF/F flters (Whatman International
Ltd., Brentford, UK) until saturation and stored at −20°C until
extraction. Microcystins were extracted twice with 90% meth-
anol and concentrated by evaporation at 50°C under vacuum.
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High-performance liquid chromatography (HPLC) de-
tection of MC-LR and MC-RR microcystin variants was
analyzed using HPLC-UV (Shimadzu, mod. Prominence-i,
LC-2030C LT) and a diode array detector (SPD-M30A). An
Eclipse Plus C18 column (150× 46mm, 5 µm) (Agilent) was
used as the stationary phase, while mobile phases were
characterized by a mixture of 37/63, 30/70% (v/v) of ace-
tonitrile and acetic acid aqueous solution (75mM) for the
MC-LR and MC-RR analyses, respectively. Te temperature
of the column was fxed at 35°C, and the mobile phase fow
rate was fxed at 0.8mL/min. Both analyses were carried out
at 239 nm for both MC-LR and MC-RR. Microcystin con-
centrations (ppb or ng/ml) were calculated from the area
under the curve that was observed at retention times co-
inciding with the standard substance. Tis concentration
refects the intracellular amount of MCs in the cyano-
bacterial cultures analyzed.

3. Results

3.1. Ecological Characteristics. According to physical and
chemical measures, the study sites showed the following
environmental characteristics: temperate waters (23–25.5°C),
mostly neutral to alkaline pH (7.9–9.1), and variable oxygen
concentration (3.4–10.6mg/L). In general, orthophosphate
(0.1–38.3mg/L), ammonium (0.07–6.71mg/L), and nitrate
(0.81–25mg/L) concentrations were high, and the presence of
fecal Enterococci was recurrent in all water bodies, probably
related to the urban and agricultural activities around the
sampled areas (Table 2).

Based on the PCA (Figure 2), the sites can be classifed
into three main groups: (1) the frst group (the water
treatment plant and Efuente) is classifed as polluted sites
with high fecal Enterococci (0.98), associated with the frst
component explaining 96.4% of the total variance; (2) the
second group is composed of four sites (Balamtetik, Chaj
Chaj, San Lorenzo, and Chilpotrero) characterized by high
specifc conductance (0.97) and associated with the second
component explaining 3.5% of the total variance; these sites
could represent transitional conditions, as they do not show
a positive correlation with nutrient increase; and (3) the
third group is represented by three sites (Paso del Soldado,
Bosque Azul, and La Encantada) that are characterized by
decreased levels of orthophosphate, ammonium, nitrate, and
fecal Enterococci.

Te abundance of Planktothrix populations showed
a similar relationship to the three groups of water bodies
recognized by the ecological PCA.Te greatest abundance of
Planktothrix was present in the treatment plant, followed by
Balamtetik, Chaj Chaj, and San Lorenzo, while the lowest
abundance was observed in Chilpotrero, Paso del Soldado,
and La Encantada (Table 2).

3.2. Morphological Analysis. In the eight bodies of water
collected for the present study, mostly solitary trichomes, or
formed groups of trichomes, were recorded as free-foating
in eutrophic conditions. Te trichomes were long (up to
420 µm), straight, without sheaths, immotile, not very

constricted at the granulated cross-walls, and 2.69–5.57 µm
wide. Cell contents were blue-green colored, with a few big
aerotopes. Apical cells were convex with calyptra. Tese
morphological characteristics identify the species as
Planktothrix agardhii (Figures 3(a)–3(c)).

Te Tukey test revealed signifcant diferences for relative
trichome length, cell length, and cell diameter (p �

0.001–0.008) between populations (Table 3).
Te ANOVA test found three groups of populations

recognized based on cell dimensions (F� 24.92-27.23,
p< 0.05). Te frst group, from the treatment plant, has cells
characterized by having greater cell width (mean� 5.2µm) but
shorter in length (mean� 2.0µm).Te second group, from La
Encantada, is characterized by a shorter cellular length
(mean� 3.6µm) but greater cell width (mean� 3.8µm). Te
third group, from Efuente, Chaj Chaj, Balamtetik, San Lor-
enzo, Chilpotrero, and Paso del Soldado, exhibits cellular
dimensions that are intermediate between those recorded in
the frst two groups. Tere were important overlaps in the
trichome lengths between the populations, but the longest
trichomes were recorded in San Lorenzo and Chilpotrero
(mean� 231.7–245.4µm), while smaller trichomes were ob-
served in the other populations (mean� 109.13–189.39µm).

In the water treatment plant, spiral trichomes were
recorded in a free-foating bloom (Figure 3(e)). Trichomes
were short (<89.8 µm), lacking sheaths, not constricted across
walls, rarely motile, with cylindrical cells 3.0–6.0 µm wide,
usually shorter than wide, and with mucilaginous sheaths
rare. Cell contents were olive-green in color, with several
small gas vesicles distributed throughout the cells. Te apical
cells were rounded to be slightly attenuated, without calyptra.
Tese morphological characteristics key to P. spiroides.

A diferent morphotype was observed in the Efuente
site. Here, the trichomes were short (<83.15 µm), straight,
lacking sheaths, slightly constricted across walls, and
3.3–6.4 µm wide. Teir cell contents were olive-green in
color, with several small aerotopes. Apical cells were convex,
without calyptra (Figure 3(d)). Tese morphological char-
acteristics fail to key to any described species, suggesting that
this population may represent a new species, but more
taxonomic studies are necessary to confrm this.

3.3. Molecular Analyses. Te DNA sequencing of the clones
obtained (Figure 4) corroborated the presence of P. agardhii
and P. suspensa in Balamtetik (40-1BLTK19), Chaj Chaj (41-
1 CHAJ19 and 41-2 CHAJ19), Bosque Azul (B-22 and B2-
22), and San Lorenzo (C14–22 and C-22), which all form
a clade with a bootstrap support value of 85%. Based on the
ITS analysis, these samples are identifed as P. agardhii, with
values ≤3%. Tis result is also corroborated by the mor-
phological description (Table 4). Te sample from Efuente
(44-2 EFT19) was found to be closely afliated with
P. paucivesiculata (BS� 99%) based on the ML tree. How-
ever, the ITS analysis shows a clear diference between these
two samples, with a value of 6.7%. Based on these results, this
population could represent a new species, and further an-
alyses are necessary (e.g., ultrastructural and genetic con-
frmation in feld and strain samples).
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Figure 2: Site groups based on the PCA of physical, chemical, and bacteriological parameters in the water treatment plant and lakes of the
Rı́o Grande de Comitán sub-basin and Montebello Lakes National Park.

(a) (b) (d)

(e)

(c)

Figure 3: Morphological characteristics of Planktothrix populations in the Rı́o Grande de Comitán sub-basin and Montebello Lakes
National Park. Planktothrix agardhii: (a) Chilpotrero, (b) San Lorenzo, and (c) Chaj Chaj. Planktothrix sp: (d) Efuente. P. spiroides: (e)
Water treatment plant. Scale bar� 10 µm.
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3.4. Toxin Results. Te PCR analysis revealed the presence
of mcyE gene clusters in the strains of P. agardhii from
Chaj Chaj (Figure 5). HPLC-UV results reveal the pres-
ence of MC-RR and MC-LR in all cultures. Te prominent
variant in the sample was MC-LR, with 2.0–3.169 μg/L.
Te MC-RR variant registered values at half to one-third
the concentration of MC-LR, with a ratio of 1.96 : 3.02
(Table 5).

4. Discussion

Tree clearly distinct morphotypes were observed in the
sampled populations. Te frst, and more abundant, mor-
photype is characterized by long, straight trichomes, blue-
green cell contents containing a few big aerotopes, and
convex apical cells with calyptra. According to Komárek and

Anagnostidis [2], these characteristics belong to Plankto-
thrix agardhii. Te second morphotype is characterized by
short, spiral trichomes, cross-walls not constricted, olive-
green cell contents with several small aerotopes, and
rounded to be slightly attenuated apical cells without ca-
lyptra. Te form of the trichomes, cross-wall type, and
aerotopes are distinctly diferent from the populations
identifed as P. agardhii, and according to Liu and collab-
orators [45], this secondmorphotype pertains to P. spiroides.
Te last morphotype is characterized by short, straight
trichomes, cross-walls slightly constricted, olive-green cell
contents with several small aerotopes, and convex apical cells
without calyptra. Te short trichomes, aerotope type, and
the absence of calyptra diferentiate this population from P.
agardhii, while the straight trichomes, cross-walls type, and
convex apical cells diferentiate this population from
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Figure 4: Bayesian inference analysis of 16S rRNA sequences of samples from this study combined with other samples of the family
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P. spiroides. Tis morphotype was not able to be identifed
from the described species [2, 45–47], suggesting that it may
represent a new species.

Morphological variation has been reported as a response
to environmental heterogeneity in planktic cyanobacterial
populations [3, 48]. While our data showing cellular vari-
ation in Planktothrix agardhii populations could refect
morphological responses to the conditions they experience,
this variation does not exceed 6 µm in cell width, which is
reported as a relevant characteristic by Komárek and
Anagnostidis [2] for the species.

Te spiral shape of the trichomes recorded in the water
treatment plant typically corresponds to descriptions of the
Arthrospira–Spirulina group [1], but the degree of coiling is
known to vary across environmental parameters or change
after extended periods of cultivation [49].

Te molecular analyses confrmed the morphological
identifcation of the P. agardhii-like populations, as well as
the P. spiroides-like population, as these populations
formed monophyletic clades with NCBI sequences of P.
agardhii and P. spiroides, respectively, both with high
bootstrap values.

While Planktothrix sp. formed a clade with P. pauci-
vesiculata, the morphology was quite diferent. According to
the description of Gaget and collaborators [46], the tri-
chomes in P. paucivesiculata are thinner, slightly curved, and
may present sheaths, as well as the apical cells being
rounded.

Te frequent presence and abundance of P. agardhii
throughout the Rı́o Grande de Comitán sub-basin and
Montebello Lakes National Park refects a species with
diferent ecotypes capable of occupying diferent niches.Tis
was similarly reported in a study on 11 Planktothrix ge-
nomes from temperate regions of Europe, which related
adaptability to buoyancy capacity, ability to fx atmospheric
nitrogen, and unique characteristics of natural
products [50].

In recent years, Montebello Lakes National Park has
registered an increase in phytoplankton biomass, refected
by evident changes in water color [30, 31, 51]. Likewise,
high concentrations of carbon, nitrogen, sulfur, organic
matter, and chlorophyll a have also been found in the
sediment and seston [52]. Te contribution of urban
wastewater, the intense agricultural activity, and the use of
touristic boats may be related to the water pollution and
the dispersal of cyanobacteria in the lake system. Te high
abundance and broad distribution of Planktothrix pop-
ulations in the lake system may be present throughout
diferent seasons of the year ([25], this study), indicating
a relatively resilient component of the phytoplankton
community.

Table 4: Mean percent dissimilarities between Planktothrix species and the study populations, based on the sequence alignment of the
16S-23S ITS region.

Species/samples
1 P. rubescens 1 2 3 4 5 6 7 8 9 10 11 12
2 P. paucivesiculata 4.7 — — — — — — — — — — —
3 P. agardhii 3.3 4.1 — — — — — — — — — —
4 P. pseudagardhii 9.1 10.2 9.4 — — — — — — — — —
5 40-1 BLTK19 3.5 3.9 0.2 9.1 — — — — — — — —
6 41-2 CHAJ19 3.5 3.9 0.2 9.2 — — — — — — — —
7 B1–22 5.1 5.3 1.6 10.8 1.4 1.4 — — — — — —
8 B2–22 5.7 6.1 2.4 11.3 2.2 2.2 3.6 — — — — —
9 C1–22 4.3 3.9 1.0 9.6 0.8 0.8 2.2 3.1 — — — —
10 C14–22 5.9 5.9 3.0 11.2 3.2 3.2 3.8 5.2 3.2 — — —
11 D16–22 4.9 5.3 1.6 10.4 1.4 1.4 2.4 3.5 2.2 3.2 — —
12 44-2 EFT19 6.1 6.7 5.9 10.4 5.7 5.7 7.1 7.9 5.7 7.8 7.1 —
Values >7.0 are considered strong evidence that the compared groups belong to diferent species, and values >3.0 are likely diferent species, while values ∼1.0
likely indicate compared groups belong to the same species.

Figure 5: Electrophoresis gel with PCR products for the identi-
fcation of the mcyE gene that is involved in microcystin bio-
synthesis in Planktothrix agardhii strains. Te samples pertain to
three lakes in the Rı́o Grande de Comitán sub-basin and Mon-
tebello Lakes National Park. BAZUL�Bosque Azul, SNLZ� San
Lorenzo, PSOLD�Paso del Soldado. C+� Positive control.

Table 5: Microcystin variants obtained via HPLC-UV from cul-
tures of Planktothrix agardhii collected from three lakes in the Rı́o
Grande de Comitán sub-basin and Montebello Lakes National
Park.

Site Chla (μg/L) MC-LR (μg/L) MC-RR (μg/L)
Bosque Azul 14.020 63.38 26.08
San Lorenzo 21.680 40.08 20.36
Paso del Soldado 25.580 15.86 15.86
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Te basin presents a natural connection along the lagoon
system, with some bodies of water apparently isolated on the
surface but connected underground [53]. Te sites sampled
in the present study registered the presence of Planktothrix
with diferent abundances, suggesting a natural dispersal by
surface transport, by air carriers such as birds, or via various
anthropogenic activities such as tourism walks and/or
fshing from boats that are shared between the diferent lakes
and not previously sanitized. Consequently, these activities
could be favoring the dispersal of species that would not
naturally grow in some of the studied lakes.

Te highest representation (biomass) of P. agardhii is
reportedly associated with autumn, when it tolerates low
light intensity and lower temperatures, even in tropical
latitude lakes [54–58]. However, this species can prevail in
temperate climates or even fourish throughout the year in
eutrophic systems [6].

Tis replacement and/or resilient species characteristic
could represent an ecological imbalance, as well as a risk to
human health since most of the studied sites are used either
for drinking water production or agriculture and recreation
purposes. Planktothrix agardhii is known for its ability to
synthesize toxins under bloom conditions, and in com-
petitive situations, it can also produce allelopathic com-
pounds to partially ofset the costs associated with MC
production [59]. Tis has been observed in both temperate
and tropical water bodies, as well as in shallow lakes
dominated by P. agardhii and deep stratifed lakes harboring
P. rubescens [6, 50].

Te presence of an MC biosynthetic mcyE gene cluster
was confrmed in P. agardhii via sequencing of the mcyE
gene and by HPLC-UV analyses. Potentially toxic cyano-
bacteria possess the MC synthetasemcyE gene cluster that is
inactive or absent in nontoxic strains. Currently, more than
200 structural variants of MCs have been isolated and
characterized [60], with MC-LR being among the most toxic
and widespread worldwide. Efects in humans can even
cause death. As such, by 2005, six countries (Brazil, the
Czech Republic, Poland, Canada, France, and Spain) had
adopted some regulatory measures for MCs in terms of
drinking water quality, which are based on theWorld Health
Organization’s provisional TDI (Tolerable Daily Intake)
value for MC-LR in drinking water. Tree countries (Ger-
many, Finland, and Italy) did not enact their own regulation,
but they stated that in cases of potential risk, they would
accept the limits proposed by the WHO [7]. In North
America, the Environmental Protection Agency (EPA)
recommendsHealth Advisory (HA) levels at or below 0.3 μg/
L in drinking water for children preschool age and younger
(i.e., less than 6 years old) [61, 62]. For school-age children
through adults, the recommended HA levels for drinking
water are at or below 1.6 μg/L for MCs.

Confrmation of Planktothrix populations in Mexico via
phenetic and genetic analyses has become frequent, showing
that these cyanobacteria are becoming abundant (Table 6).
Te only species recognized for Mexico is P. agardhii, which
is currently reported in bodies of water from the center of the
country that, due to their high altitude and water temper-
ature less than 20°C, present conditions similar to temperate

regions [50]. Molecular methods and enzyme-linked im-
munosorbent assays (ELISAs) for detecting cyanotoxins
show the presence of MCs in sites where Planktothrix
populations exist (Table 6). However, those fndings are
inconclusive since most of the cited analyses were performed
on feld samples that may contain other potentially toxic
cyanobacteria found in the Rı́o Grande de Comitán sub-
basin and Montebello Lakes National Park, such as
Microcystis spp. [19, 68],Anabaena spp. [70], or Raphidiopsis
spp. and Limnothrix spp. ([26], Table 6).

Te presence of MCs found in strains collected in this
study reveals a risk to human health if the water is to be used
for drinking without efcient treatment to remove MCs.
Terefore, periodic monitoring in the feld is recommended,
both in the lake water and in the efuent from the water
treatment plant. Another indicator of this risk to human and
ecosystem health is the large abundance of these cyano-
bacteria recorded in the feld. Specifcally, populations ex-
ceeding 25,000 cells/ml were observed in lakes. Values less
than 20,000 cells/ml are classifed by the WHO [6] as
a criterion for notifying the health authorities to start vig-
ilance levels in the water body. Ingestion of MCs may occur
through accidental uptake during recreational or occupa-
tional activities. In some settings, contaminated food can be
a possibly signifcant source of dietary exposure, including
fsh and crustaceans collected from lakes, as well as leafy
vegetable crops spray-irrigated with water containing
cyanobacteria.

Te characterization of the morphological and genetic
variation, as well as the ecological preferences, of two species
of Planktothrix in the sub-basin of the Rı́o Grande de
Comitán and Montebello Lakes National Park was con-
clusive in identifying the species and establishing a baseline
assessment of the structure and functioning in the phyto-
plankton community. Te presence and abundance of
P. agardhii is notorious throughout the hydrological system,
which is disturbed by intense urban, agricultural, and tourist
activity. Two variants of MCs in the lakes that directly re-
ceive water from the main channel may be related to an
increase in runof nutrients and organic matter that accu-
mulates from the surrounding landscapes. Te presence of
MCs puts the health of the ecosystem and its inhabitants at
risk and represents a situation that should be addressed and
resolved with a water management and detoxifcation
strategy specifc to the basin. Identifying the biology and
health risks of other potentially toxic cyanobacteria reported
in the Montebello Lakes National Park (e.g., Anabaenopsis
sp., Microcystis sp., Limnothrix sp., and Raphidiopsis sp.)
([25, 26], this study) remains necessary to integrate the
cyanobacterial risks into water management strategies for
this protected area.
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