CONVEXITY, BOUNDEDNESS, AND ALMOST PERIODICITY FOR DIFFERENTIAL EQUATIONS IN HILBERT SPACE

JEROME A. GOLDSTEIN

Department of Mathematics
Tulane University
New Orleans, Louisiana 70118 U.S.A.
(Received October 27, 1978)

ABSTRACT. There are three kinds of results. First we extend and sharpen a convexity inequality of Agmon and Nirenberg for certain differential inequalities in Hilbert space. Next we characterize the bounded solutions of a differential equation in Hilbert space involving and arbitrary unbounded normal operator. Finally, we give a general sufficient condition for a bounded solution of a differential equation in Hilbert space to be almost periodic.

KEY WORDS AND PHRASES: Differential equations in Hilbert space, Convexity inequality, Self-adjoint operators, Bounded solutions, Almost periodic solutions.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. Primary 34G05, 47A50 Secondary 34C25, 47B15.

1. INTRODUCTION. Let S_{1}, S_{2} be two commuting self-adjoint operators on a complex Hilbert space H. Let $u:[a, b] \rightarrow H$ satisfy the inequality

$$
\begin{equation*}
\left\|d u(t) / d t-\left(S_{1}+i S_{2}\right) u(t)\right\| \leq \phi(t)\|u(t)\|, \quad a \leq t \leq b \tag{1.1}
\end{equation*}
$$

where $\int_{a}^{b} \phi(t) d t \leq c<1 / 2$. We shall show that this implies the convexity inequality

$$
\|u(t)\| \leq K_{c}\|u(a)\|^{\frac{b-t}{b-a}}\|u(b)\|^{\frac{t-a}{b-a}}
$$

which holds for some constant K_{c} and all $t \in[a, b]$. S. Agmon and L. Nirenberg [1] first proved this assuming $c=2^{-3 / 2}$; recently S. Zaidman [7] extended it to weak solutions of (1.1). Our results apply to weak solutions and to the range of values $0<c<1 / 2$; moreover, we obtain a smaller constant K_{c} than did these previous authors. This result is presented in Section 2.

Section 3 is devoted to obtaining the structure of the set of all bounded solutions of

$$
d u(t) / d t=\left(S_{1}+i S_{2}\right) u(t) \quad(-\infty<t<\infty)
$$

The results generalize and improve a recent result of Zaidman [8].
In Section 4 we study almost periodic solutions of the inhomogeneous equation

$$
d u(t) / d t=A u(t)+f(t) \quad(-\infty<t<\infty) ;
$$

here A is a closed linear operator on H and f is an H-valued function. Under a finite dimensionality assumption we show that bounded solutions are almost periodic. This generalizes the results obtained by Zaidman in [6].
2. A CONVEXITY THEOREM. Let u map the real interval [a,b] into a complex Hilbert space H with inner product <•, •>. Let $B: D(B) \subset H \rightarrow H$ be a closed, densely defined linear operator. u is a strong solution of

$$
\begin{equation*}
\|d u(t) / d t-B u(t)\| \leq \phi(t)\|u(t)\| \tag{2.1}
\end{equation*}
$$

if u is continuously differentiable on $[a, b]$, takes values in $D(B)$, and $f(t) \equiv d u / d t-B u$ satisfies $\|f(t)\| \leq \phi(t)\|u(t)\|, \quad a \leq t \leq b . \quad u \quad$ is a weak solution of (2.1) if u is continuous and for continuously differentiable functions ψ with compact support in $] a, b[$ and with values in $D\left(B^{*}\right)$, we have

$$
\begin{aligned}
-\int_{a}^{b}\left\langle u(t), \psi^{\prime}(t)>d t\right. & =\int_{a}^{b}\left\{\left\langleu(t), B^{*} \psi(t)>+\langle f(t), \psi(t)>\} d t,\right.\right. \\
\|f(t)\| & \leq \phi(t)\|u(t)\|, \quad a \leq t \leq b .
\end{aligned}
$$

That a strong solution of (2.1) is a weak solution follows from an integration by parts.

THEOREM 2.1. Let $u:[a, b] \rightarrow H$ be a weak solution of (2.1) where B is symmetric. If

$$
\begin{equation*}
\int_{a}^{b} \phi(t) d t \leq c<1 / 2, \tag{2.2}
\end{equation*}
$$

then the convexity inequality

$$
\begin{equation*}
\|u(t)\| \leq K_{c}\|u(a)\|^{\alpha}\|u(b)\|^{1-\alpha} \tag{2.3}
\end{equation*}
$$

holds, where

$$
\alpha=\frac{b-t}{b-a}, \quad K_{c}=\left(\frac{2}{1-2 c}\right)^{1 / 2}
$$

In particular, when $c=1 / 2 \sqrt{2}$, we get $K_{c}=(4+2 \sqrt{2})^{1 / 2}$. Agmon and Nirenberg [1] proved this result for strong solutions, taking $c=1 / 2 \sqrt{2}$ and obtaining the constant $K_{c}=2 \sqrt{2}\left(>(4+2 \sqrt{2})^{1 / 2}\right)$. This result also appears in Friedman's book [3, p.219]. Zaidman [7] extended the AgmonNirenberg result to weak solutions. The new features of Theorem 2.1 are (i) the result is extended to cover the case $\frac{1}{2 \sqrt{2}}<c<\frac{1}{2}$, (ii) the constant K_{c} is sharpened for each value of c (including $c \leq 1 / 2 \sqrt{2}$).

By enlarging the Hilbert space H, we can extend B to be a selfadjoint operator (cf. Sz.-Nagy [5]). Also, for S_{1} and S_{2} commuting selfadjoint operators (i.e., $e^{i t S_{1}}$ and $e^{i s S_{2}}$ commute for all real t and s), we may extend the theorem to the case where B is replaced by the (unbounded) normal operator $S_{1}+i S_{2}$ according to the observation made in [1, p.138].

PROOF OF THEOREM 2.1. The proof follows Zaidman [7, pp. 236-244] with the following changes on pp. 242-244. We use Zaidman's notation. From

$$
\|u(t)\|^{2} \leq\left\|u_{1}(b)\right\|^{2}+\left\|u_{2}(a)\right\|^{2}+2 M \int_{a}^{b}\|f(s)\| d s
$$

(cf. [7, p.242, line 3]) we get

$$
\|u(t)\|^{2} \leq\left\|u_{1}(b)\right\|^{2}+\left\|u_{1}(a)\right\|^{2}+\varepsilon M^{2}+\varepsilon^{-1}\left(\int_{a}^{b}\|f(s)\| d s\right)^{2}
$$

for each $\varepsilon>0$; here $M=\sup \{\|u(s)\|: a \leq s \leq b\}$. This implies

$$
M^{2} \leq \beta+\varepsilon M^{2}+\varepsilon^{-1} N^{2}
$$

where $\quad \beta=\|u(a)\|^{2}+\|u(b)\|^{2}, \quad N=\int_{a}^{b}\|f(s)\| d s$. Consequently

$$
\begin{equation*}
M^{2} \leq\left(\beta+\varepsilon^{-1} N^{2}\right)(1-\varepsilon)^{-1} \tag{2.4}
\end{equation*}
$$

for $0<\varepsilon<1$. (This becomes [7, p.242, eqn. (*)] when $\varepsilon=1 / 2$.) Since u is a weak solution of $u^{\prime}-B u=f($ where $\|f(t)\| \leq \phi(t)\|u(t)\|)$, it follows that $\omega_{\sigma}(t) \equiv e^{\sigma t} u(t)$ is a weak solution of $\omega^{\prime}-B_{\sigma} \omega_{\sigma}=e^{\sigma t} f(t)$ where $B_{\sigma}=B-\sigma I$ (cf. [7, Lemma 4, p.242]). Letting

$$
\begin{aligned}
& M_{\sigma}=\sup \left\{\left\|e^{\sigma t} u(t)\right\|^{2}: a \leq t \leq b\right\} \\
& B_{\sigma}=\left\|e^{\sigma a} u(a)\right\|^{2}+\left\|e^{\sigma b} u(b)\right\|^{2} \\
& N_{\sigma}=\int_{a}^{b}\left\|e^{\sigma t} f(t)\right\| d t
\end{aligned}
$$

we have that (2.4) (applied to ω_{σ} rather than u) yields

$$
\begin{equation*}
M_{\sigma}^{2} \leq\left(\beta_{\sigma}+\varepsilon^{-1} N_{\sigma}^{2}\right)(1-\varepsilon)^{-1} \tag{2.5}
\end{equation*}
$$

for all real σ and all $\varepsilon, 0<\varepsilon<1 . \quad$ But by (2.1) and (2.2),

$$
\begin{aligned}
N_{\sigma} & \leq \int_{a}^{b} e^{\sigma t} \phi(t)\|u(t)\| d t \\
& \leq \sup \left\{\left\|e^{\sigma s} u(s)\right\|: a \leq s \leq b\right\} \int_{a}^{b} \phi(t) d t \\
& \leq M_{\sigma} c
\end{aligned}
$$

Squaring this gives

$$
N_{\sigma}^{2} \leq M_{\sigma}^{2} c^{2}
$$

Plugging into (2.5) yields

$$
M_{\sigma}^{2} \leq\left(\beta_{\sigma}+\varepsilon^{-1} c^{2} M_{\sigma}^{2}\right)(1-\varepsilon)^{-1}
$$

or

$$
\begin{equation*}
M_{\sigma}^{2} \leq \frac{\varepsilon \beta_{\sigma}}{\varepsilon(1-\varepsilon)-c^{2}} \tag{2.6}
\end{equation*}
$$

provided $0<\varepsilon<1$ and $\varepsilon(1-\varepsilon)>c^{2}$, i.e., $0<c<1 / 2$ and $|2 \varepsilon-1|<\left(1-4 c^{2}\right)^{1 / 2}$. As in [7, pp. 243, 244], $u(a)=0$ or $u(b)=0$ implies $u \equiv 0$, so to prove the theorem we may suppose $u(a) \neq 0, u(b) \neq 0$. Choosing $\sigma=(b-a)^{-1} \log (\|u(a)\| /\|u(b)\|)$ makes
$e^{\sigma t}=(\|u(a)\| /\|u(b)\|)^{\frac{t}{b-a}}$ and $\left\|e^{\sigma a} u(a)\right\|=\left\|e^{\sigma b} u(b)\right\|$. Thus (2.6) becomes, for all $t \in[a, b]$,

$$
\begin{aligned}
\left(\frac{\|u(a)\|}{\|u(b)\|}\right)^{\frac{2 t}{b-a}}\|u(t)\|^{2} & \leq L\left\{\|u(a)\|^{2}\left(\frac{\|u(a)\|}{\|u(b)\|}\right)^{\frac{2 a}{b-a}}+\|u(b)\|^{2}\left(\frac{\|u(a)\|}{\|u(b)\|}\right)^{\frac{2 b}{b-a}}\right\} \\
& =2 L\left(\frac{\|u(a)\|^{2 b}}{\|u(b)\|^{2 a}}\right)^{\frac{1}{b-a}}
\end{aligned}
$$

where $L=\varepsilon\left(\varepsilon(1-\varepsilon)-c^{2}\right)^{-1}$. Consequently

$$
\|u(t)\| \leq(2 L)^{1 / 2}\|u(a)\|^{\frac{b-t}{b-a}}\|u(b)\|^{\frac{t-a}{b-a}}
$$

holds for $a \leq t \leq b$. Regard $g(\varepsilon) \equiv(2 L)^{1 / 2}=\left(\frac{2 \varepsilon}{\varepsilon(1-\varepsilon)-c^{2}}\right)^{1 / 2}$ as a function of ε. It is minimized when $\varepsilon=c^{*}$, in which case $(2 \mathrm{~L})^{1 / 2}=\left(\frac{2}{1-2 \mathrm{c}}\right)^{1 / 2}$. This is a legitimate choice of ε since $|2 \varepsilon-1|<\left(1-4 c^{2}\right)^{1 / 2}$ holds in this case. The proof of the theorem is now complete.
3. BOUNDED SOLUTIONS. Let S_{1}, S_{2} be commuting self-adjoint operators on H. We study functions $u \in C^{1}(\mathbb{R}, H) \quad(\mathbb{R}=]-\infty, \infty[)$ which are bounded (strong) solutions of

$$
\begin{equation*}
\mathrm{du}(\mathrm{t}) / \mathrm{dt}=\left(\mathrm{S}_{1}+\mathrm{i} \mathrm{~S}_{2}\right) \mathrm{u}(\mathrm{t}), \quad \mathrm{t} \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

LEMMA 3.1. Let u be a bounded solution of (3.1). Then $u(t)=e^{i t S} 2 h$ for all $t \in \mathbb{R}$ and some $h \in \operatorname{Ker}\left(S_{1}\right)=\left\{f \in H: S_{1} f=0\right\}$.

PROOF. Let $h=u(0)$. Then

$$
u(t)=e^{t S_{1}}\left(e^{i t S_{2}} h\right)=e^{i t S_{2}}\left(e^{t S_{1}} h\right)
$$

(Recall that $e^{t S_{1}}, e^{i t S_{2}}$ are defined by the operational calculus associated with the spectral theorem.) Since $e^{i t S_{2}}$ is unitary, $\|u(t)\|=\left\|e^{t S_{1}} h\right\|$ follows. But $\left\|e^{t S_{1}} h\right\|$ is bounded for $t \in \mathbb{R}$ if and only if $h \in \operatorname{Ker}\left(S_{1}\right)$,
in which case $e^{t S_{1}} h=h$, and so $u(t)=e^{i t S_{2}} h$, as advertised.

A special case occurs when

$$
\operatorname{Ker}\left(S_{1}\right)=M_{1} \oplus \ldots \oplus M_{n},
$$

where S_{2} restricted to M_{j} is a real constant λ_{j} times the identity on M_{j} for $1 \leq j \leq n$. Then any bounded solution of (3.1) is of the form

$$
\begin{equation*}
u(t)=\sum_{j=1}^{n} e^{i t \lambda} j h_{j} \tag{3.2}
\end{equation*}
$$

where h_{j} is the orthogonal projection of $u(0)$ onto $M_{j}, 1 \leq j \leq n$. This covers the result obtained by Zaidman in [8]. More precisely, let $\{\mathrm{E}(\theta): \theta \in \mathbb{R}\}$ be a resolution of the identity and let

$$
S_{1}=\int_{-\infty}^{\infty} x(\theta) d E(\theta), \quad S_{2}=\int_{-\infty}^{\infty} y(\theta) d E(\theta)
$$

be associated commuting self-adjoint operators, where x and y are continuous
real functions on \mathbb{R}. If the zero set of x is the finite set $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$ then S_{2} is $\lambda_{j}=y\left(\theta_{j}\right)$ times the identity on $M_{j}=\left(E\left(\theta_{j}{ }^{+}\right)-E\left(\theta_{j}{ }^{-}\right)\right)(H)$, $1 \leq j \leq n$, and so any bounded solution of (3.1) is of the form (3.2) with $h_{j} \in M_{j}, \quad 1 \leq j \leq n$. This is Zaidman's result [8].

4. ALMOST PERIODIC SOLUTIONS.

THEOREM 4.1. Let $A: H \rightarrow H$ be a bounded linear operator and let $\mathbf{f}: \mathbb{R} \rightarrow H$ be almost periodic. Let $u: \mathbb{R} \rightarrow H$ be a bounded (i.e. $\sup \{\|u(t)\|: t \in \mathbb{R}\}<\infty)$ strong solution of

$$
\begin{equation*}
\mathrm{du}(\mathrm{t}) / \mathrm{dt}=\mathrm{Au}(\mathrm{t})+\mathrm{f}(\mathrm{t}) \quad(\mathrm{t} \in \mathbf{R}) \tag{4.1}
\end{equation*}
$$

$\left.\begin{array}{l}\text { Suppose there is a finite dimensional subspace } H_{1} \text { of } H \\ \text { such that } H_{1} \supset\{\operatorname{Af}(\mathrm{~s}): s \in \mathbb{R}\} \cup\{\operatorname{Au}(0)\} \text { and } \\ \mathrm{e}^{\mathrm{tA}}\left(H_{1}\right) \subset H_{1} \text { for all } \mathrm{t} \in \mathbb{R} .\end{array}\right\}$

Then u is almost periodic.

When H is finite dimensional, this is the classical Bohr-NeugebauerBochner theorem (cf. Amerio-Prouse [2, p.85]). When A is a finite rank operator we can take H_{1} to be the range of A, and Theorem 4.1 becomes the theorem of Zaidman [6] in this case.

PROOF OF THEOREM 4.1. Let $H_{2}=H \theta H_{1}$ be the orthogonal complement of H_{1}, and let P_{j} be the orthogonal projection onto $H_{j}, j=1,2$. Let $u_{j}(t)=P_{j} u(t), j=1,2$. Note that if L is as upper bound for $\|u(s)\|$ ($s \in \mathbb{R}$), then for all real t,

$$
L^{2} \geq\|u(t)\|^{2}=\left\|u_{1}(t)\right\|^{2}+\left\|u_{2}(t)\right\|^{2}
$$

whence u_{1} and u_{2} are bounded. Also,

$$
\mathrm{du} / \mathrm{dt}=\mathrm{d} \mathrm{u}_{1} / \mathrm{dt}+d \mathrm{u}_{2} / \mathrm{dt}=A u_{1}+A u_{2}+P_{1} f+P_{2} f
$$

Applying P_{1} to both sides gives

$$
\begin{equation*}
\mathrm{du}_{1} / \mathrm{dt}=\mathrm{P}_{1} A u_{1}+\mathrm{P}_{1} \mathrm{Au}_{2}+\mathrm{P}_{1} f \tag{4.3}
\end{equation*}
$$

The function u admits the variation of parameters representation

$$
\begin{aligned}
u(t) & =e^{t A} u(0)+\int_{0}^{t} e^{(t-s) A} f(s) d s \\
& =e^{t A} u(0)+\int_{0}^{t} f(s) d s+\sum_{n=1}^{\infty} \int_{0}^{t} \frac{(t-s)^{n}}{n!} A^{n} f(s) d s .
\end{aligned}
$$

The last (summation) term belongs to H_{1} by (4.2). Applying P_{2} to this expression gives

$$
u_{2}(t)=P_{2} e^{t A} u(0)+\int_{0}^{t} P_{2} f(s) d s ;
$$

differentiating yields

$$
d u_{2}(t) / d t=P_{2} e^{t A} A u(0)+P_{2} f(t)=P_{2} f(t)
$$

by (4.2). Since f is almost periodic and P_{2} is bounded it follows that $d u_{2} / d t$ is almost periodic. Since u_{2} is bounded, u_{2} itself is almost periodic (see [2, p.55]).

Next, by (4.3),

$$
\begin{equation*}
d u_{1}(t) / d t=P_{1} A u_{1}(t)+g(t) \tag{4.4}
\end{equation*}
$$

where $g(t) \equiv P_{1} A u_{2}(t)+P_{1} f(t)$ is almost periodic. Since u_{1} is bounded and $P_{1} A: H_{1} \rightarrow H_{1}$ is linear, (4.4) is a linear system in the finite
dimensional Hilbert space H_{1} (see (4.2)). It follows from the classical Bohr-Neugebauer-Bochner theorem [2] that u_{1} is almost periodic. Consequently $u=u_{1}+u_{2}$ is almost periodic, and the proof is complete.

Theorem 4.1 can be easily extended to the case when A is unbounded, as follows.

THEOREM 4.2. Let $A: D(A) \subset H \rightarrow H$ generate a $\left(C_{0}\right)$ group of bounded Zinear operators $\{T(t): t \in \mathbb{R}\}$ on $H(c f .[4])$. Let $u: \mathbb{R} \rightarrow H$ be a bounded solution of (4.1) where f is almost periodic. Suppose there is a finite dimensional subspace H_{1} of H such that

$$
H_{1} \supset\{(T(t)-I) f(s): s \in \mathbb{R}, t \in \mathbb{R}\} \cup\{A u(0)\}
$$

and $T(t)\left(H_{1}\right) \subset H_{1}$ for all $t \in \mathbb{R}$. Then u is almost periodic.

The proof, which differs from the proof of Theorem 4.1 only in inessential ways, is omitted.

COROLLARY 4.3. Let $\lambda_{1}, \ldots, \lambda_{n}$ be eigenvalues of the linear operator $A: D(A) \subset H \rightarrow H$ and let $\phi_{1}, \ldots, \phi_{n}$ be corresponding eigenvectors. Let H_{1} be the span of $\phi_{1}, \ldots, \phi_{n}$. Then any bounded solution of (4.1) is almost periodic, provided $f: \mathbb{R} \rightarrow H_{1}$ is almost periodic and $u(0) \in H_{1}$.

This follows immediately from Theorem 4.2.

COROLLARY 4.4. In Corollary 4.3 one can omit the hypothesis that $u(0) \in H_{1}$ provided that one assumes that A is a compact normal operator. PROOF. Let $P_{1}, P_{2}, u_{1}, u_{2}$ be as in the proof of Theorem 4.1. Applying P_{j} to (4.1) and noting that A commutes with P_{j} in this case gives

$$
\begin{align*}
& d u_{1}(t) / d t=A u_{1}(t)+f(t) \\
& d u_{2}(t) / d t=A u_{2}(t) \quad(t \in \mathbf{R}) \tag{4.5}
\end{align*}
$$

u_{1} is almost periodic by the Bohr-Neugebauer-Bochner theorem. Thus it only remains to show that u_{2} is almost periodic. Let B be the restriction of A to $H_{2} . B$ is a compact normal operator, hence by the spectral theorem there is an orthonormal basis $\left\{\psi_{m}\right\}$ for H_{2} and complex numbers $\mu_{m} \rightarrow 0$ such that

$$
B \phi=\sum_{m=1}^{\infty} \mu_{m}\left\langle\phi, \psi_{m}\right\rangle \psi_{m}
$$

for all $\phi \in H_{2}$. Let Q_{m} be the orthogonal projection (in H_{2}) onto the span of $\psi_{1}, \ldots, \psi_{m}$. Let $v_{m}=Q_{m} u_{2}$. Then

$$
d v_{\mathrm{m}} / \mathrm{dt}=\mathrm{Q}_{\mathrm{m}} \mathrm{du} \mathrm{Z}_{2} / \mathrm{dt}=\mathrm{Q}_{\mathrm{m}} A u_{2}=B v_{\mathrm{m}}
$$

by (4.5). Also, v_{m} is bounded (since u_{2} is) and takes values in a finite dimensional space, whence v_{m} is almost periodic. We claim that $u_{2}(t)=\lim _{m \rightarrow \infty} v_{m}(t)$, uniformly for $t \in \mathbb{R}$. It then follows that u_{2} is almost periodic [2] and the proof is done. So it only remains to prove the claim. We have

$$
\frac{d}{d t}\left(u_{2}(t)-v_{m}(t)\right)=B\left(u_{2}(t)-v_{m}(t)\right)=\left(B-Q_{m} B\right)\left(u_{2}(t)-v_{m}(t)\right),
$$

therefore

$$
u_{2}(t)-v_{m}(t)=\sum_{k=m+1}^{\infty} e^{t \mu k}<\left(u_{2}-v_{m}\right)(0), \psi_{k}>\psi_{k}
$$

Consequently

$$
\left\|u_{2}(t)-v_{m}(t)\right\|^{2}=\sum_{k=m+1}^{\infty} e^{t \operatorname{Re} \mu_{k}}\left|<\left(u_{2}-v_{m}\right)(0), \psi_{k}>\right|^{2}
$$

Since $\left\|u_{2}(t)-v_{m}(t)\right\| \leq\left\|u_{2}(t)\right\| \leq L<\infty$ for some L and all $t \in \mathbb{R}$, it follows that for every k for which $<\left(u_{2}-v_{m}\right)(0), \psi_{k}>\neq 0$ for some m, μ_{k} must be purely imaginary. Therefore

$$
\begin{aligned}
\left\|u_{2}(t)-v_{m}(t)\right\|^{2} & =\sum_{k=m+1}^{\infty} \mid\left\langle\left(u_{2}-v_{m}\right)(0), \psi_{k}>\left.\right|^{2}\right. \\
& =\left\|\left(I-Q_{m}\right) u_{2}(0)\right\|^{2} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, uniformly for $t \in \mathbb{R}$. Q.E.D.

ACKNOWLEDGEMENT: This research is an outgrowth of discussions I had with Samuel Zaidman in April, 1978 when I had the pleasure to visit the Université de Montréal. I thank Professor Zaidman for some stimulating dicussions, and I gratefully acknowledge that my trip to Montréal was supported by his NRC grant. Finally, I gratefully acknowledge the support of an NSF grant.

REFERENCES

[1] Agmon, S. and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach spaces, Comm. Pure Appl. Math. 16 (1963), 121-239.
[2] Amerio, L. and G. Prouse, Almost-Periodic Functions and Functional Equations, Van Nostrand Rheinhold, New York, 1971.
[3] Friedman, A., Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.
[4] Hille, E. and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ. 31, Providence, R. I., 1957.
[5] Sz.-Nagy, B., Extensions of linear transformations in Hilbert space which extend beyond the space, appendix to F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1960.
[6] Zaidman, S., Bohr-Neugebauer theorem for operators of finite rank in Hilbert spaces, Atti Acad. Sci. Torino 109 (1974/1975), 183-185.
[7] Zaidman, S., A convexity result for weak differential inequalities, Canad. Math. Bull. 19 (1976), 235-244.
[8] Zaidman, S., Structure of bounded solutions for a class of abstract differential equations, Ann. Univ. Ferrara 22 (1976), 43-47.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

