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ABSTRACT. In the present work, two complex inversion formulas of Byrne and

Love for generalized Stieltjes transformation are shown to be valid for a

class of distributions. This is accomplished by transfering the complex inversic
formulas on the testing function space of a class of distributions and then
showing that the limiting process in the resulting formula converges in the
topology of the testing function space.
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1. INTRODUCTION.

Let p be any complex number except zero and the negative integers. Then
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for all s in the "cut plane", that is all complex numbers except those which are

negative real or zero, the Stieltjes Transform in its general form is defined by:

Fe) = J EE2E 1.1)

o (s+t)p

The following inversion theorems for particular values of p and s are well known.
THEOREM A (Widder). If f(t) belongs to L(O,R) for every positive R and is

such that the integral

F(x) = f'm‘—tdt

o t+x

converges for x > 0, then F(s) exists for complex s in the cut plane and

Lim f(€-in)~-F(-E+in) _ EEH+HE(E-)
2t 2

-0+
for any positive E at which f(€+) and f£(£-) both exist.
THEOREM B (Sumner). If p > 0, £(t) is locally integrable in [0,»], the

improper Lebesgue integral.

@

F(s) =J‘M

o (s+t)P
converges (for a certain value of s in the cut plane and so for all), t >0 and

the limits £(t+0) exist, then:

t
%[f(t—i-O)+f(t-0)] = lim 5;—1— fax | (e+2)® YF 1 (2)dz
o

-0+ C

'nx



STIELTJES TRANSFORM OF DISTRIBUTIONS 443

where cnx is a contour in the cut plane from -x-in to -x+if.

THEOREM 1.3 (Byrne and Love). If Re p > 1, f is locally integrable in [0,e],
improper Lebesgue integral (1.l) converges, and ) > O; then, for each positive
x for which the Lebesgue limits f£(x+0) exists,

1 el X p-2

7 EGH0) + £(x-0)} = 1im o= [ (x+t)" “{F(E-17)-F(t+in) Jat. [2, p. 349]

-0+ -X

THEOREM 1.4 (Byrne and Love). If Rep > 1, fﬁE% € L(0,») and the improper
1+t

Lebesgue integral

F(8) = I ) dt

P
o (tt)

converges, then for each positive x for which the Lebesgue limit f(x40) exists,

-;- {£(x+0)+£(x-0)} = 1im j‘ (xl-t)p-le(t-i'n)-F(t+i'n))dt [2, p. 352]
=0+ -x

THEOREM 1.1 has been extended to distributions by Pandey and Zemanian [13]
and Pandey [14]. Theorem 1.2 was extended to distribution by Pathak [15]. Our
object is to extend theorems 1.3 and 1.4 of Byrne and Love to generalized

functions (distributions).

2. THE TESTING FUNCTION SPACE, Sg(I) AND ITS DUAL.

An infinitely differentiable complex valued function §(x) defined over

I = (0,0) belongs to the testing function spaces Sy (I) 1if,

@) x :—x-)k 8 (x) l <w

Y (8) = sup
O<x<o
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for all k=0,1, 2, ... , where @ is a fixed real number. Clearly, So(I) is
a vector space with respect to the field of complex numbers. The zero element
of the vector space Sy(I) is the function defined over I which is identically

zero. The topology over Sy(I) is generated by the collection of seminorms
(-]

k=0
converges in Sp(I) to & (x) if for each fixed k, Yk(Qv- 3) tends to zero as vy

{yk} [24; p. 8]. We say that a sequence (Qvl where Qv belongs to Sg(I)

tends to ». The space Sy(I) is a locally convex Hausdorff topological vector
space. The space D(I) is a vector subspace of Sy(I) and the topology of D(I)

is stronger than the topology induced on D(I) by Sy(I) and as such the restriction
of any member of S4(I) to D(I) is in D'(I), where S4(I) and D'(I) denote the dual
spaces of Sy(I) and D(I) respectively. We say that a sequence (Qvf’ where QV(x)
belongs to Sy(I) is a Cauchy sequence in So(I) 1if yk(Qv-Qv) goes tz?:ero for any

non-negative integer k as |, and y both tend to infinity independently of each

other. It can be readily seen that Sy(I) is sequentially complete.

3. THE DISTRIBUTIONAL STIELTJES TRANSFORMATION

For a complex s not negative or zero, - belongs to %; where a < Rep.
(8+x)

Therefore, the distributional Stieltjes transformation F(s) of an arbitrary

element f ¢ S', a < Re p, is defined by
o

F(s) o < £(x), —— > (3.1)

(s+x)P
where s belongs to the complex plane cut along the negative real axis including
the origin,

THEOREM 3.1. If m and k both assume non-negative integral values and () is a
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compact set of the complex plane not meeting the negative real axis, then for

fixed non-negative integers m and k, there exists a constant BQ satisfying

Y ——I—E— <B <o
(s+x)P‘|' Q
uniformly for all s lying in the compact set Q of the complex plane not meeting

the negative real axis on the origin.

s';

PROOF. Using the compactness of the set (3 and the fact that —-f,-_'I e
(s+x) «

o < Re p, the theorem is immediate.

THEOREM 3.2. For an arbitrary f ¢ Sc;l and a < Re p let F(s) be defined by

the equation (3.1). Then, for m=1, 2, ...

m
P (-1) (P)m
—_ F(8) = < f(x), —/—— > (3.2)
( ds) (s_,_x)p‘l-m

where (p) = p(p+l)(p+2) ... (ptm-1).

PROOF. If p is such that sp does not have a branch cut in the complex plane,
the proof can be given in a way similar to that given in [3, Lemma 2a]. If p is
such that s® has a branch cut (along the negative real axis for the sake of

definiteness), then choose the contour of integration as shown in the complex-

plane cut along the negative real axis below.
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StAS

Ly

C2

Here, Cl and C2 are arcs of two concentric circles with centre at origin and C is

the contour of integration as shown., The radii of C1 and 02 and paths Ll and L2

are so chosen that the point s 1s contained in the region bounded by the contour.

Let d = inf |g-s| and choose |As‘ < :— . Now

EeC
Zﬁﬁ:&%ﬁﬁ)_ < £(t), ._?m S
(ott)
1 . 1 . 1 1 1 A8
=< f(t), — — [ -— - ]dz>
As 2t C (z+t)p z-s-As  z-8 (z-s)2
where C is the contour shown in the diagram
= < f(t), eAs > (3.3)
where
- s 1 1
eAs Py dz

c (z+t:)p (z-s)p(z-s-As)
We now wish to show that 8¢ 0 in Sa(I) as As-0.

Using Theorem 3.1, we have

28]

L
Yk(eAs) SBc 3 (3.4)
d
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where L 1is the length of the contour C and Bc is the uniform bound of

ak
(@), (1+6)%

for all z lying on the closed contour C aad t > O.
(z+t:)p+k

Letting As - 0 in (3.3) and using (3.4), we get

F'(s) = < £(t), ——2—>
(e+t)PH1

Now; the theorem follows from induction on the order of the derivative of F(s).
THEOREM 3.3. The function F(m)(x) for real x where F(s) is the Stieltjes

transform of £ ¢ Sc;’ satisfies the following relation:

O[x-m] a8 X » o 1f ¢ <Re p
r(m)(x) = O[x.k] a8 X » o 1f o = Re p
0[::-1‘-1{e l)] as x 0 if ¢y <Rep

The proof is immediate from the boundedness - voperty of distributioms [9, p. 18].

4, COMPLEX INVERSION THEOREMS

We are now ready to prove our first inversion theorem.
THEOREM 4.1. PFor a fixed g <1 and Rep > 1, 1let £ ¢ S'(I) and let F(s)
o

be the Stieltjes transform of f£(t) as defined by (3.1). Then,

lim < B Gee)P retnF(eHnlae, 86 >
0 i
=X
=< £, > iur 11 § ¢ D(I)

PROOF. First consider

A A
j‘ (wc)p'zr(t—in)dt = J‘ (:u—t)p'z < £(y), —-L-—; > dt (4.1)
-X -X (ﬁt-iln)
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For fixed x and t,

p-2
) s ().

(r+e-in)P
Since, in view of Theorem 3.2, F(8) is analytic in the cut plane, the left-hand
side integral in (4.1) is meaningful. By using the technique of Riemann sums it

can be shown that for ¢ > 0,

A -2
[ Gee)P R (e-1n)at
-}{.‘.e
A p-2
= < f(}'), J‘ .L’H'_t)__ dt >
~xte (yre-1n)°

- < £(y) 1 1 (x+)\)l;'-1 . Pl S
>p-1 +1 -1 -1
Pl GvHD | g etP (gmte-in)®
= 1 (say). [by Lemma 5,1, p. 333]
p-1
One can ‘easily check that as ¢ = O+, ‘_-e—-_—p—-l - 01in S (I) for Rep > 1 > y
(y-xte -1in) «
and for fixed ), T and x. Therefore, letting ¢ - 0, we get:
A p-1l
=2
j‘ (x+t)P F(t-im)dt = < £(y), Q%) 3> (4.2)
= (p-1) (y=x-17) (v -17)°

In view of Lemma 3.5* [7, p. 12], it follows that: as ) - =

1 ax\P! 1
(7-x-17) ((yﬂ-in)) Y-ty 5D 4.3)

for fixed x and 7.
Therefore, letting ) - o in (4.2), we obtain

1
*y-x-in

[ e Prce-tmae = < £, > (4.4)

-x

* The proof was provided by Professor E.R. Love.
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Using a similar argument, we can show that

]: (x+t)P'2F(t+in)dt = < £(y), B{T : y_x}_in > (4.5)
-X
Combining Equations (4.4) and (4.5), we get
gﬂ"—i } (et)P “2[F (t-in) -F(t+in)] dt
-X
= <£y), ——> (4.6)

ol -2y %471

Now using the technique of Riemann sums, we obtain

< E— j (ert)P 2[R (-1n) F(eHD 1L, 3(x) >

b
x) dx
=<0 [ TGmZmd > 4.7
a

where the support of § (x) € D(I) is contained in (a,b), b > a > 0. Using the

same techniques as followed in proving Theorem 2 of (3) one can show that
b
1 x)dx
L ialhs ) 4.8)
a (y-x) +

in the topology of S (I) as 1 ~ O+. Therefore, letting 7 - O+ in (4.7), we
o
have

:1-12+ < gﬁ_ ,f (x+t)p-2[F(t-i'q)-F(t:+i'n)]dt, 3(x) >=< £,5 >

-X

This completes the proof of the theorem.
To prove our other inversion theorems, we require a couple of Lemmas.,

LEMMA 4.2. Let t, s, T > 0. Then, for finite b >a >0 and <1,

lim  (14x)% I 7 dt =0
-0+ a (t x) +ﬂ

uniformly for all x > O,
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PROOF. Let
b
I= (14x)% 'J—-L—t-: d;
a (E=%)741
Since sup |(1+x)a ——Lt-;'&i— | is bounded, for ¢ > 0, there exists a
N> (t-x)"4
astd

positive N>b and 0 <q <1 such that

|I] < e “4.9)
uniformly for all 1 ¢ (0,9) and x >N.

Now agsume that § is a positive number < min (1, % ) and for § < x <N
let us write.

atx=§ at+xt§ b
I= (14+x)% J + J‘ + [
a atx-§ atxtg (t:-x)z-wn2
Denote the three expressions on the right-hand side of Eqn. (4.10) by Il’ I2

|e-x|
dt, (4.10)

and 13 respectively.

Now
) eex] (4x)®

I, =1 J‘ dt
2 (t:-x)2 + ‘n"z
atx=§
1
27
Now choose § such that 6(1+N)°’ <e¢ and fix § this way. Therefore

< M 25 5= (DY = 514

|1,] <e (4.11)

uniformly for all x ¢ [§,N] and 7 ¢ [0,q].

b o X b -
Len [ GBS woawn | o+ (e
(t=x)"41 (t-x) 4

atx+s atxt
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Therefore,
b ox) 242
= g‘ !I,n('(—sz—ﬂlg) (1+x)%, if § <x<bDb
(ats) ™4
I = . “( 4
= W)* 3 g ) 1f x >b.
2 T\ (k) 2L 0 2

Therefore, I3 -0 as 7 -0+

uniformly for all x o [§,N].

Next,
at+x-§
I, = % | eoxlde
2 2
(%)
Now for § <x< a
82,2
I = (1+x)ot%1 n Sa—ﬁ)z—ﬂ]; -0 as 71 -0+
(a-x)"+7

uniformly for all x lying in [§,a].

For a<x<N,

2 2 2
L= |-3 gof —3——)+ 0 o280 || (14
1 2 2 2 2 2
(a-x)+'n M

-0 as 7 - 0+ uniformly for all x ¢ [a,N]
Combining results (4.11) through (4.14) we have

1im |Z] < ¢ uniformly for all x >0
0+

Now, for 0 <x < §, we can see that

2, 2
|I] € (146)% 4n [M)‘zﬂ'{]" 0
(a-x) "4

As 1 - O+ uniformly for all x ¢ [0,8].

451

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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Combining results (4.15) and (4.16), we get

1im
-0+

Thus, the proof of the lemma is complete.

|I| <e uniformly for all x > 0.

LEMMA 4.3. Let Rep >1 > y. Assume that t, x, ) and 1| are all positive

numbers and 3(t) ¢ D(I). Then,

L P 1 e PL
I(x,t) A 2_111- j‘g x-t+in [(x+)\+i'q) - 1]
a

- 1 157N -t _
x-t -1y xh, -1

as 17 - O+ in the topology of Sy where the support of 3(t) € D(I) is

g(t)dt - 0

contained in (a,b); b >a > 0.
PROOF. We have to show that for each m=0, 1, 2, ... (1+x)°5:mD:I(x,n) -0
as N - 0 uniformly.

It can be easily shown that

m, 1
DxI(x,‘n) = O(;.-*_T) as X 2 o

uniformly for all 7 satisfying 0 <7 <1l. So,
(1+x)ame:I(x,1]) -0 asx-o
uniformly for all 7 ¢ (0,1). Therefore, for ¢ > 0 there exists N >0

such that

| G405 D 1, | < e (4.17)
uniformly for all x >N, and 0<fp <1,

Now consider the case 0 < x < 1. We will first give the proof for m =0
and complete the proof for m=1, 2, 3, ... by using the result for the case

m= 0.
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I. Form= 0, Write

b p-1 -1
o (L) x-t en (ke
@M = ns ]t (x+)\+in) (x+x-in B(e)de

b p-1 p-1
- x) - 2(t) ( Gl ) -1 +(——tﬂ—) -1|z(t)dt
2 I (x-t)z-vnz xH, -in

=L =M - Lxm) (say)

First, consider Il(x,'q). Since,

xH\+in

(xR +7) (x4, -17) x#, -1
<2fp-t| o &= el
)" P

Im Re
< 2[p-t| IRl Re P
Therefore we can find a constant B(p) independent of x and 7| such that

b
|5, )| <_B 0% [ L’ﬁj%
L 6
In view of Lemma 4.2, the right-hand side converges to O uniformly for all
x>0 as 7 - O+
We now consider Iz(x,'n). For 0 <7 <b, using Lemma 3.3 (7, p. 9) we get

(1) ForRep >2, t<x

p-1 .
=25 - 21| Im' p t-x
(325) o <teue ‘J'_z_z PorEn
(x# )+

< lp-1|e2ﬂ|m PI -I—t'—xjﬂ (4.18)
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(i1) ForRep >2, t>x

-1 Re p-2
(xh+im) - x4\ +1i7) 2 2
Q+x) +q
2| Im p|
]2-1|e Re p-2 .
< )‘Re o1 (b +1) (Jt=x|+mp); 0 < <1
(4.19)
(111) For Re p< 2, t<xand te¢ [a,b], b>a >0, 0<qy<1.
p-1 q1.27|Im p| Re p-2 _
) g | o lectle 24 e, )
xH +1i) Re -1 1 Re(p-2) + _ll)Re p-2
A P [1+ —] A
A2
(lv) For rep<2, t>x, tg [a,b], D>a>0, 0<7<1
th p-1 27| Im p| [ xAA Re p-2 | £-x|+7
) -1| < |p-lle
=+ A+ \/_2-2
(xty) "+
4 ezn‘Im pl . 2-Re p
< -lL-I————)\ 1+ > (|t-x|+rq) (4.21)
A

Therefore, from inequalities (4.19) through (4.21), it is evident that for
Rep>1 and 0 <17 <1, there exists a positive constant K(A,p) independent of

t and x satisfying

_en P
*h LN

Similarly, under the same set of conditions

(e
*xhH -1

<KQ,p) [(t=x) + ] t e (a,b)

<KQA,p) [(t-x) + 7], t € (a,b)

In view of these inequalities we, therefore, have established that
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o b
|Iz(x"ﬂ)| < KO ,pM(1+x) (1+x)a .f 'n(lt-iz[ + nzﬁt
i )% +q

a
vhere M = sup |8(t)|

agtghb
That is
, (E- 242 (t-x) 4’
Since
2 b dt
@0 | 2.2 * 0
a (t=x)" + 7

as 1 - O+ uniformly for all x > 0. Therefore, in view of Lemma 5.2, it
follows that

Iz(x,'n) -0 as 1 - O+ uniformly for all x>0,
II) The case m=1, 2, 3, ...

A careful computation along with integration by parts will show that

tHh p-l
(1+x)%xD RACH My f x-t+i'q xH +1n "1
p-1
1 thH '
- e (xﬂ-%) -1 } §'(t)dt

b

455

+ zﬂil W% x[ [AHD T - G-t ) ()P Za(erae

a

Using the technique of induction, we obtain:

o 14x)% b 1 e VWL
oo T [

x-t+in )+

a
1 en P! (m)
g [(xﬂ-in) - 1] } &% 7(t)dt
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+ e

o m b } }
# BB 0 ™ - o) T e )P 23 ®1) (¢ )ae

a

b
- 220 ™" [ L) P - -t P en)? % @2 (e)ae

+ .. a
m-1
(-1) p(p-1) ;T-r; (ptm-2) (1+x)°’xm X
> =+l -+l -2
[ LEAHD T - G- T ()P ()t (4.22)
a

Denote the integrals on the right-hand side of (5.22) by Jl, JZ’ oo Jm+1

in that order. In view of case m = 0, J -0 as 7-0+ uniformly for all x € (O,N).

1

To show that other integrals converge to 0 as 1)#0+ uniformly for x € (0,N), we

As before,

consider the most general integral J L
xH+in
-m+t1 -m+1 -
| o) P G- T = | (pmil) | 27 dz)
xH, =17
27 |ptm-1] il
< p+m_ S ——————————
- Re p+m
(=0

Therefore, we can find a positive constant C independent of x and 7 such that

(1+x dem

+0as 7 -0+
(e )R P

Pl <0 €

uniformly for all x € (O,N) and each fixed m=1, 2, ...
Thus, we have proved that
(1+x)% mI(x,‘n) -+ 0 as 7 - O+ uniformly for all x e (O,N) and each fixed
m=20,1, 2, 3, ...
Combining this fact with inequality (4.17), we have

1im |(1+x)°‘xm1)m1(x,n)| <e
0+
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uniformly for all x >0 and each fixed m=0, 1, 2, ... ; since € is arbitrary
our claim is established.
THEOREM 4.4, Let Rep >1 >a and £(t) e S'. If F(s) is the Stieltjes
o

transform of £(t) defined by (3.1) then for ) >0 and each & ¢ D(I)

lim <L ~r[f(y-m)-lv(y+1n)] )P 2ay, 3(t) > =0

=0+ \

PROOF. By using the same technique as used in proving Theorem 4.1, it can be

shown that:

[ [FG-t)FeHD] G+0)P Zay, ae) >
A

b p-1
- 1 1 155 -
= <t 37 { x-t+i [(xﬂﬁn) 1]
a
1 en YU
x-t-i (1+x+i’n) -1 }> a(tyde

where the support of §(t) is contained in (a,b), b >a > 0,

_<f(x)Lb; 1 t+l'p-1_1
B i) x-t+in | \ =8+
a

1 tH) p-l
- (x-t-11) e - > 3(t)dt. (By using Riemann's sum technique)

Letting 1 - O+, the result follows in view of Lemma 4.3.
THEOREM 4.5. For a fixed ¢ <1 <Re p, let £(t) ¢ S'(I) and let F(s) be
o

the Stieltjes transform of f(t) defined by (3.1). Then,

lim < L j‘ (x+t)P 2[F(t: -in) -F(t+in)ldt, 3(x) > = <£,8>
-0+
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for all § € D(I) and ) > O,

PROOF. The result follows quite easily in view of Theorems 4.1 and 4.4.

ACKNOWLEDGEMENTS. The authors are grateful to Professor E.R. Love, for his
valuable suggestions, in particular for providing the proof of Lemma 4.3. The
work of the second author was supported by a National Research Council Grant

Number A5298.

REFERENCES.

1. Byrne, A, and Love, E.R. Complex inversion theorems for generalized
Stieltjes transforms, Australian Jr. of Math, (1975) 328-358,

2. Pandey N T., Zemanian, A.H. Complex inversion for the generalized convolu-
tiia \ ‘ansformation, Pacific Jr. of Math. 25 (1968) 147-157.

3. Pandey, J.N. On the Stieltjes transform of generalized functions, Proc. Camb.
Phil. Soc. 71 (1972) 85-96.

4.  Pathak, R.S. A distributional generalized Stieltjes transformation, Pro-
ceedings of Edinburgh Math. Soc. 20 (1976) 15-22.

5. Schwartz, L. Theorie des distributions, Vol. I and II (Hermann, Paris
1957, 1959).

6. Sumner, D.B. An inversion formula for the generalized Stieltjes transform,
Bulletin American Math. Soc. 55 (1949) 174-183.

7. Tiwari, U. Some distributional transformations and Abelian theorems,
Ph.D. Thesis, Carleton University (1976).

8, Widder, D.V. The Laplace transform, Princeton (1976).

9. Zemanian, A.H. Generalized integral transformation, Interscience Publishers
(1968).




Advances in

Operations Research

Advances in

Decision SC|ences

Journal of

Applied Mathematics

Journal of
Probability and Statistics

The Scientific
\{\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Journal of

Mathematics

Journal of

Illsmelth alhemaics

Mathematical Problems
in Engineering

Journal of

Function Spaces

Abstract and
Applied Analysis

Stochastic A nalysws

,;,,\K J :1?"
#(ﬁ)}?ﬂ(ﬂﬁf
f. \') :

International Journal of

Differential Equations

ces In

I\/\athemamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization




