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ABSTRACT. Let S be a subset of a metric space (X,d) and T: S + X be a

mapping. In this paper, we define the notion of lower directional increment

QT(x,y] of T at x S in the direction of y X and give sufficient

conditions for T to have a fixed point when QT(x,Tx] < I for each x S.

The results herein generalize the recent theorems of Clarke (Caned. Math. Bull.

Vol. 21(1), 1978, 7-11) and also improve considerably some earlier results.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. Primary 47HI0, secondary 54H25.

INTRODUCTION.

In a recent paper [2], Clarke introduced the notion of lower derivative

D_T(x,Tx) for a mapping T: X + X on a metric space X and obtained suffi-

cient conditions for a continuous mapping T to have a fixed point in X

when DT(x,Tx) < i for each x X. However, in order that DT(x,y) be
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finite, it is necessary that (x,y) (to be defined later) contain points

arbitrary close to x whenever x # y. The purpose of this paper is (a)

to remove the ove restriction by introducing the notion of lower directional

increment (see below), (b) to consider mappings that are not necessarily con-

tinuous and are def,ned on a subset S of X with values in X. As a

consequence of our main result, we obtain the results contained in [2] and also

some other results (see [3] and [5]).

i. PRELIMINARIES.

Throughout this paper, let (X,d) denote a complete metric space and S

a nonempty subset of X. A function : S / R+ (nonnegatlve reals) is lower

semicontinuous (l.s.c.) on S iff for each x S {x S: (x) > r} is
o

open for each real r. It is easy to verify that given a function : S + R+,
the function induces a partial order < in S given by

x < y in S iff d(x,y) < (y) (x).

The following Lemma is well-known (see Brondsted [i] or Kasahara [4]).

(1.1)

LEMMA i. Let S be a closed subset of X and : S / R
+

be a l.s.c.

function on S. Then there is an element u G S which is minimal with respect

to partial order (i.i) in S.

As a consequence of Lemma i, we have

LEMMA 2. Let S be a closed subset of X and : S / R+ be a l.s.c.

function on S. Then for each e with 0 < e < i, there exists a u u(e) S

such that
@(u) < @(x) + ed(x,u), (1.2)

for each x S.
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PROOF. The proof is immediate by Lemma I (if we replace the metric d by

de, de e.d).

LEMMA 3. Let S be a closed subset of X and : S + R+ be a l.s.c.

on S. If for a sequence {x } c S with a cluster point x
n o

iO(xn) < O(x) + d(X,Xn),
for each xS, then O(Xo) < O(x) for each x S.

PROOF. The proof is immediate since for any l.s.c, f, d(Yn,y) + 0 implies

that f(y) < lim f(yn).
n-=

2. MAIN RESULTS.

Let S be a subset of X. For an x S and y X with x # y,

define

(x,y] {z X: z x and d(x,z) + d(z,y) d(x,y)}

note that y (x,y].

Let T: S /X be a mapping. For x S and y X, define the lower

directional increment QT(x,y] of T at x in the direction y as

QT(x,y] 0, if x y,

inf{d (TxTz)
d(x,z) z (x,y]n S}, if (x,y] n S # #,

oo, if (x,y] N S .
For the convenience of the notation we shall denote 0(x,y) d(Tx,Ty)

d(x,y)

if x-#y.

REMARK. It may be noted that if QT(x,y] is finite and x # y, then

there is a sequence {z } c (x,y] S such that O(x,z + QT(x y).
n n

The following is the main result of this paper and is related to the lines

of argument in [2].
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THEOREM i. Let S be a closed subset of X and T: S / X be a mapping

satisfying the following conditions:

The mapping :S / R+ defined by (x) d(x,Tx) is l.s.c, on S, (2.1)

For each x S, QT(x,Tx] < i, (2.2)

If sup{QT(x,Tx]: x S} then either (a) < I or (b) if i

then any sequence {x } c S for which QT(x
n TXn] / i implies that the

n

sequence {x } has a cluster point.
n

(2.3)

Then T has a fixed point in S.

PROOF. It follows by Lemmc 2, that for each positive integer n, there

is a u S such that
n

i(un) <_ (x) + d(X,Un), (2.4)

for each x S. We assert that if < i then u Tu for some n and
n n

if a i, then QT(un,Tun / i. Suppose Un TUn for any n. Then by the

remark, for each fixed n, there exists sequence {Zm} c_ (un,Tun] 0 S such

that

0(Un,Zm) / QT(Un,TUn] (2.5)

as m + . It now follows by (2.4) that for each m,

ii
TUn) + d(Tu

n TZm) + d(u
n Zm). (2.6)(un) <_ (zm) + d(un,zm) <_ d(zm,

Since for each m, d(Un,Zm) + d(Zm,TUn) $(Un). We have for each m,

i(I ) <_ 0(Un,Zm).
Therefore, as m + , it follows by (2.5) and (2.2) that for each fixed n,

i Tu
n

< i(I ) < QT(un,

Consequently, if u Tu for any n, then QT(Un,TUn) + i. Therefore, if
n n

(2.3a) holds, then u --Tu for some n and the theorem is established in
n n

this case, otherwise by (2.3b), the sequence {u } has a cluster point u S.
n
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It follows by Lemma 3, that

(u) < (x), (2.7)

for each x S. We assert that Tu u. Suppose Tu u. Then again by the

remark, there is a sequence z = (u,Tu] n S such that as n / ,
0(u z / QT(u,ru] (2.8)

n

However, by (2.7) and the relation d(U,Zn + d(zn,Tu) (u), we have for each

n,

d(u,zn) + d(Zn,TU) (u) _< (Zn) _< d(Zn,TU) + d(Tu,Tzn)"

This implies that 0(u z > i for each n and hence by (2.8) QT(u Tu] > i.
n

This contradicts (2.2). Thus u Tu.

3. SOME APPLICATIONS.

For a mapping T: X / X, Clarke [2] defined lower derivative D_T(x,y) of

T at x in the direction of y as

DT(x,y) 0, if x y,

lira O(x,z), if (x,y) (x,y]\{y} ,
Z-+X
z (x,y)

, if (x,y) ,
where lira O(x,z) lira inf O(x,z)].

z+x e+O z (x,y)
z (x,y) d(z,x) < g

Since for any x,y X, QT(x,y] <_ D_T(x,y), the following results in [2] are

special cases of Theorem i.

COROLLARY I. Let T: X / X be a continuous mapping such that

sup{D_T(x,Tx): x X} < i. Then T has a fixed point.

COROLLARY 2. Let T: X / X be a continuous mapping such that
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DT(x,Tx) < i for each x X. If for any sequence {x in X with
n

DT(x
n

Txn) / I implies that the sequence {x } has a cluster point then T
n

has a fixed point.

The following simple examples show that both Corollaries i and 2 are

indeed special cases of Theorem i.

EXAMPLE I. Let X {0,i} with the discrete metric and T: X / X be a

constant mapping defined by Tx 0 for each x X. Since (I,TI) ,
DT(I,TI) , T does not satisfy the conditions of Corollary i. However,

since T is continuous and QT(x,Tx] 0 for each x X, T satisfies

conditions of Theorem i and it follows T has a fixed point.

i
EXAMPLE 2. Let X be the closed interval [,3] with the usual metric.

Let T: X / X be the mapping defined by

Tx=l+ 1.
X

Clearly, T is continuous, strictly decreasing and for each x with Tx # x,

1
(x,Tx) . Further, it is easy to verify that for any x # z 0(x z)

XZ

1
and therefore, for any x X with x # Tx, D_T(x,Tx) =-. Consequently, if

X

x < i, DT(x,Tx) > 1 and hence T does not satisfy conditions of Corollary 2.

However, since for any x # Tx, Tx (x,Tx],

QT(x Tx] inf {i__: i i
z (x,Tx]} < < I

xz x’Tx x+l

Since X is compact, T satisfies conditions of Theorem i. In this case

1+/5
is the only fixed point of T in X.x 2

For a set S c X, let S denote the interior of S and S its

boundary. A mapping T: S / X is a contraction mapping if there exists a

constant k < i such that for all x,y S, d(Tx,Ty) < kd(x,y). As another
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consequence of Theorem I, we have

COROLLARY 3. Let S be a closed subset of a Banach space X and

T: S / X be a contraction mapping. If T(6S) c S, then T has a fixed point.

PROOF. Since T is continuous and for any x,z S, 0(x,z) < k < i,

it suffices to show that for any x S with x # Tx, (x,Tx] n S . Now,

if x S then for some e > 0, S(x,e) {y: lly-xll < e} c__ S. Choose a %,

0 < % < i such that (1-%) l-Txll < e. Then z (%x + (l-%)Tx)

S(x,e) n (x,Tx] and hence (x,Tx] S . If x S, then by hypothesis

Tx S and consequently Tx (x,Tx] S. Thus sup{QT(x,Tx]: x S} < i.

The result below was obtained by Su and the author [5] (see also

Edelstein [3]) and is again a consequence of Theorem i.

COROLLARY 4. Let S be a compact subset of a Banach space X and

T: S / X be a mapping satisfying the condition: for all x,y S, x y,

lx-ryll < I-YlI. If T(S) c__ S, then r has a fixed point.

PROOF. As in the proof of Corollary 3, for any x S with x # Tx,

(x,Tx] s S # . Therefore, it follows by hypothesis that for any x S,

QT(x,Tx] < i. Since compactness implies (2.3b), T satisfies the conditions

of Theorem I and has a fixed point in S.
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