ON THE HANKEL DETERMINANTS OF CLOSE-TO-CONVEX UNIVALENT FUNCTIONS

K. INAYAT NOOR
Department of Mathematics
Kerman University
Kerman, Iran

(Received July 9, 1979 and in revised form August 29, 1979)

ABSTRACT. The rate of growth of Hankel determinant for close-to-convex functions is determined. The results in this paper are best possible.

KEY WORDS AND PHRASES. Starlike and close-to-convex Functions, Hankel Determinant 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. $30 A 32$.

1. INTRODUCTION.

Let K and S^{*} be the classes of close-to-convex and starlike functions in $\gamma=\{z:|z|<1\}$. Let f be analytic in γ and $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$. The qth Hankel determinant of f is defined for $q \geq 1, n \geq 1$ by

$$
H_{q}(n)=\left|\begin{array}{llll}
a_{n} & a_{n+1} & \cdots \cdots & a_{n+q-1} \\
a_{n+1} & \cdots \cdots & \cdots \cdots & \cdots \\
\vdots & & & \\
a_{n+q-1} & \cdots & \cdots & a_{n+2 q-2}
\end{array}\right|
$$

For $f \in S *$, Pommerenke [2] has solved the Hankel determinant problem completely. Following essentially the same method, we extend his results in this paper to the class K.
2. MAIN RESULTS.

THEOREM 1. Let $f \in K$ and $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$. Then, for $m=0,1, \ldots$, there are numbers γ_{m} and $c_{m \mu}(\mu=0, \ldots, m)$ that satisfy $\left|c_{m o}\right|=\left|c_{m m}\right|=1$ and

$$
\begin{equation*}
\sum_{k=0}^{\infty} \gamma_{k} \leq 3,0 \leq \gamma_{m} \leq \frac{2}{m+1} \tag{2.1}
\end{equation*}
$$

such that

$$
\sum_{\mu=0}^{m} c_{m \mu} a_{n+\mu}=0(1) n^{-1+\gamma_{m}} \quad(n \rightarrow \infty)
$$

The bounds (2.1) are best possible.
PROOF. Since $f \in K$, there exists $g \in S *$ such that, for $z \in \gamma$

$$
\begin{equation*}
z f^{\prime}(z)=g(z) h(z), \operatorname{Reh}(z)>0 \tag{2.2}
\end{equation*}
$$

Now g can be represented as in $[1], g(z)=z \exp \left[\int_{0}^{2 \pi} \log \frac{1}{1-z e^{-i t}} d \mu(t)\right]$, where $\mu(t)$ is an increasing function and $\mu(2 \pi)-\mu(0)=2$. Let $\alpha_{1} \geq \alpha_{2} \geq \ldots$ be the jumps of $\mu(t)$, and $t=\theta_{1}, \theta_{2}, \ldots$ be the values at which these jumps occur. We may assume that $\theta_{1}=0$. Then $\alpha_{1}+\alpha_{2} \neq \ldots \leq 2$ and $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{q}=2$ for some q if and only if g is of the form

$$
\begin{equation*}
g(z)=z \prod_{j=1}^{q}\left(1-e^{-i \theta_{j}} z\right)^{\frac{-2}{q}} \tag{2.3}
\end{equation*}
$$

We define ϕ_{m} by

$$
\phi_{m}(z)=\prod_{\mu=1}^{m}\left(1-e^{i \theta_{z}}{ }_{z}\right.
$$

and

$$
\beta_{m}=a_{m+1}(m=0, \overline{1}, \ldots)
$$

We consider the three cases i.e.
(i) $0 \leq \alpha_{1} \leq 1$, (ii) $1<\alpha_{1}<\frac{3}{2}$, (iii) $\frac{3}{2} \leq \alpha_{1} \leq 2$
as in [2] and the first part, that is the bounds (2.1), follows similarly. For the rest, we need the following which is well-known [2].

LEMMA. Let $\theta_{1}<\theta_{2}<\ldots<\theta_{\mathrm{q}}<\theta_{1}+2 \pi$, let $\lambda_{1}, \ldots, \lambda_{\mathrm{q}}$ be real, and $\lambda>0, \lambda \geq \lambda_{j}(j=1, \ldots, q) . \quad$ If

$$
\begin{aligned}
& \psi(z)=\prod_{j=1}^{q}\left(1-e^{-i \theta_{j}}\right)^{-\lambda} j=\sum_{n=1}^{\infty} b_{n} z^{n} \\
& \text { then } \quad b_{n}=0(1) n^{\lambda-1} \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

We write

$$
\phi_{m}(z)=\sum_{\mu=0}^{m} c_{m \mu} z^{m-\mu}
$$

and

$$
\begin{equation*}
\phi_{m}(z) z f^{\prime}(z)=\sum_{n=1}^{m} b_{m n} z^{n+m}+\sum_{n=1}^{\infty}(n+m) a_{m n} z^{n+m} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& b_{m \mathrm{~m}}=\sum_{\nu=0}^{n}(n+\nu) c_{m-\nu} a_{n-\nu}, \\
& a_{m}=\sum_{\mu=0} c_{m \mu} a_{n+\mu}, \quad\left|c_{m o}\right|=\left|c_{m m}\right|=1 .
\end{aligned}
$$

There are two cases.
(a) Let g in (2.2) have the form (3); that is, $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{q}=2$.

With $\gamma_{m}=\beta_{m}$, it follows that $\gamma_{m} \leq \frac{2}{m+1}, \gamma_{0}+\gamma_{1}+\ldots \leq 3$ and $\lambda_{m}=\frac{2}{m+1}$ implies $m=q-1, \alpha_{1}=\ldots=\alpha_{q}=\frac{2}{q}$.

Now from (2.2), (2.5) and the Cauchy Integral formula, we have, with

$$
\begin{align*}
& B_{m}(r)=\frac{1}{r^{m+n}} \sum_{k=1}^{m}\left|b_{m k}\right| r^{k+m} \\
& \quad(n+m)\left|a_{m n}\right| \leq \frac{1}{2 \pi r} \int_{0}^{n+m} \int_{0}^{2 \pi}\left|\phi_{m}(z) g(z) h(z)\right| d \theta+B_{m}(r) \tag{2.6}
\end{align*}
$$

Applying the Schwarz inequality, we have

$$
(n+m)\left|a_{m n}\right| \leq \frac{1}{2 \pi r^{n+m}}\left(\int_{0}^{2 \pi}\left|\phi_{m}(z) g(z)\right|^{2} d \theta\right)^{\frac{1}{2}}\left(\int_{0}^{2 \pi}|h(z)|^{2} d \theta\right)^{\frac{1}{2}}+B_{m}(r)
$$

When we write $\left[\phi_{m}(z) g(z)\right]^{2} \quad$ in the form (2.4), the exponents $-\lambda_{j}$ satisfy $\lambda_{j} \leq 2 \gamma_{m}(j=1, \ldots q: m>0)$. Hence, using the Lemma, we have

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\phi_{m}(z) g(z)\right|^{2} d \theta \leq \operatorname{An}^{2 \gamma_{m}^{-1}}, \quad(n \rightarrow \infty) \tag{2.7}
\end{equation*}
$$

Also

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}|h(z)|^{2} d \theta=\sum_{n=0}^{\infty}\left|d_{n}\right|^{2} r^{2 n}\left(d_{0}=1\right), \operatorname{Reh}(z)>0
$$

But $\left|d_{n}\right| \leq 2, n \geq 1$, and so

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}|h(z)|^{2} d \theta \leq 1+4 \sum_{n=1}^{\infty} r^{2} n=\frac{1+3 r^{2}}{1-r^{2}} \leq A n, n \geq 1 \tag{2.8}
\end{equation*}
$$

From (2.7) and (2.8), we have

$$
(n+m)\left|a_{m n}\right| \leq A n^{\gamma_{m}} \quad(n \rightarrow \infty)
$$

i.e. $a_{m n}=0(1) n^{\gamma_{m}-1}$

$$
(n \rightarrow \infty) .
$$

This proves the theorem in this case.
(b) Let g in (2.2) be not of the form (2.3). Then using arguments like those in [2], it follows that, for $z=r e e^{i \theta}$

$$
\int_{0}^{2 \pi}\left|\phi_{\mathrm{m}}(z) g(z) h(z)\right| d \theta=0(1)(1-r)^{-\gamma_{m}}
$$

Hence from (2.6), we have

$$
a_{m n}=0(1) n^{\gamma_{m}^{-1}} \quad(n \rightarrow \infty)
$$

where a_{m} is defined by (5).

The function $\left.f_{0}: f_{o}(z)=z\left(1-z^{q}\right)^{-2 / q}=\sum_{\nu=0}^{\infty}{\underset{v}{2 / q+\nu-1}}_{v}\right) z^{\nu q+1}$, shows that the bounds (1) are best possible. We also note that except in the case where $m=(q-1)$ and g in (2.2) is not of the form (2.3), one can choose $0 \leq \gamma_{m}>\frac{2}{m+1}$ from theorem (1) and Pommerenke's method [2], we can now easily prove the following

THEOREM 2. Let $f \in K$ and $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$.
Then for $\mathrm{q} \geq 1, \mathrm{n} \geq 1$,

$$
\mathrm{H}_{\mathrm{q}}(\mathrm{n})=0(1) \mathrm{n}^{2-\mathrm{q}} \quad(\mathrm{n} \rightarrow \infty)
$$

This estimate is best possible. In particular, if g in (2.2) is not of the form (2.3), there exists a $\delta=\delta(q, g)>0$
such that $H_{q}(n)=0(1) n^{2-q-\delta} \quad(n \rightarrow \infty)$.

REFERENCES

[1] Pommerenke, Ch. On Starlike and Convex Functions, J. London Math. Soc. 37 (1962) 209-224.
[2] Pommerenke, Ch. On the Coefficients and Hankel Determinants of Univalent Functions, J. London Math. Soc. 41 (1966) 111-122.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

