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ABSTRACT. This paper discusses the existence and decay of solutions u(t) of

the variational inequality of parabolic type:

<u’(t) + Au(t) + Bu(t) f(t), v(t) u(t)> >_ 0

for v e LP([O,=);V (p>2) with v(t) e K a.e. in [0,=), where K is a closed

convex set of a separable uniformly convex Banach space V, A is a nonlinear

monotone operator from V to V* and B is a nonlinear operator from Banach space W to

W*. V and W are related as V W c H for a Hilbert space H. No monotonicity

assumption is made on B.
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Introduction

Let H be a real Hilbert space with norm V be a

real separable uniformly convex Banach space with norm II IIv
densely imbedded in H and let K be a closed convex subset

of V containing 0. Moreover, let W be a Banach space with

norm II II W such that V <W <H. We suppose that the natural

injections from V into W and from W into H are compact

and continuous, respectively. We identify H with its dual

space H* (i.e., VW<HW* V*). Pairing between V* and

V will be denoted by <v*,v> for v* 6 V* and v e V.

Consider the following variational inequality of parabolic

type

(i) < u’ (t) + Au(t) + Bu(t) f(t), v(t) u(t)> > 0

for v(t) LP [0 ,=) ;V) (p>2) with v(t) K a.e. in (0,=)

A solution u(t) of (i) should satisfy the conditions

u(t) Loc([0,=);V) C([0,=);H) u’ (t) 6 L2loc([0,) ;H)

u(t) 6 K for a.e. t 6 [0,=) and the initial condition

(2) u(0) u06 K.

Here A is a monotone operator from V to V* and B is a

bounded operator from W to W*. More precisely we make the

following assumptions on them.
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AI. A is the Frchet derivative of a convex functional FA(U)
on V, hemicontinuous on V and satisfies the inequalities

(3) 011 u II v
p =< u <__ <u,u>

with some k0> 0 and p=>2, and

where C0(-) is a monotone increasing function on [0,).

A2. B is %ke Frchet derivative of a function’al F

continuous on W and satisfies

B (u) on W,

(5) +i

with some kI,>0.

Regarding the forcing term f (t) we assume

2A3. f L oc ([0,) ;V*)Lloc([0,) ;H) with q=p/(p-l) and

t+l
(t) max { | a i/q I’t+lII f(s) II, as If(s) 12 as)/}

< const. < .
Note that no monotonicity condition on B is assumed.

The problem (I) is said ’unperturbed’ if B(t)=0, and said

’perturbed’ if B(t) 0. The unperturbed problem (i) with the

initial condition (2) is familiar, and the existence and unique-
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ness theorems are known in more general situations than ours

(see Lions [5], Brezis [2], Biroli [i], Kenmochi [4], Yamada [13],

etc. ). However the asymptotic behaviors of solutions as t--->

seem to be known little. In this note we first prove a decay

property of solutions of the unperturbed problem (1)-(2) (with

B(t)--0). This result is derivea by combining the penalty method

with the argument in our previous paper [i0], where the nonlinear

evolution equations (not inequalities) were treated.

Next we consider the perturbed problem (1)-(2) (i.e., B(t)

0). For the equation u’ (t) +Au (t) +Bu (t) =f (t) (not inequality)

the existence of bounded solutions on [0,) "in the norm II II V
was proved in [8] (see also [7]). We extend this result to the

variational inequality (i)- (2) Recently, similar problems were

treated by Otani [12] and Ishii [3] in the framework of the theory

of subdifferential operators. In their works it is assumed that

ds is small, while here we require only
2f(t)-0 or If(s) IH0

the smallness of M_=sup 6(t). Ishii [3] discussed the decay or
t

blowing up properties of solutions. We also prove a decay pro-

perty of solutions of the perturbed problem. Our result is much

better than the corresponding result of [3].

We employ the so-called penalty method introduced by Lions

[5], and the argument is related to the one used in our previous

paper [iI ], where the nonlinear wave equations in noncylindrical

domains were considered.
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i. Preliminaries

We prepare some lemmas concerning a penalty functioanl

8(u). Let K be a closed convex set in V and let J:V --gV*

be the duality mapping such that

(6) 2ll (u) llv, llUllv, II UIlv

Then the penalty functional 8 (u) for K is defined by

(7) 8(u) J(u pKu)

where PK is the projection of V to K. Recall that pKu

& K) is determined by

(8) .II u pKu ..IIV min II u w II Vw&K

pKu is also characterized as the unique element of K satis-

fying

(9) <J(u- pKu) w- PKU> < 0 for w & K.

For a proof see Lions [5]. The following two lemmas are well

known.

Lemma i. (Lions [5]

8(u) is a monotone hemicontinuous mapping from V t_o V*.

Lemma 2. (see, e.g., [6])

Th.__e projection PK i__s continuous.



84 M. NAKAO AND T. NARAZAKI

The next lemma plays an essential role in our arguments.

Lemma 3.

2Le___t u(t) 6_ CI([0,) ;V). Then II u(t)-PKU(t) II V
ferentiable on [0,) and it holds that

is dif-

(i0) 1 d 2
<8 (u(t)) u’ (t)>d--{ II u(t) PKU(t)II v

Proof.

The proof can be given by a variant of the way in Biroli

[i, lemma 6]. By a standard argument (see Liohs [5, Chap II,

Prof 8.1]) we know

2 1 2 > <8(v), w- v>(ii) II w pKw IIV II v pKv IIV

for w,v V. Then, if t,t+h>0 we have

1 2 1 2II u(t+h) pKu(t+h) llV II u(t) pKu(t) II V

(12) > < 8(u(t)), u(t+h) -u(t)>

If h>0, we have from (12)

_i It2+h2h
t2

2
ds 1 jftl+h -PKu

2II u(s)(s) llvII u(s) pKu(s) II v - t
ds

1

t
(13) > < 8(u(s)) u(s+h)-u(s) > ds

tl
h

for t2>tl__>0, and hence, letting h%0,
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1 II u(t (t)II 2 i 2
Y 2 PKu 2 V- g II u(tI) pKu(tI) ilV

(14) < 8(u(s)) u’ (s) > ds

Similarly, if h<0, we have

1 It2 2 ds
i Itl2h

t2+h
[I u(s)-PKu(s) llV - tl+h

2 ds

t
< < 8(u(s)), u(s+h)-u(s) > ds

t
h

1

for t2>tI with tl+h__>0 and

(15) 1 II u(t (t) I12 1 (tI) I12g 2 -PKu 2 V g II u(tl)-pKu V

< 8(u(s)),u’ (s) > ds

for t2>tl>0, where we have used the continuity of pKu(t) at

t>0. The inequalities (14) and (15) are equiavlent to (i0).

We conclude this section by stating a lemma concerning a

difference inequality, which will be used for the proof of decay

of solutions.

Lemma 4. ([9])

Let (t) be a nonnegative function on [0,) such that

sup (t)
t<s<t+l

l+r < C0((t) (t+l)) + g(t)
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with some C0> 0 and r> 0. Then

(i) if r=0 and g(t)<C1 exp(-It) with some

I ’>0exp(-’t) for some CI,(t)<c

I>0, Cl>O then

and

(ii) if r>0 and lim g (t) tl+llr=0,/
then

> 0(l+t) 1/r for some C
1

(t) <= c

2. Unperturbed problem

As is mentioned in the introduction we prove here a decay

property of solutions of the unperturbed problem (i)- (2)

Theorem i.

(p-l) / (p-2)Le__t u
0 K an___d let lim (t) t =0 i__f p>2 and

t+
6(t)<C exp(-It) (I>0) i__f p=2. Then the problem (1)-(2) with

B(t)-0 admits a unique solution u(t), satisfying

(16) II u(t) II v <__ C(II u0 II v) (l+t) -1/(p-2) if p>2

and

(16)’ II u(t) II V <__ C(II u0 llV) exp(-l’t) i__f p=2

with some I’>0.



NONLINEAR PARABOLIC VARIATIONAL INEQUALITIES

Proof.

Recall that the solution u is given by a limit function

of {u (t)} as e -- 0, where u (t) is the solution of the

modified equation

87

(17)

u’ (t) + Au(t) + 1 8(u) f(t) (e>0)

u(0) u
0

Since A and 8 are monotone hemicontinuous operators from

V to V*, the problem (16) has a unique solution u (t) such

that

u (t) G Loc (t) e L2([0,) ;V) and u
e loc([0,) ;H).

(Cf. Lions [5, Chap. 2, Th. 1.2., see also Biroli [i] where

more general result is given.)

Let {wj}j=1 be a basis of V. Then, it is known that

u (t) is given by the limit function of {um (t) } as m--9

m
where u (t)= . (t)w. is the solution ofm,e =i 3,m 3

(18) <u’ (t) ,w > + <Au (t),Wo> <f(t) ,w >
m,e j m,e 3 J

(j=l, 2, ,m)

with the initial condition

0(19) um (0) u 9 u0
in V.

,e m,e
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The problem (17)-(18) is a system of ordinary differential equa-

tions with respect to (t) j=l,2,...,m, and by the monoto-
3,m

nicity and hemicontinuity of A and 8 it is easy to see that

this problem admits unique solution such that

Um, e
(t)6 CI([0,) ;Vm) CI([0,) ;V)

where Vm is the m-dimensional subspace of V spanned by {w
I,

...,}. For the proof of Theorem I, it suffices to show that

the estimate (16) or (16)’ with u=u holds with the constantsm,e
independent of m and e.

By Lemma 3 we have

(20) E (um (t2))- E (um (t)) + lu’ (s) 2 dse ,e e ,e 1
tl

m,e

t
<f (s)

tl
m,e (s) >ds

for t
2 >tl>0, where

1E (u(t)) FA(U(t)) + - I u(t) (t) 112e PKu V

Also we have easily by (18)

t

tI

{< AUm, e(s) ,um (s) > + _I <8(um (s),um (s) >}ds

(21) Itt2 {<f(s) ,um (s) > <u’ (s) ,um (s) >}ds.
,e m,e

1

Using the similar argument as in [10], the equalities (20)-(21)
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imply the estimate (16) or (16)’ with u=um,e
however, we sketch the proof briefly.

For completeness,

By (20) we have

2

t m,e ds < 2{E
e (Um, e (t) Ee (Um, e (t+l))} + C6 (t)

(22)

--D (t) 2 (C>0 constant)

On the other hand, using the ineqaulity

<AUm, e(t),um, e(t)> + 1 <8(um (t)) Um, e ,e,e e (t) > > E (um (t))

(see (3) and (9)),

we have from (21)

t+l It+lE (um e(s))ds <
Jt e t

2 1/2llf(s) IlV, ds) sup II Um, e(s) ii vse[t,t+l]

(23)

t+l
+ lu’ (s) 2 ds)

t m,e
1/2 sup

t%s=t+l m,e

< C(D (t) + 6(t) sup E(e t.s %t+l " ,L, e (s))I/p

where hearafter C denotes various constants independent of m

and e. From (23) there exists t* 6[t,t+l] such that

E (um (t*)) < C{D (t) + 6(t)) } sup
t<s<t+

e (s))/P

and hence by (20)
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sup E (um (s)) < C{ (De (t) + 6 (t))
t< s< t+l e ,e <s

t< s< t+l

+ D (t) 2 + D (t)6 (t)}

and by Young’ s inequality,

(24) sup E (um (s)) < C{ (D (t) + 6 (t))P/(P-1)
t< s< t+ 1 e e e

+ D (t) 2 + 6 (t) 2}

From (24) we can easily see that Ee (um (t)) is bounded on

[0,) by a constant depending on E (um (0)). Since we may

assume, without loss of generality, that u (0) e K andm,e

(25) Ee(Um,e(t)) =< C(Ee(Um,e(O))) =< C(li u
0 IIV

where C(-) denotes various constants depending on the indicated

quantity. By (20) and (25) we have

(26) sup E (um (s))
t<s<t+l e ,e

2 (p-l)/p

< C(II u0 II v M) {E (Um, (t+l)) E (Um, (t)) + 6 (t) 2}

2where we set M--sup 6(t) Applying Lemma 4 we obtain the desired
t

result.
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3. Perturbed problem

In this section we investigate the existence and decay of

solutions of the problem (1)-(2) with B satisfying the assump-

tion A2. For this consider the approximate equations

(t) + Au (t) + Bu (t) + 1(27) <Um, e m,e m,e 8(um (t)) f(t), w. > 0,,e 3

j=l,2,...,m, where we set again

m

Um, e (t) . e (t)w.
j=l m,j 3

and we impose u (0) G K and u (0) --9 u (eK) in Vm,e m,e 0

Using a similar argument as in [7] we derive a priori estimates

for u (t). We also give a rather brief discussion. First
mtE

we assume p>e+2. By (27) we have

2(28) Ge,0(Um, e(t2)) Se,0(U’m,e(tl)) +
t

lU’m’e(s) as
1

where

t
u’ (s) >ds<f (s) m, e

1
Ge,0(u(t)) FA(U(t)) + FB(U(t)) + - flu(t) pKu(t) 112v

and hence, in particular,

(29) G (um (t)) < G (um (0)) + 1
e,0 ,e e,0 ,e

8(0) if 0<t<l
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which together with the assumption p>+2 implies

(30) II Um,e (t) II V=< c<ll u0 II v’a 0 <

if 0<t<l. Thus u
m (t) exists on an interval, say [0,tm]

with tm>l. If we assume Ge,0(Um,e (t))<Ge,0(um,e (t+l)) for

some t>0, we have from (28)

t+l
(31) lu’ (s) 2 ds < 6 (t) 2 < M2

t m,e

Using (27) and (31)we have

it+l it+l 2 dsG (urn, (t))ds < M2 + C II um (s)II vt e,l t

where we set

(32) 1 u>G (u) <Au + Bu + 8(u),e,l

Since

a+2 + i 2G,<u> __> koll u IIv kll u IIw 11 u pKu IIv

and since p>e+2, theexists a point t* [t,t+l] such that

2 < C(M)1 (t*) PKUm e (t*) II vI1 Um,t* IIv + II Um,

From this and (28)
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Ge,0(Um,e(t+l)) < Ge,0(um (t*)) + C6(t) 2
< C(M)

Thus we conclude that

G (t)) < max(C(M) max G (um (s)))e,0 Um, e 0<s<l e,0 ,e

and therefore um (t) exists on [0,) satisfying

(32)’ II Um (t) IIv + 1
V
2 < C(M II u0 II V)e II Us, (t) PKUm (t) i[

Of course we know

.t+l
() I lu’ (s)

t m,e ds __< C(M, II u0 II v) for t>0.

We have now derived a priori estimate for u (t). Usingm,e

standard compactness and monotonicity arguments (see Lions [5]

Biroli [i] etc.) we can suppose without loss of generality that

as m ,

u (t)m,

u’ (t)m,e

) V)u (t) weakly* in L ([0,

u’ (t) weakly in L2
loc 0, ) ;v).

(34) AUm, e(t) + i 8(Um, e(t)) -- Xe(t) weakly** in L ([0,=);V*)

BUm, e(t) Bue(t) strongly in Lr ([0,=) ;W*) (r>l)
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and

(35) xe(t) Au (t) + I
? S(u(t)).

Moreover, with the aid of the inequality

2< s(u) s(v) u- v > Z (llu- pullv- llv- vll v)

for u,v V, we know

(36) lim II Um, e (t) PkUm(t) II vm-oo
II ue(t) "- PKUe(t) IV

in L2loc([0’) ).

The limit function u (t) satisfies
E

(37)

U’ (t) + Au (t) + Bu (t) + 1 =)e e e 8(u(t)) f(t) a e on [0,

u (0) u
0

Furthermore, it holds from (32) and (33) that

(t) (t) ;I < c(, II uo ;Iv)

and

t+l

’ lu’s s < c u0 llvt
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for t>0. Then we may suppose as ---- 0

2u’e(t) ---- ue’ (t) weakly in Lloc([0,=) ;V),

(38)
ue(t) u(t) weakly* in L ([0,) ;V),

and in Cloc([0,) ;H),

and

Aue(t) (t) weakly** in L([0,) ;V*)

Bue(t) ----) Bu(t) strongly in Lr([0,);W*) (r>l)

Moreover from (32)

ue(t) PKUe(t) 0 in L=([0, =) ;V),

which implies easily

(39) u(t) e K a.e. on [0,)

By a standard monotonicity argument (see Biroli [I]) we see

x(t)=Au(t) a.e. on [0,), and by (37) we have

< u’ (t) + Au(t) + Bu(t) f(t) v(t) u(t) > > 0

for v(t) eLP([0,) ;V) with v(t) e K a.e. on [0, )

We summarize above result in the following

Theorem 2.

Let p>e+2. Then under the assumptions AI,A2 and A3, th__e
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problem (i)- (2) admits a solution u(t) such that

t+l

II u(t llv + lu’ (sl -t
s <=c(,llu011 v

four t>0, where we .se___t M-- sup (t)
t

Next, we assume 2<p<e+2. As is already seen, for the

existence of solution it suffices to show the boundedness of

Um, e (t) by a constant independent of m and e. For this we

set further

Se+2 +2 + 1 2i, ou olI u llv x II u llv II u u II

and

(u) (u) + 1 2
,x ,o - llu- p<ull v

where S is a constant such tat II u llw<=sll u llv
Note that

for u@V.

(40) GE, 0(u) > e,0(u) Ge, l(u) >__ e,l(U) __> GE, 0(u)

e+2and G (u)>G
e

(u)-2kII[ u II we,l ,0

x0>0 and D0>0 as follows.

for u 6V. Let us determine

(41) max (k0xP k3Se+2xe+2) k0x k3Se+2xe+2 DOx>O

Then ’the stable set’ is defined by
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< x0(42) {uV Ge,l(U) < D0 and I u IIV

Let us assume the initial value u0eK, and let M < M6
2/D0-Ge,0(u0) (>0). We shall show that there exists a constant

M0>0 such tht if M<M0’ Um,e (t) 6 for t<__tm provided that

m is sufficiently large. First, by (29),

(43) G (um (t)) < G (u) + 41- M + < D0e,0 ,e e,0 0

if 0<t<min(l,tm), for sufficiently small >0 and large m.

>i Thus, if ohr assertion wereThe inequality (43) implies tm

false, there would exist a time >i such that

(44) Ge,0(Um, e(t)) < D O if 0<t<t

and

(45) G (um ()) D
e,0 ,e 0

By (28) with t2= tl=t---i we have easily

t
(s) 12 ds < M2lUm e(46)

-l

and hence

(47) G (um (s)) ds<
-I ,i ,

-i
l-U’ (s)+f(s) flU (S)

m,e m,e

< 2MS ix0
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where S
1 is a constant such that

for u e V.

Therefore, if we assume M<M--D0/2SIX0, there exists a time t*

6 [t-l,t] such that

(48) < x (M)Ge,l (Um,e (t*)) _<_ 2MSlX0 and II Um, e (t*) II v

where x(M) (<x0) is the smaller root of the numerical equation

(49) k0xP Se+2 e+2kI x 2MSlX0 (<Do)

We use again (28) to obtain

GE, 0(um, e()) < GE, 0(um, e(t*)) + M2

(50) 1_ klSe+2 e+2< G (um (t*)) + M2 + 2 I um (t*) ;I ve,l ,e

1 M2 e+2x +2< 2MSIX0 + + 2klS (M)

Now we determine M’">0 as the largest number such that"’0

2klSe+2x 1 M"’ 2
(M’ <(51) (S"’) + 2M"’ SIX0 + DO ’

and set M0--min(M6,M’ ). Then, assuming M<M0, we have by (51)

(52) Ge,0 (Um, e ()) < DO
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which contradicts to (45). Consequently, if M<M0, Um,e
exists on [0,) for large m and it holds that

(t)

t+l

llUm (t) II < x u’ (s)l 2 ds < const <
,e V 0 m et

53 and

Ge,0(Um,e (t)) < D0 for t &[0,)

Thus, applying the monotonicity and compactness arguments, we

obtain the following

Theorem 3.

Le___t 2<p<u+2 and M<M0. .Then th__e problem (1)-(2) admits

a solution u_ satisfying

u(t) II V < x0 ad I t+lt
lug- (s) 2 ds < const. <
m

Moreover, we note that the approximate solutions u (t) (m:
mI

large) satisfy

(54) G (um (t)) > G (t)),0 , ,0 Um,

P-->-- (ko klSe+2Xo(e+2)-P) II um,e(t) II v

1 2u- exUllv

with (k0_klSe+2 +2)-px )>0. Therefore the same argument as in

the section yields the following
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Theorem 4.

Le___t 2<__p<+2 an___d M <M0. Then the solution in Theorem 3

satisfies the decay property

(i) If p>-2 and lim (t) t (p-l) / (p-2) =0, then
t/

or

(ii) I__f p=2 and 6 (t)<C exp{-%t} (C,%>0) .then

II u<t) IIV <-- C’ exp{-%’t}

for some C’ %’>0

Remark. In [3], Ishii proved that lu(t) l<C(l+t) -I/(p-2) if

p>2 and lu(t) I<C exp{-%t} (C,%>0) if p=2 for the case f-0.

It is clear that our result is much better, because the norm

II" v is essentially stronger than the norm

4. An example

Here we give an typical example. Let be a bounded domain

in Rn and set

V w’P(), H L2() and W Le+2()

with 0<e< pn/(n-l) +2 if n>p+l and 0<e< if n<p. We define

A; V ---) V* by
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n u p- 2 u u< u,v >= x%-x-Tl ax

l,p(), and B:W W* byu,v 6W0

I01

Bu d(x) luleu for ue Le+2()

where d (x)

we set

is a bounded measurable function on . Moreover

K {ueW01’p() b(x) =< u(x) =< a(x) a.e. on n}

where a, b are measurable function on with a (x) >0>b (x)

Then all the assumptions AI-A2 are satisfied.

-(2) is equivalent in this case to the problem

The problem (i)

Lu(x,t) f(x,t) a.e. on

Lu(x,t) < f(x,t) a.e. on

Lu(x,t) > f(x,t) a.e. on

with the conditions

u =0 a.e. on [0,)

[0,) where b (x) <u (x t) <a (x)

[0,) where u (x t) =a (x)

x [0,) where u (x t) =b (x)

and u(x,0)=u0(x) (eK) a.e. on ,

where

n BLu B__u Z 8x.t j=l m
U) + d(x) uIu
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