A SINGULAR FUNCTIONAL-DIFFERENTIAL EQUATION

P.D. SIAFARIKAS

Department of Mathematics University of Patras

Patras - GREECE
(Received December 3, 1981 and in revised form February 11, 1982)

ABSTRACT. The representation of the Hardy-Lebesque space by means of the shift operator is used to prove an existence theorem for a singular functional-differential equation which yields, as a corollary, the well known theory of Frobenius for second order differential equations.

KEY WORDS AND PHRASES. Singular functional-differential equation, Hardy-Lebesque space, Shift-operator.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. $34 K 05,47 A 67,47637$.

1. INTRODUCTION.

Consider the singular functional-differential equation

$$
\begin{equation*}
z^{2} y^{\prime \prime}(z)+z p(z) y^{\prime}(z)+q(z) y(z)+\sum_{i=1}^{m} a_{i}(z) y\left(q^{i} z\right)=0, \quad|q| \leq 1 \tag{1.1}
\end{equation*}
$$

where

$$
p(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad q(z)=\sum_{n=0}^{\infty} b_{n} z^{n} \quad \text { and } \quad a_{i}(z)=\sum_{j=0}^{\infty} a_{i j} z^{j}, \quad i=1,2, \ldots, m
$$

are analytic functions in some neighborhood of the closed unit disk $\bar{\Delta}=\{z \in \phi:$ $|z| \leq 1\}$.

We consider the problem of finding conditions for Equation (1.1) to have solutions in the space $H_{2}(\Delta)$, i.e. the Hilbert space of functions $f(z)=\sum_{n=1}^{1 n} \overline{a(n) z^{n-1}}$ which are analytic in the open unit disk $\Delta=\{z \in \phi:|z|<1\}$ and satisfy the condition $\sum_{n=1}^{\infty}|a(n)|^{2}<+\infty$. We shall prove the following.

THEOREM. Let

$$
\begin{equation*}
k(k-1)+a_{0} k+b_{0}=0 \tag{1.2}
\end{equation*}
$$

be the idicial equation of the unperturbed equation (1.1).
(i) If $2 k+a_{0}-1=\delta=k_{1}-k_{2} \neq \pm n, n=1,2, \ldots$, then Equation (1.1) has two linearly independent solutions of the form:

$$
y_{1}(z)=z^{k_{1}} u(z) \quad \text { and } \quad y_{2}(z)=z^{k_{2}} u(z)
$$

where k_{1} and k_{2} are the roots of Equation (1.2) and $u(z)$ belongs to $H_{2}(\Delta)$.
(ii) If $2 k+a_{0}-1=\delta=k_{1}-k_{2}=0$, i.e. $k_{1}=k_{2}$, then Equation (1.1) has only one solution of the form:

$$
y(z)=z^{k} u(z)
$$

where k is the double root of Equation (1.2) and $u(z)$ belongs to $H_{2}(\Delta)$.
(iii) If $2 k+a_{0}-1=\delta=k_{1}-k_{2}=n, n=1,2, \ldots$, then Equation (1.2) has always a solution of the form:

$$
y(z)=z^{k_{1}} u(z)
$$

where k_{1} is the greatest root of Equation (1.2) and $u(z)$ belongs to $H_{2}(\Delta)$.
This theorem obviously generalizes the well known Frobenius theory [1] for the Fuchs differential equations:

$$
z^{2} y^{\prime \prime}(z)+z p(z) y^{\prime}(z)+q(z) y(z)=0
$$

which is a particular case of Equation (1.1).
Denote an abstract separable Hilbert space over the complex field by H, the Hardy-Lebesque space by $H_{2}(\Delta)$, an ortho-normal basis in H by $\left\{e_{n}\right\}_{n=1}^{\infty}$, and the unilateral shift operator on $H\left(V: V e_{n}=e_{n+1}\right)$ by V. We can easily see that the following statements hold:
(i) Every value z in the unit disk $(|z|<1)$ is an eigenvalue of $V *\left(V *: V * e_{n}=e_{n-1}, n \neq 1, V^{*} e_{1}=0\right)$, the adjoint of V. The eigenelements $f_{z}=\sum_{n=1}^{\infty} z^{n-1} e_{n}$ form a complete system in H, in the sense that if f is orthogonal to f_{z}, for every $z:|z|<1$ then $f=0$.
(ii) The mapping $f(z)=\left(f_{z}, f\right), f \in H$ is an isomorphism from H onto $H_{2}(\Delta)$.
(iii) The diagonal operator $C_{0}: \quad C_{0} e_{n}=n e_{n}, n=1,2, \ldots$, has a self-adjoined extension in H with a compact inverse $B: B e_{n}=\frac{1}{n} e_{n}, n=1,2, \ldots$, Moreover, if $f(z)=\left(f_{z}, f\right)$ then

$$
\begin{align*}
& z^{n} f(z)=\left(f_{z}, v^{n} f\right) \tag{1.3}\\
& f^{(n)}(z)=\left(f_{z},\left(C_{0} V \star\right)^{n} f\right) \tag{1.4}\\
& z^{\prime}(z)=\left(f_{z},\left(C_{0}-I\right) f\right) . \tag{1.5}
\end{align*}
$$

We shall use the proposition 1 of Reference [2].

2. PROOF OF THE THEOREM.

The transformation $y(z)=z_{u} u(z)$, reduces Equation (1.1) in the following:
$z u^{\prime \prime}(z)+\left(h_{0}+h_{1} z+h_{2} z^{2}+\ldots\right) u^{\prime}(z)+\left(\rho_{0}+\rho_{1} z+\rho_{2} z^{2}+\ldots\right) u(z)+\sum_{i=1}^{m} q^{i k_{a_{i}}(z) u\left(q^{i} z\right)=0, ~}$
where $k(k-1)+k a_{0}+b_{0}=0,2 k+a_{0}=h_{0}, a_{1}=h_{1}, a_{2}=h_{2}, a_{3}=h_{3}, \ldots$ and $k a_{1}+b_{1}=\rho_{0}$, $k a_{2}+b_{2}=\rho_{1}, k a_{3}+b_{3}=\rho_{2}, \ldots$. Following Reference [2], we define the operators $R_{1}, R_{2}, \ldots, R_{m}$ on $H_{2}(\Delta)$ as
$R_{1} u(z)=u(q z),|q| \leq 1, R_{2} u(z)=u\left(q^{2} z\right)=R_{1}^{2}(u(z)) \ldots R_{m} u(z)=u\left(q_{m} z\right)=R_{1}^{m} u(z)$.
Thus the operator R : $R u(z)=\sum_{i=1}^{m} q^{i k} a_{i}(z) u\left(q^{i} z\right),|q| \leq 1$, on $H_{2}(\Delta)$ is represented in the space H by the operator

$$
\tilde{R}: \quad \tilde{R} u=\sum_{i=1}^{m} q^{i k} a_{i}^{*}(v)\left(\tilde{R}_{1}^{*}\right)_{u}^{i}
$$

where \tilde{R}_{1} is defined on H as $R_{1} e_{n}=q^{n-1} e_{n}, n=1,2, \ldots$. The equation (2.1) has a solution in $H_{2}(\Delta)$ if and only if the operator equation

$$
\begin{equation*}
\left[V\left(C_{0} V *\right)^{2}+\phi_{1}(V) C_{0} V *+\phi_{2}(V)+\widetilde{R}\right] u=0 \tag{2.2}
\end{equation*}
$$

has a solution u in the abstract separable Hilbert space H.

$$
\begin{gathered}
\text { Here } u=\sum_{n=1}^{\infty}\left(\overline{u, e_{n}}\right) e_{n}, \phi_{1}(v)=\left(2 k+a_{0}\right) I+h_{1} v+h_{2} v^{2}+\ldots \\
\phi_{2}(v)=\rho_{0} I+\rho_{1} v+\rho_{2} v^{2}+\ldots,
\end{gathered}
$$

where the bar denotes complex conjugation.
Taking into account the relations

$$
v^{2} C_{0} V *=V\left(C_{0}-I\right) \quad \text { and } \quad v C_{0}-C_{0}=-V
$$

Equation (2.2) can be written as

$$
\begin{equation*}
\left[\left[C_{0}+\left(2 k+a_{0}-1\right) I+B \phi(V)-B^{2} v \phi_{1}^{\prime}(V)\right] V^{*}+B \phi_{2}(V)+B \overline{\widetilde{R}}\right] u=0 \tag{2.3}
\end{equation*}
$$

where

$$
\phi(v)=h_{1} v+h_{2} v^{2}+h_{3} v^{3}+\ldots \quad \text { and } \quad \phi_{1}^{\prime}(v)=h_{1}+2 h_{2} v+3 h_{3} v^{2}+\ldots .
$$

Also, if we put $2 k+a_{0}-1=\delta$ in Equation (2.3), we have

$$
\begin{equation*}
\mathrm{V} *[\mathrm{I}+\mathrm{VK}] \mathrm{u}=0 \tag{2.4}
\end{equation*}
$$

where the operator

$$
K=\delta B V *+B^{2} \phi(V) C_{0} V *+B^{2} \phi_{2}(V)+B^{2} \widetilde{R}
$$

is compact. Relation (2.4) implies that

$$
\begin{equation*}
(I+V K) u=c e_{1}, \quad c=\text { const. } \tag{2.5}
\end{equation*}
$$

Now it follows that the operator $(I+V K)^{-1}$ exists. In fact, $(I+V K) u=0 \Rightarrow u=-V K u \Rightarrow\left(u, e_{1}\right)=-\left(K u, V * e_{1}\right)=0 . \quad$ Also,

$$
\begin{equation*}
\left(u, e_{2}\right)=-\left(u, k * e_{1}\right) \Rightarrow\left(u, e_{2}\right)(1+\delta)=0 \tag{2.6}
\end{equation*}
$$

Relation (2.6) if $\delta \neq-1 \Rightarrow\left(u, e_{2}\right)=0$. Similarly,

$$
\begin{equation*}
\left(u, e_{3}\right)=-\left(u K^{*} e_{2}\right) \Rightarrow\left(u, e_{3}\right)\left(1+\frac{\delta}{2}\right)=0 \tag{2.7}
\end{equation*}
$$

Relation (2.7) if $\delta \neq-2 \Rightarrow\left(u, e_{3}\right)=0$. By the same way and if $\delta \neq-n, n=1,2, \ldots$, we find

$$
u=\sum_{n=1}^{\infty}\left(\overline{u, e_{n}}\right) e_{n}=0
$$

Since also the operator $V K$ is compact Fredholm alternative implies that the operator $(I+V K)^{-1}$ is defined every where. Thus from Equation (2.5), we have

$$
u=c \cdot(I+V K)^{-1} e_{1}
$$

This means that
(i) If $2 k+a_{0}-1=\delta=k_{1}-k_{2} \neq \pm n$ with $n=1,2, \ldots$, then the operator $(\mathrm{I}+\mathrm{VK})^{-1}$ always exists. Therefore, Equation (1.1) has two linearly independent solutions of the form

$$
y_{1}(z)=z^{k_{1}} u(z) \quad \text { and } \quad y_{2}(z)=z^{k_{2}} u(z)
$$

where k_{1} and k_{2} are the roots of Equation (1.2) and $u(z)$ belongs to $H_{2}(\Delta)$ and is given by the relation

$$
u(z)=\left(u_{z}, u\right), u_{z}=\sum_{n=1}^{\infty} z^{n-1} e_{n}, u=c \cdot(I+V K)^{-1} e_{1}
$$

(ii) If $2 k+a_{0}-1=\delta=k_{1}-k_{2}=0$, i.e. $k_{1}=k_{2}$, then the operator $(\mathrm{I}+\mathrm{VK})^{-1}$ always exists. Therefore, Equation (1.1) has only one solution of the form

$$
y(z)=z^{k} u(z)
$$

where k is the double root of Equation (2.1) and $u(z)$ as in (i).
(iii) If $2 k+a_{0}-1=\delta=k_{1}-k_{2}=n, n=1,2, \ldots$, then

$$
\begin{aligned}
& 2 k_{1}+a_{0}-1=n, \quad n=1,2, \ldots, \\
& 2 k_{2}+a_{0}-1=-n, n=1,2, \ldots,
\end{aligned}
$$

From the above and the Relations (2.6) and (2.7), we see that Equation (1.1) has always a solution of the form

$$
y(z)=z^{k_{1}} u(z),
$$

where k_{1} is the greatest root of Equation (1.2) and $u(z)$ as in (i). All the above complete the proof of the theorem.

ACKNOWLEDGEMENTS. I am grateful to Professor E.K. Ifantis, for suggesting the topic of this research and for his continuous interest.

REFERENCES

1. HILLE, E. "Ordinary differential equation in the complex domain", WileyInterscience, 1976.
2. IFANTIS, E.K. An Existence theory for functional-differential equations and functional differential systems, Jour. Diff. Equat. 29, No. 1 (1978), 86-104.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

