ON ELATIONS IN SEMI-TRANSITIVE PLANES

N.L. JOHNSON
Department of Mathematics
The University of Iowa
Iowa City, Iowa 52242
U.S.A.

(Received January 2, 1980)

ABSTRACT. Let \(\pi \) be a semi-transitive translation plane of even order with reference to the subplane \(\pi_0 \). If \(\pi \) admits an affine elation fixing \(\pi_0 \) for each axis in \(\pi_0 \) and the order of \(\pi_0 \) is not 2 or 8, then \(\pi \) is a Hall plane.

KEY WORDS AND PHRASES. Elations, Semi-transitive planes.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 50D05, 05B25.

1. INTRODUCTION.

Kirkpatrick [9] and Rahilly [10] have characterized the Hall planes as those generalized Hall planes of order \(q^2 \) that admit \(q+1 \) central involutions.

In [7] the author has shown that the derived semifield planes of characteristic \# 3 and order \(q^2 \) are Hall planes precisely when they admit \(q+1 \) central involutions. This extends Kirkpatrick and Rahilly's work as generalized Hall planes are certain derived semifield planes.

If a translation plane \(\pi \) of order \(q^2 \) admits \(q+1 \) affine elations with distinct axes then the generated group \(\mathcal{G} \) contains \(\text{SL}(2,q) \), \(S_z(q) \) or contains a normal subgroup \(N \) of odd order and index 2 (Hering [5]). In the latter case, little is known about \(\mathcal{G} \) except that it is usually dihedral.
In this article, we study semi-transitive translation planes of order \(q^2 \) that admit \(q+1 \) affine elations.

In [8], the author introduces the concept of the generalized Hall planes of type 1. These are derivable translation planes that admit a particular collineation group which is transitive on the components outside the derivable net. In this situation the group is generated by Baer collineations.

More generally, Jha [6] has considered the "semi-transitive" translation planes.

(1.1) Let \(\pi \) be a translation plane with subplane \(\pi_0 \). If there is a collineation group \(\mathcal{G} \) such that

1) \(\mathcal{G} \) fixes \(\pi_0 \cap \ell_\infty \) pointwise,
2) leaves \(\pi_0 \) invariant, and
3) acts transitively on \(\ell_\infty - \pi_0 \cap \ell_\infty \),

then \(\pi \) is said to be a semi-transitive translation plane with reference to \(\pi_0 \) and with respect to \(\mathcal{G} \).

Our main result is that semi-transitive planes of order not 16 or 64 that admit elations with axis \(\mathcal{L} \) fixing \(\pi_0 \) for every component \(\mathcal{L} \) of \(\pi_0 \) are Hall planes. We also give a necessary and sufficient condition that a translation plane of order \(q^2 \neq 64 \) admitting \(q+1 \) elations with distinct axes is derivable.

2. TRANSLATION PLANES OF EVEN ORDER \(q^2 \) ADMITTING \(q+1 \) ELATIONS.

(2.1) THEOREM. Let \(\pi \) be a translation plane of even order \(q^2 \neq 64 \) that admits \(q+1 \) affine elations with distinct axes. Let \(\mathcal{N} \) denote the net of degree \(q+1 \) that is defined by the elation axes and assume the group \(D \) generated by these elations leaves \(\mathcal{N} \) invariant. Then \(\mathcal{N} \) is derivable if and only if \(D \) is either isomorphic to \(SL(2,q) \) or is dihedral of order \(2(q+1) \) where the cyclic stem fixes at least two components.

PROOF. If \(D \) is isomorphic to \(SL(2,q) \) then \(\mathcal{N} \) is derivable and actually \(\pi \) is Desarguesian by Foulser-Johnson-Ostrom [3].

Let \(D = \langle \sigma, \chi \mid \sigma^2 = \chi^{q+1} = 1, \sigma \chi = \chi^{-1} \sigma \rangle \). If \(\langle \chi \rangle \) fixes the components \(X = \mathcal{O} \), \(Y = \mathcal{O} \) then we may choose coordinates so that \(\sigma \) is \((x,y) \rightarrow (y,x) \) and \(\chi \) is \((x,y) \rightarrow (xT, yT^{-1}) \) for some matrix \(T \) of order \(q+1 \).
By Ostrom [11], Theorem 3, there is a Desarguesian plane Σ containing the two χ-fixed components and γ. Clearly γ is an André net in Σ and thus derivable in π.

Conversely, suppose γ is derivable. Since each elation fixes γ, D must fix each Baer subplane of γ incident with O. By Foulser [2], Theorem 3, $D \leq \text{GL}(2, q)$ in its action on π so that $D \leq \text{SL}(2, q)$ (each elation is then in $\text{SL}(2, q)$). By Gleason [4], D is transitive on the elation axes so $q+1 \mid |D|$. Thus, D is clearly $\text{SL}(2, q)$ or is dihedral of order $2(q+1)$. Moreover, if γ is derivable then χ fixes at least two infinite points of $\pi - \gamma$. Let γ replace γ so χ fixes γ componentwise in the derived plane $\bar{\pi}$. Let $\langle \chi \rangle \triangleleft \langle \bar{x} \rangle$ such that $|\bar{x}|$ is a prime 2-primitive divisor of $q^2 - 1$ (one exists since $q^2 \neq 64$). Then $\bar{\chi}$ fixes at least two infinite points of $\pi - \bar{\gamma}$ so there is a unique Desarguesian plane Σ containing the $\bar{\chi}$-fixed components of $\bar{\pi}$ (see Ostrom [11], Cor. to Theorem 1—uniqueness comes from the fact that the degree of $\Sigma \cap \bar{\pi}$ is greater than $q+1$). Since $\bar{\chi}$ permutes the components of $\Sigma \cap \bar{\pi}$ (i.e., $\langle \bar{\chi} \rangle$ is characteristic in $\langle \chi \rangle$), $\bar{\chi}$ is a collineation group of Σ. The collineation χ has the form $(x, y) \rightarrow (x^a y^{-\phi(a)}, y^a)$ where ϕ is an automorphism of $\text{GF}(q^2)$ and $a \in \text{GF}(q^2)$. (Note χ fixes γ componentwise.) Since $q+1$ is odd, $\langle \chi^2 \rangle = \langle \chi \rangle$. Choosing coordinates so that the components of $\bar{\gamma}$ are $X = O$, $Y = O$, $y = xa$, $a \in \text{GF}(q^2)$ then χ fixes $y = xa$ for all $a \in \text{GF}(q^2)$ if and only if $a^\phi = a$. Since $\langle \chi^2 \rangle = \langle \chi \rangle$, we may assume $\phi = 1$. Thus, χ fixes ℓ_∞ of Σ pointwise. Since Σ and π share at least two components (those fixed by $\bar{\chi}$), χ must fix at least two components of π.

3. SEMI-TRANSITIVE TRANSLATION PLANES OF EVEN ORDER.

Let π be a translation plane of even order q^2 that admits $q+1$ elations as in section 2. Then, π is a derivable plane provided the generated group D is dihedral and the cyclic stem fixes at least 2 points or $\text{SL}(2, q)$. In any case let γ denote the net defined by the elation axes. Let \mathcal{G} be a collection group that commutes with D. Then clearly, \mathcal{G} must fix $\gamma \cap \ell_\infty$ pointwise.

(3.1) THEOREM. Let π be a translation plane of even order $q^2 \neq 64$ that admits $q+1$ elations with distinct axes. Assume the group D generated by these
q+1 elations leaves the net \(\mathcal{H} \) of the elation axes invariant. Let \(\mathcal{S} \) be a collineation group which commutes with \(D \) and is transitive on \(l_\infty - \mathcal{H} \cap l_\infty \). Then \(\pi \) is a Hall plane.

PROOF. Since \(q^2 \neq 64 \), there is a prime 2-primitive divisor \(m \) of \(q^2 - 1 \). By Gleason [4], \(q+1 \mid |D| \). Clearly, \(m \mid q+1 \). Let \(\chi \) be an element of \(D \) of order \(m \). \(\chi \) acts on the \(q(q-1) \) points of \(l_\infty - \mathcal{H} \cap l_\infty \) so must fix at least two points of \(l_\infty - \mathcal{H} \cap l_\infty \). Since \(\mathcal{S} \) commutes with \(\chi \) and \(\mathcal{S} \) is transitive on \(l_\infty - \mathcal{H} \cap l_\infty \), \(\chi \) must fix \(l_\infty - \mathcal{H} \cap l_\infty \) pointwise.

By the corollary to Theorem 1, Ostrom [11], there is a Desarguesian plane \(\Sigma \) such that the components fixed by \(\chi \) in \(\pi \) are exactly the common components of \(\Sigma \) and \(\pi \). Let \(\pi = \mathcal{H} \cup \mathcal{M} \) where \(\mathcal{M} \) is the net complementary to \(\mathcal{H} \) in \(\pi \). Then \(\Sigma = \mathcal{H} \cup \mathcal{M} \) for some net \(\mathcal{H} \) of degree \(q+1 \). So \(\Sigma \) and \(\pi \) are two extensions of a net \(\mathcal{M} \) of critical deficiency (see Ostrom [12]). Then \(\pi \) must be Hall since \(\Sigma \) and \(\pi \) must be related by derivation (i.e., \(\pi \) cannot be itself Desarguesian) by Ostrom [12].

The conditions of (3.1) are close to giving the definition of a "semi-transitive" translation plane (see (1.1)). In (3.1), it is possible that \(\mathcal{S} \) may not satisfy condition 2. Also, it is not clear that a semi-transitive translation plane is derivable. However, Jha [6] shows if \(\pi \) has order not 16 and there is a nontrivial kern homology in \(\pi \) then \(\pi \) is derivable and \(\pi_0 \) is a Baer subplane.

We may overcome this restriction on the kern in our situation:

(3.2) THEOREM. Let \(\pi \) be a semi-transitive translation plane of even order with respect to a collineation group \(\mathcal{S} \) and with reference to a subplane \(\pi_0 \). Let \(\pi \) admit an affine elation for each axis in \(\pi_0 \).

1) If the order of \(\pi_0 \) is not 8 then \(\pi \) is derivable.

2) If the order of \(\pi_0 \) is not 2 or 8 then \(\pi \) is a Hall plane.

PROOF. Following Jha's [6] ideas, let \(\pi_1 \) be a minimal subplane of \(\pi \) properly containing \(\pi_0 \). Clearly, the stabilizer \(\mathcal{S}_{\pi_1} \) of \(\pi_1 \) is a semi-transitive collineation group of \(\pi_1 \) with reference to \(\pi_0 \). Moreover, a sylow 2-subgroup of \(\mathcal{S}_{\pi_1} \) must leave \(\pi_0 \) pointwise fixed since \(\mathcal{S} \) fixes \(\pi_0 \) and fixes \(\pi_0 \cap l_\infty \) pointwise. (Note \(|\mathcal{S}_{\pi_1}| \) is divisible by \((2^r+1)-(2^s+1) \) for some \(r,s \).) Clearly, \(\pi_0 \) is a Baer subplane of \(\pi_1 \).
Every elation which leaves π_0 invariant must also leave any superplane invariant. So the group D generated by the elations leaves π_1 invariant and, clearly, D commutes with D since D fixes $\pi_0 \cap \mathcal{L}_\infty$ pointwise (D must commute with each central collineation fixing π_0).

By (3.1), if the order of π_0 is not 8 then π_1 is a Hall plane and π_1 is derivable. We may now directly use Jha [6] to show that if the order of π_0 is not 2 then $\pi_1 = \pi$ (that is, Jha uses the hypothesis that there is a kern homology to show that π_1 is derivable).

Actually, our proof of (3.2) proves the following more general theorem for arbitrary order.

(3.3) THEOREM. Let π be a semi-transitive translation plane with reference to π_0 and with respect to D and order p^r. Let χ be a collineation generated by central collineations leaving π_0 invariant such that $|\chi|$ is a prime p-primitive divisor of $(\text{order } \pi_0)^2 - 1$ (where the order of π_0 is not 2). Then π is a Hall plane.

Note that a semi-transitive plane of odd order p^{2r} must admit Baer p-elements (see Jha [6]). By Foulser [1], we could then not have both Baer p-elements and elations so we could restate our Theorem (3.2) without reference to order.

(3.2)2 is also valid if the order π_0 is 8. The arguments supporting this will appear in a related article.

REFERENCES

