ON THE PERIODIC SOLUTIONS OF LINEAR HOMOGENEOUS SYSTEMS OF DIFFERENTIAL EQUATIONS

A.K. BOSE

Department of Mathematical Sciences Clemson University Clemson, South Carolina 29613 U.S.A.

(Received October 13, 1981)

<u>ABSTRACT</u>. Given a fundamental matrix $\phi(\mathbf{x})$ of an n-th order system of linear homogeneous differential equations Y' = A(x)Y, a necessary and sufficient condition for the existence of a k-dimensional (k \leq n) periodic sub-space (of period T) of the solution space of the above system is obtained in terms of the rank of the scalar matrix $\phi(T) - \phi(0)$.

KEY WORDS AND PHRASES. Linear homogeneous system of differential equations, Fundamental matrix, Periodic solutions, periodic sub-spaces of (period T), Rank of the scalar matrix, Linearly independent vectors.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 34A20.

1. INTRODUCTION.

Consider the n-th order system of linear homogeneous differential equations

$$\mathcal{L}' = \mathcal{A}(\mathbf{x})\mathbf{Y},\tag{1.1}$$

where $Y = col(y_1(x), y_2(x), \ldots, y_n(x)), Y' = col(Y'_1(x), \ldots, y'_n(x)), A(x) = ((a_{ij}(x)))$ is a square matrix of order n, each element $a_{ij}(x)$ of A(x) is a real-valued function continuous on the real line R. Let S_n be the solution space of the system of equations (1.1) on the real line R and T > 0 be a real number. Let

$$\phi(\mathbf{x}) = \begin{pmatrix} y_{11}(\mathbf{x}) & y_{21}(\mathbf{x}) & \dots & y_{n1}(\mathbf{x}) \\ y_{12}(\mathbf{x}) & y_{22}(\mathbf{x}) & \dots & y_{n2}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ y_{1n}(\mathbf{x}) & y_{2n}(\mathbf{x}) & y_{nn}(\mathbf{x}) \end{pmatrix}$$
(1.2)

be a fundamental matrix of the system (1.1). The column vectors of $\phi(x)$ are linearly independent solutions of (1.1).

The purpose of this note is to deduce a necessary and sufficient condition for the existence of periodic sub-spaces (of period T) of the solution space S_n of the system (1.1) and to show that the existence and dimensions of these periodic sub-spaces depend not on any prior assumption about the periodicity (of period T) of the elements $a_{ij}(x)$ of the coefficient matrix A(x) of the system (1.1) (that is, all the elements $a_{ij}(x)$ of A(x) need not be periodic of period T), but precisely on the rank of the scalar matrix

$$\phi(T) - \phi(0)$$
. (1.3)

2. MAIN RESULTS.

The condition (1.3) is stated more explicitly in the following theorem: THEOREM. Let k be a non-negative integer, $0 \le k \le n$. There exists a k-dimensional sub-space S_k of the solution space S_n of the linear homogeneous system (1.1) such that each member of S_k is periodic of period T and no member of $S_n - S_k$ is periodic of period T and no member of $S_n - S_k$ is n-k.

The above theorem can also be phrased is terms of the eigen values of the scalar matrix $\phi^{-1}(0)\phi(T)$ as follows.

COROLLARY. Let k be a non-negative integer, $0 \le k \le n$. There exists a k-dimensional sub-space S_k of the solution space S_n of the linear homogeneous system (1.1) such that each member of S_k is periodic of period T and no member of $S_n - S_k$ is periodic of period T if and only if $\lambda = 1$ is an eigen value of the scalar matrix $\phi^{-1}(0)\phi(T)$ of multiplicity k.

PROOF OF THE THEOREM. Let k be a non-negative integer, $0 \le k \le n$ and rank of $\phi(T) - \phi(0)$ is n-k. Then the dimension of the kernel of $\phi(T) - \phi(0)$ is k. Hence there exists k linearly independent vectors

 $v_i = col (c_{i1}, c_{i2}, ..., c_{in}), \quad i = 1, 2, ..., k,$

belonging to Rⁿ such that

$$(\phi(T) - \phi(0))v_i = 0, \quad i = 1, 2, \dots, k$$
 (2.1)

Let $f_i(x) = \phi(x)v_i$, i = 1, 2, ..., k. The linear independence of the vectors $v_1, v_2, ..., v_k$ implies the linear independence of the k solution vectors $f_1(x)$, $f_2(x)$, ..., $f_k(x)$ of the system (1.1). Also,

$$f_i(T) - f_i(0) = (\phi(T) - \phi(0))v_i = 0, \quad i = 1, 2, ..., k,$$
 (2.2)

implies by the uniqueness of the solutions of initial value problem that $f_1(x+T) - f_1(x) = 0$ for all x, i = 1, 2, ..., k. Hence each solution vector $f_1(x)$, i = 1, 2, ..., k, is periodic of period T. Let S_k be the k-dimensional periodic (of period T) sub-space of S_n generated by $f_1(x), ..., f_k(x)$. We need to show that no member of $S_n - S_k$ is periodic of period T. Let $g_1(x) \in S_n - S_k$. Then $g_1(x)$ is nontrivial and $f_1(x)$, $f_2(x), ..., f_k(x)$, $g_1(x)$ are k+l linearly independent members of S_n . Let

$$g_1(x) = \phi(x)v_{k+1}$$
, where $v_{k+1} = col(c_{k+1} l^{c_{k+1}} 2, \dots, c_{k+1} n)$.

If possible, let $g_1(x)$ be periodic of period T. That is

$$g_1(x + T) - g_1(x) = 0$$
 for all x.

Then

$$g_1(T) - g_1(0) = 0.$$
 (2.3)

Since any set of linearly independent members of S_n form a part of a basis of S_n , let $f_1(x), f_2(x), \dots, f_k(x), g_1(x), g_2(x), \dots, g_{n-k}(x)$ be a basis of S_n and $g_i(x) = \phi(x)v_{k+i}$, $i = 2, 3, \dots, n-k$,

where $v_{k+i} = col(c_{k+i} 1, c_{k+i} 2, ..., c_{k+i} n)$, i = 2, 3, ..., n-k. The linear independence of the basis vectors $f_1(x)$, $f_2(x)$,..., $f_k(x)$, $g_1(x)$,..., $g_{n-k}(x)$ implies that the matrix

is non-singular and hence

rank of
$$(\phi(T) - \phi(0)) =$$
 rank of $(\phi(T) - \phi(0))C$, [see, 2], (2.4)

A.K. BOSE

But, by actual multiplication and using (2.2) and (2.3), we see that the first k+1 column vectors of $(\phi(T) - \phi(0))C$ are zero-vectors and hence the rank of $(\phi(T) - \phi(0))C$ is at most n-k-1. Therefore, from (2.4)

n-k = rank of $(\phi(T) - \phi(0))$ = rank of $(\phi(T) - \phi(0))C \le n-k-1$

implying a contradiction. Hence $g_1(x)$ cannot be periodic of period T. That is no member of $S_n - S_k$ is periodic of period T.

Conversely, suppose that S_k be a k-dimensional sub-space of S_n such that every member of S_k is periodic of period T and no member of $S_n - S_k$ is periodic of period T. We need to show that the rank of $\phi(T) - \phi(0)$ is n-k.

Let $f_1(x), f_2(x), \dots, f_k(x)$ be a basis of S_k and $f_1(x), f_2(x), \dots, f_k(x), g_1(x), \dots$ $g_{n-k}(x)$ be a basis of S_n . Clearly $g_1(x) \in S_n - S_k$, $i = 1, 2, \dots, n-k$. Hence each $g_1(x), i = 1, 2, \dots, n-k$, is not periodic of period T. Again the n-k vectors

$$g_1(T) - g_1(0), g_2(T) - g_2(0), \dots, g_{n-k}(T) - g_{n-k}(0)$$

are linearly independent. For

$$\ell_1(g_1(T) - g_1(0)) + \ell_2(g_2(T) - g_2(0)) + \dots + \ell_{n-k}(g_{n-k}(T) - g_{n-k}(0)) = 0$$

implies by the uniqueness of the solutions of initial value problem that

$$g(x) = \ell_1 g_1(x) + \dots + \ell_{n-k} g_{n-k}(x)$$

is a periodic solution of the system (1.1) of period T. Hence by our hypothesis $g(x)\ \epsilon\ S_k$ and therefore

$$g(x) = \ell_1 g_1(x) + \dots + \ell_{n-k} g_{n-k} = b_1 f_1(x) + \dots + b_k f_k(x),$$

for all x, where b_1, b_2, \dots, b_k are real constants.

Since $f_1(x), \ldots, f_k(x), g_1(x), \ldots, g_{n-k}(x)$ form a basis of S_n , it follows that

$$\ell_i = 0, \quad i = 1, 2, \dots, n-k$$

 $b_i = 0, \quad j - 1, 2, \dots, k.$

Hence the n-k vectors

$$g_1(T) - g_1(0), g_2(T) - g_2(0), \dots, g_{n-k}(T) - g_{n-k}(0)$$

are linearly independent.

Let H(x) be the fundamental matrix of the linear system (1.1) whose column vectors are

$$f_1(x), f_2(x), \ldots, f_k(x), g_1(x), \ldots, g_{n-k}(x)$$

and C be a non-singular scalar matrix such that

$$H(x) = \phi(x)C.$$

Then

$$H(T) - H(0) = (\phi(T) - \phi(0))C \qquad (2.5)$$

Since C is non-singular,

rank of $(\phi(T) - \phi(0)) =$ rank of $(\phi(T) - \phi(0))C =$ rank of (H(T) - H(0)). But, the first k columns of H(T) - H(0) are zero vectors by the periodicity of $f_1(x)$, $f_2(x)$,..., $f_k(x)$ and the last n-k column vectors

$$g_1(T) - g_1(0), g_2(T) - g_2(0), \dots, g_{n-k}(T) - g_{n-k}(0)$$

of H(T) - H(0) are linearly independent as proved before. Hence the rank of H(T) - H(0) is n-k. That is, the rank of $\phi(T) - \phi(0)$ is n-k. This completes the proof of the theorem.

To prove the corollary, we see, from (2.1) that

$$\phi^{-1}(0)\phi(T)v_{i} = v_{i}, \quad i = 1, 2, \dots, k.$$

That is,

$$(\phi^{-1}(0)\phi(T) - I)v_i = 0, \quad i = 1, 2, ..., k.$$

where I is the identity matrix. This means that $\lambda = 1$ must be an eigen value of the scalar matrix $\phi^{-1}(0)\phi(T)$ of multiplicity k. Hence arguing similarly as in the proof of the theorem one can prove the corollary easily.

REFERENCES

- 1. CODDINGTON, EARL A. and LEVINSON, NORMAN. Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York.
- 2. BIRKHOFF, GARRETT and MACLANE, SAUNDERS. A Survey of Modern Algebra, Macmillan Company, New York.

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

