ON THE PERIODIC SOLUTIONS OF LINEAR HOMOGENEOUS SYSTEMS OF DIFFERENTIAL EQUATIONS

A.K. BOSE
Department of Mathematical Sciences
Clemson University
Clemson, South Carolina 29613 U.S.A.
(Received October 13, 1981)

ABSTRACT. Given a fundamental matrix $\phi(x)$ of an n-th order system of linear homogeneous differential equations $Y^{\prime}=A(x) Y$, a necessary and sufficient condition for the existence of a k-dimensional ($k \leq n$) periodic sub-space (of period T) of the solution space of the above system is obtained in terms of the rank of the scalar matrix $\phi(T)-\phi(0)$.

KEY WORVS AND PHRASES. Linear homogeneous system of differential equations, Fundamental matrix, Periodic solutions, periodic sub-spaces of (period T), Rank of the scazar matrix, Linearly independent vectors.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. $34 A 20$.

1. INTRODUCTION.

Consider the n-th order system of linear homogeneous differential equations

$$
\begin{equation*}
Y^{\prime}=A(x) Y \tag{1.1}
\end{equation*}
$$

where $Y=\operatorname{col}\left(y_{1}(x), y_{2}(x), \ldots, y_{n}(x)\right), Y^{\prime}=\operatorname{col}\left(Y_{1}^{\prime}(x), \ldots, y_{n}^{\prime}(x)\right), A(x)=\left(\left(a_{i j}(x)\right)\right)$ is a square matrix of order n, each element $a_{i j}(x)$ of $A(x)$ is a real-valued function continuous on the real line R. Let S_{n} be the solution space of the system of equations (1.1) on the real line R and $T>0$ be a real number. Let

$$
\phi(x)=\left(\begin{array}{llll}
y_{11}(x) & y_{21}(x) & \cdots & \cdot \tag{1.2}\\
y_{n 1}(x) \\
y_{12}(x) & y_{22}(x) & \cdots & \cdot \\
\cdot & \cdot & & y_{n 2}(x) \\
\cdot & \cdot & & \cdot \\
y_{1 n}(x) & y_{2 n}(x) & & y_{n n}(x)
\end{array}\right)
$$

be a fundamental matrix of the system (1.1). The column vectors of $\phi(x)$ are linearly independent solutions of (1.1).

The purpose of this note is to deduce a necessary and sufficient condition for the existence of periodic sub-spaces (of period T) of the solution space S_{n} of the system (1.1) and to show that the existence and dimensions of these periodic sub-spaces depend not on any prior assumption about the periodicity (of period T) of the elements $a_{i j}(x)$ of the coefficient matrix $A(x)$ of the system (1.1) (that is, all the elements $a_{i j}(x)$ of $A(x)$ need not be periodic of period T, but precisely on the rank of the scalar matrix

$$
\begin{equation*}
\phi(T)-\phi(0) \tag{1.3}
\end{equation*}
$$

2. MAIN RESULTS.

The condition (1.3) is stated more explicitly in the following theorem:
THEOREM. Let k be a non-negative integer, $0 \leq \mathrm{k} \leq \mathrm{n}$. There exists a k -dimensional sub-space S_{k} of the solution space S_{n} of the linear homogeneous system (1.1) such that each member of S_{k} is periodic of period T and no member of $S_{n}-S_{k}$ is periodic of period T if and only if the rank of the scalar matrix $\phi(T)-\phi(0)$ is $n-k$.

The above theorem can also be phrased is terms of the eigen values of the scalar matrix $\phi^{-1}(0) \phi(T)$ as follows.

COROLLARY. Let k be a non-negative integer, $0 \leq \mathrm{k} \leq \mathrm{n}$. There exists a k -dimensional sub-space S_{k} of the solution space S_{n} of the linear homogeneous system (1.1) such that each member of S_{k} is periodic of period T and no member of $S_{n}-S_{k}$ is periodic of period T if and only if $\lambda=1$ is an eigen value of the scalar matrix $\phi^{-1}(0) \phi(T)$ of multiplicity k.

PROOF OF THE THEOREM. Let k be a non-negative integer, $0 \leq \mathrm{k} \leq \mathrm{n}$ and rank of $\phi(T)-\phi(0)$ is $n-k$. Then the dimension of the kernel of $\phi(T)-\phi(0)$ is k. Hence there exists k linearly independent vectors

$$
v_{i}=\operatorname{col}\left(c_{i 1}, c_{i 2}, \ldots, c_{i n}\right), \quad i=1,2, \ldots, k
$$

belonging to R^{n} such that

$$
\begin{equation*}
(\phi(T)-\phi(0)) v_{i}=0, \quad i=1,2, \ldots, k \tag{2.1}
\end{equation*}
$$

Let $f_{i}(x)=\phi(x) v_{i}, i=1,2, \ldots, k$. The linear independence of the vectors $v_{1}, v_{2}, \ldots, v_{k}$ implies the linear independence of the k solution vectors $f_{1}(x), f_{2}(x), \ldots, f_{k}(x)$ of the system (1.1). Also,

$$
\begin{equation*}
f_{i}(T)-f_{i}(0)=(\phi(T)-\phi(0)) v_{i}=0, \quad i=1,2, \ldots, k \tag{2.2}
\end{equation*}
$$

implies by the uniqueness of the solutions of initial value problem that $f_{i}(x+T)-f_{i}(x)=0$ for all $x, i=1,2, \ldots, k$. Hence each solution vector $f_{i}(x)$, $i=1,2, \ldots, k$, is periodic of period T. Let S_{k} be the k-dimensional periodic (of period T) sub-space of S_{n} generated by $f_{1}(x), \ldots, f_{k}(x)$. We need to show that no member of $S_{n}-S_{k}$ is periodic of period T. Let $g_{1}(x) \varepsilon S_{n}-S_{k}$. Then $g_{1}(x)$ is nontrivial and $f_{1}(x), f_{2}(x), \ldots, f_{k}(x), g_{1}(x)$ are $k+1$ linearly independent members of S_{n}. Let

$$
g_{1}(x)=\phi(x) v_{k+1} \text {, where } v_{k+1}=\operatorname{col}\left(c_{k+1} 1_{k+1} c_{k+\cdots, c_{k+1 ~} n}\right) .
$$

If possible, let $g_{1}(x)$ be periudic of period T. That is

$$
g_{1}(x+T)-g_{1}(x)=0 \quad \text { for all } x
$$

Then

$$
\begin{equation*}
g_{1}(T)-g_{1}(0)=0 \tag{2.3}
\end{equation*}
$$

Since any set of linearly independent members of S_{n}. form a part of a basis of S_{n}, let $f_{1}(x), f_{2}(x), \ldots, f_{k}(x), g_{1}(x), g_{2}(x), \ldots, g_{n-k}(x)$ be a basis of S_{n} and

$$
g_{i}(x)=\phi(x) v_{k+i}, \quad i=2,3, \ldots, n-k
$$

where $v_{k+i}=\operatorname{col}\left(c_{k+i}, c_{k+i} 2, \ldots, c_{k+i} n\right), i=2,3, \ldots, n-k$. The linear independence of the basis vectors $f_{1}(x), f_{2}(x), \ldots, f_{k}(x), g_{1}(x), \ldots, g_{n-k}(x)$ implies that the matrix

is non-singular and hence

$$
\begin{equation*}
\text { rank of }(\phi(T)-\phi(0))=\text { rank of }(\phi(T)-\phi(0)) C, \quad[\text { see, } 2], \tag{2.4}
\end{equation*}
$$

But, by actual multiplication and using (2.2) and (2.3), we see that the first $k+1$ column vectors of $(\phi(T)-\phi(0)) C$ are zero-vectors and hence the rank of $(\phi(T)-\phi(0)) C$ is at most $n-k-1$. Therefore, from (2.4)

$$
n-k=\text { rank of }(\phi(T)-\phi(0))=\text { rank of }(\phi(T)-\phi(0)) C \leq n-k-1
$$

implying a contradiction. Hence $g_{1}(x)$ cannot be periodic of period T. That is no member of $S_{n}-S_{k}$ is periodic of period T.

Conversely, suppose that S_{k} be a k-dimensional sub-space of S_{n} such that every member of S_{k} is periodic of period T and no member of $S_{n}-S_{k}$ is periodic of period T. We need to show that the rank of $\phi(T)-\phi(0)$ is $n-k$.

Let $f_{1}(x), f_{2}(x), \ldots, f_{k}(x)$ be a basis of S_{k} and $f_{1}(x), f_{2}(x), \ldots, f_{k}(x), g_{1}(x), \ldots$ $g_{n-k}(x)$ be a basis of S_{n}. Clearly $g_{i}(x) \varepsilon S_{n}-S_{k}$, $i=1,2, \ldots, n-k$. Hence each $g_{i}(x), i=1,2, \ldots, n-k$, is not periodic of period T. Again the $n-k$ vectors

$$
g_{1}(T)-g_{1}(0), g_{2}(T)-g_{2}(0), \ldots, g_{n-k}(T)-g_{n-k}(0)
$$

are linearly independent. For

$$
\ell_{1}\left(g_{1}(T)-g_{1}(0)\right)+\ell_{2}\left(g_{2}(T)-g_{2}(0)\right)+\ldots+\ell_{n-k}\left(g_{n-k}(T)-g_{n-k}(0)\right)=0
$$

implies by the miqueness of the solutions of initial value problem that

$$
g(x)=\ell_{1} g_{1}(x)+\ldots+\ell_{n-k} g_{n-k}(x)
$$

is a periodic solution of the system (1.1) of period T. Hence by our hypothesis $g(x) \varepsilon S_{k}$ and therefore

$$
g(x)=\ell_{1} g_{1}(x)+\ldots+\ell_{n-k} g_{n-k}=b_{1} f_{1}(x)+\ldots+b_{k} f_{k}(x),
$$

for all x, where $b_{1}, b_{2}, \ldots, b_{k}$ are real constants.
Since $f_{1}(x), \ldots, f_{k}(x), g_{1}(x), \ldots, g_{n-k}(x)$ form a basis of S_{n}, it follows that

$$
\begin{aligned}
& l_{i}=0, \\
& b_{j}=0, \\
& j-1,2, \ldots, n-k \\
&
\end{aligned}
$$

Hence the n - k vectors

$$
g_{1}(T)-g_{1}(0), g_{2}(T)-g_{2}(0), \ldots, g_{n-k}(T)-g_{n-k}(0)
$$

are linearly independent.
Let $H(x)$ be the fundamental matrix of the linear system (1.1) whose column vectors are

$$
f_{1}(x), f_{2}(x), \ldots, f_{k}(x), g_{1}(x), \ldots, g_{n-k}(x)
$$

and C be a non-singular scalar matrix such that

$$
H(x)=\phi(x) C .
$$

Then

$$
\begin{equation*}
H(T)-H(0)=(\phi(T)-\phi(0)) C \tag{2.5}
\end{equation*}
$$

Since C is non-singular,
rank of $(\phi(T)-\phi(0))=$ rank of $(\phi(T)-\phi(0)) C=$ rank of $(H(T)-H(0))$. But, the first k columns of $H(T)-H(0)$ are zero vectors by the periodicity of $f_{1}(x), f_{2}(x), \ldots, f_{k}(x)$ and the last $n-k$ column vectors

$$
g_{1}(T)-g_{1}(0), g_{2}(T)-g_{2}(0), \ldots, g_{n-k}(T)-g_{n-k}(0)
$$

of $H(T)-H(0)$ are linearly independent as proved before. Hence the rank of $H(T)-H(0)$ is $n-k$. That is, the rank of $\phi(T)-\phi(0)$ is $n-k$. This completes the proof of the theorem.

To prove the corollary, we see, from (2.1) that

$$
\phi^{-1}(0) \phi(T) v_{i}=v_{i}, \quad i=1,2, \ldots, k
$$

That is,

$$
\left(\phi^{-1}(0) \phi(T)-I\right) v_{i}=0, \quad i=1,2, \ldots, k
$$

where I is the identity matrix. This means that $\lambda=1$ must be an eigen value of the scalar matrix $\phi^{-1}(0) \phi(T)$ of multiplicity k. Hence arguing similarly as in the proof of the theorem one can prove the corollary easily.

REFERENCES

1. CODDINGTON, EARL A. and LEVINSON, NORMAN. Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York.
2. BIRKHOFF, GARRETT and MACLANE, SAUNDERS. A Survey of Modern Algebra, Macmillan Company, New York.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

