ON SOME FIXED POINT THEOREMS IN BANACH SPACES

D.V. PAI and P. VEERAMANI

Department of Mathematics, Indian Institute of Technology Powai, Bombay - 400076, India

(Received March 28, 1980, and in revised form December 22, 1980)

<u>ASTRACT</u>. In this paper, some fixed point theorems are proved for multi-mappings as well as a pair of mappings. These extend certain known results due to Kirk, Browder, Kanna, Ĉirić and Rhoades.

<u>KEY WORDS AND PHRASES</u>. Normal structure, Multi-mapping, Uniformly convex Banach Space.

1980 MATHEMATICE SUBJECT CLASSIFICATION CODES. 47H10, 54E15, 46A05.

1. INTRODUCTION.

A result of continuing interest in fixed point theory is one due to Kirk [6]. This states that a non-expansive self-mapping of bounded, closed and convex subset possessing normal structure in a reflexive Banach space has a fixed point. The interest in this result has been further enhanced due to simultaneous and independent appearance of results of Browder [2] and Göhde [5] which are essentially special cases of the result of Kirk. Recently Kannan [6] and Ćirić [2] have obtained results in basically the same spirit by suitably modifying the non-expansive condition on the mapping and the condition of normal structure on the underlying set. In this paper we give a fixed point result for multi-mappings (Theorem 2.1) and extend the results of Kannan [6] and Ciric [3] to a pair of mappings (Theorems 3.1 and 3.2). This enables us to establish convergence of Ishikawa iterates (cf. [9]) for a pair of mappings.

2. A FIXED POINT THEOREM FOR MULTI-MAPPINGS.

Let K be a closed, bounded and convex subset of a Banach space X. For x \in X, let $\delta(x;K)$ denote sup { $||x-k|| : k \in K$ } and let $\delta(K)$ denote the diameter of K. Recall that a point x \in K is called a <u>non-diametral</u> point of K if $\delta(x;K) < \delta(K)$ and that K is said to have <u>normal structure</u> whenever given any closed bounded convex subset C of K with more than one point, there exists a non-diametral x \in C. It is well-known (cf. [4]) that a compact convex subset of an arbitrary Banach space and a closed, bounded and convex subset of a uniformly convex Banach space have normal structure. With K as before, let r(K) denote the radius of K : inf { $\delta(x,K) : x \in K$ } and let K_c denote the <u>Chebyshev centre</u> of K : { $x \in K : r(K) = \delta(x,K)$ }. It is well known (cf. Opial [8]) that if K is a non-empty weakly compact convex subset of a Banach space X, then K is nonempty closed convex subset of K and, turthermore if K has normal structure, then $\delta(K_c) < \delta(K)$ (whenever $\delta(K) > 0$). Let 2^K denote the collection of all non-empty subsets of K and, tor A, B $\neq 2^K$ let $\delta(A,B)$ denote sup $|x| = a-b_i$: $a - A_i$, $b \in B$ }.

Theorem ...1. Let K be a nonempty weakly compact convex subset of the Banach space X. Assume K has normal structure. Let $T:K \rightarrow 2^{K}$ be a mapping satisfying: for each closed convex subset F of K invariant under T, there exists some $\alpha(F)$, $0 \leq \alpha(F) \leq 1$, such that

 $\delta(Tx,Ty) < \max \{ \delta(x,F), \alpha(F) \delta(F) \}$

for each x, y ε F.

Then T has a fixed point x satisfying $Tx = \{x_0\}$.

Proof. We imitate in parts the proof of Kirk's theorem. Let \mathfrak{F} denote the collection of non-empty closed convex subsets C of K that are left invariant by $T(i.e., TC \subset C, where TC = \cup \{Tc : c \in C \})$. Order \mathfrak{F} by set-inclusion. By weak compactness of K, we can apply Zorn's lemma to get a minimal element M. It suffices to show that M is a singleton. Suppose that M contains more than one element. By the definition of normal structure there exists $x_{\alpha} \in M$ such that

 $\sup \{ ||\mathbf{x}_{0} - \mathbf{y}|| : \mathbf{y} \in \mathbf{M} \} = \delta(\mathbf{x}_{0}, \mathbf{M}) < \delta(\mathbf{M}),$

Hence $\delta(x_0, M) \leq \alpha_1(M) \delta(M)$ for some $\alpha_1, 0 < \alpha_1 < 1$.

If $\delta(Tx, Ty) \leq \delta(x, M)$ for all x, y $\in M$, let $M_{\delta} = \{x \in M: \delta(x, M) \leq \alpha_1 \delta(M)\}$. Otherwise, by hypothesis there exists $\alpha(M)$, $0 \leq \alpha(M) < 1$, such that $\delta(Tx, Ty) \leq \alpha \delta(M)$ for some x, y $\in M$. Let $\beta = \max \{\alpha, \alpha_1\}$ and $M_{\delta} = \{x \in M: \delta(x, M) \leq \beta \delta(M)\}$.

As $x_0 \in M_{\delta}$, M_{δ} is nonempty. Evidently, M_{δ} is convex. Since $x \neq \delta(x,M)$ is continuous, M_{δ} is closed.

$$\begin{split} \delta(\mathrm{Tx}, \mathrm{Ty}) &\leq \max \{\delta(\mathrm{x}, \mathrm{M}), \alpha \, \delta(\mathrm{M})\} \\ &\leq \beta \quad \delta(\mathrm{M}) \text{ for } \mathrm{y} \in \mathrm{M}. \end{split}$$

Hence T(M) is contained in a closed ball of arbitrary centre in Tx and radius $\beta\delta(M)$. By the minimality of M, if m ϵ Tx, then M \subset U(m : $\beta\delta(M)$) (the closed ball of centre m and radius $\beta\delta(M)$), whence m ϵ M_{δ} and T(M_{δ}) \subset M_{δ}. But $\delta(M_{\delta}) \leq \beta\delta(M) < \delta(M)$ which contradicts the minimality of M. Thus M is a singleton and this completes the proof.

Corollary 2.2. Let K be a nonempty weakly compact convex subset of the Banach space X. Assume K has normal structure. Let T be a mapping of K into itself which satisfies: for each closed convex subset F of K invariant under T there exists some $\alpha(F)$, $0 \leq \alpha(F) < 1$, such that

 $||Tx-Ty|| \leq \max \{ \delta(x,F), \alpha \delta(F) \}$

for each x, y ε F. Then T has a fixed point.

Corollary 2.3. Let K be a nonempty weakly compact convex subset of the Banach space X. Assume K has normal structure. Let T be a mapping of K into itself which satisfies: for each closed convex subset F of K invariant under T there exists some $\alpha(F)$, $0 \leq \alpha(F) < 1$, such that

 $||Tx-Ty|| \leq \max \{ ||x-y||, r(F), \alpha \delta(F) \}$

for each x, y ε F. Then T has a fixed point.

Remark. The preceeding results generalize the results of Kirk [7] and Browder [2].

3. COMMON FIXED POINTS OF MAPPINGS.

Theorem 3.1. Let K be a weakly compact convex subset of the Banach space X. Let T_1 , T_2 be two mappings of K into itself satisfying:

(1) $||T_1x - T_2y|| \le \max \{ (||x-T_1x||+||y-T_2y||)/2, (||x-T_2y||+||y-T_1x||)/3, (||x-y||+||x-T_1x||+||y-T_2y||)/3 \}$

for each x, $y \in K$,

or

(2)
$$T_1C \subset C$$
 if and only if $T_2C \subset C$ for each closed subset C of K;

(3) either
$$\sup_{z \in C} ||z-T_1z|| \leq \delta(C)/2$$
,

 $\sup_{z \in C} ||z - T_2 z|| \leq \delta(C)/2$

holds for each closed convex subset C of K invariant under ${\rm T}_1$ and ${\rm T}_2.$ Then there exists a unique common fixed point of ${\rm T}_1$ and ${\rm T}_2.$

Proof. Let \mathfrak{F} denote the family of all non-empty closed convex subsets of K, each of which is mapped into itself by T_1 and T_2 . Ordering \mathfrak{F} by set-inclusion, by weak compactness of K and Zorn's lemma, we obtain a minimal element F of K. Without loss of generality, assume that

$$\sup_{z \in F} \left| \left| z - T_2^z \right| \right| \leq \delta(F)/2.$$

Let $x \in F_c$. Since $\delta(F)/2 \leq r(f)$, we obtain using (1) that $||T_1x-T_2y|| \leq r(F)$. ($y \in F$). This gives that $T_2(F) \in U(T_1x : r(F)) = U$, whence $T_2(F \cap U) \in F \cap U$ and by hypotheses (2) $T_1(F \cap U) \in F \cap U$. By the minimality of F, we obtain $F \in U$. This gives $\delta(T_1x,F) = r(F)$, whence $T_1x \in F_c$. Therefore, $T_1(F_c) \in F_c$ and by hypothesis (2) $T_2(F_c) \in F_c$. We now show that if F contains more than one element, then F_c is a proper subset of F. Assume the contrary that $F_c = F$. Since $\delta(x,F) = r(F)$ for each $x \in F$, we obtain $\delta(F) = r(F) = \delta(x,F)$, ($x \in F$). Again from (1), we get

 $||T_1 x - T_2 y|| \le \max \{3 \ \delta(F)/4, \ (\delta(F) + \delta(F))/3, \\ (\delta(F) + \delta(F) + \delta(F)/2)/3 \} \\ = 5\delta(F)/6.$

The same argument as before yields $\delta(T_1 \mathbf{x}, F) \leq 5\delta(F)/6 < \delta(F)$, which is a contradiction. Consequently, if F contains more than one element, then F_c is a proper subset of F. But this in view of above contradicts the minimality of F. Hence F contains exactly one element, say, x_0 , whence $T_1 x_0 = x_0 = T_2 x_0$. Assume there exists another element $y_0 \in K$ such that $T_1 y_0 = y_0 = T_2 y_0$. Then using (1), we obtain

$$||T_1x_0 - T_2y_0|| \le \frac{2}{3} || T_1x_0 - T_2y_0||$$
,
 $x_0 = T_1x_0 = T_2y_0 = y_0$.

whence

THEOREM 3.2. Let K be a weakly compact convex subset of the Banach space X. Assume K has normal structure. Let T_1 , T_2 be mappings of K into itself satisfying: (1) $||T_1x - T_2y|| \le \max \{(||x - T_1x|| + ||y - T_2y||)/2,$ $(||x - T_2y|| + ||y - T_1x||)/2,$ $(||x - y|| + ||x - T_1x|| + ||y - T_2y||)/3\}$

for each x,y & K,

(2)
$$T_1 C \subset C$$
 if and only if $T_2 C \subset C$ for each closed convex subset C of K,
(3) either $\sup_{z \in D} ||z - T_1 z|| \leq r(D)$,

or $\sup_{z \in D} ||z - T_2 z|| \le r(D)$

holds for each closed convex subset D of K invariant under $\rm T_1$ and $\rm T_2.$ Then there exists a unique common fixed point of $\rm T_1$ and $\rm T_2.$

PROOF. Let \mathfrak{F} be as in Theorem 3.1. Exactly as in Theorem 3.1., \mathfrak{F} has a minimal element F. Without loss of generality, assume that $\sup_{z \in F} ||z-T_2z|| \leq r(F)$. Let x εF_c . Then using (1) we obtain

$$||T_1 x - T_2 y|| \leq r(F).$$
 (y ε F)

This gives exactly as in Theorem 3.1 that $T_1(F_c) \subseteq F_c$ and $T_2(F_c) \subseteq F_c$. Since K has normal structure, one has $\delta(F_c) < \delta(F)$ if K contains more than one element, which contradicts the minimality of F. Thus F contains precisely one element, which is the unique common fixed point of T_1 and T_2 as in Theorem 3.1.

REMARK. One can replace condition (1) of Theorem 3.2 by

(1)
$$||T_1x - T_2y|| \le \max \{||x-y||, (||x-T_1x|| + ||y-T_2y||)/2, (||x-T_2y|| + ||y-T_1x||)/3, (||x-y||+||x-T_1x||+||y-T_2y||)/3 \}.$$

This also yields the existence of a common fixed point of T_1 and T_2 . However, it need not be unique.

THEOREM 3.3. Let K be a weakly compact convex subset of the Banach space X. Assume K has normal structure. Let T_1 , T_2 be mappings of K into itself satisfying (2) and (3) of the preceding theorem and,

(1) $||T_1x - T_2y|| \le \max \{||x-y||, ||x-T_1x||, ||x-T_1y||, ||x-T_2x||, ||x-T_2y||\}.$

Then there exists a common fixed point of ${\rm T}^{}_1$ and ${\rm T}^{}_2.$

The proof of the above theorem is similar to that of Theorem 3.2 and hence it is omitted.

4. ISHIKAWA ITERATION FOR COMMON FIXED POINTS.

A uniformly convex Banach space is reflexive. A bounded, closed and convex subset of a uniformly convex Banach space is therefore weakly compact; also, it has normal structure. Hence Theorems 2.1, 3.2 and 3.3 can be particularized to such a setting. Rhoades [9] has extended a result of Ćirić (cf. [3], Theorem 2) to a wider class of transformations by using Ishikawa iterative scheme. With a suitable modification of arguments, this extends to a pair of mappings of the type as in Theorem 3.2.

THEOREM 4.1. Let K be a non-empty closed bounded and convex subset of a uniformly convex Banach space X. Let T_1 , T_2 be mappings of K into itself satisfying (1), (2) and (3) of Theorem 3.2. Let the sequence $\{x_n\}$ of iterates be defined by

(5)
$$y_n = (1 - \beta_n) x_n + \beta_n T_1 x_n, \qquad n \ge 0$$
,

(6)
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_2 y_n$$
, $n \ge 0$,

where $\{\alpha_n\}, \{\beta_n\}$ satisfy (i) $0 \leq \alpha_n, \leq \beta_n \leq 1$ for all n, (ii) $\sum_n \alpha_n (1 - \alpha_n) = \infty$ and , (iii) $\lim_{n \to \infty} \beta_n = \beta < 1$. Then $\{x_n\}$ converges to the unique common fixed point of T_1 and T_2 .

PROOF. The existence of the unique common fixed point of T_1 and T_2 results from Theorem 3.2. Let the unique common fixed point be v. From (1)

$$||T_1x_n - v|| \le ||x_n - v||$$

118

and

$$||\mathbf{T}_{2}\mathbf{x}_{n} - \mathbf{v}|| \leq ||\mathbf{x}_{n} - \mathbf{v}||$$

Following exactly the same lines as in the proof of Theorem 1 of [9] we obtain subsequences y_{n_k} , x_n of y_n , x_n respectively such that

(7)
$$\lim_{k} ||x_{n_{k}} - T_{2}y_{n_{k}}|| = 0$$

we show that

(8)
$$\lim ||x_{n_k} - T_1 x_{n_k}|| = 0.$$

It would be sufficient, with (7), to show that $\lim_{k} ||T_1x_k - T_2y_k|| = 0$.

For any integer n, from

$$||T_1x_n - T_2y_n|| \le (||x_n - T_1x_n|| + ||y_n - T_2y_n||)/2$$
,

we obtain

(9)
$$||T_1x_n - T_2y_n|| \le (2 - \beta_n)||x_n - T_2y_n||/(1 - \beta_n).$$

It follows from

$$||\mathbf{T}_{1}\mathbf{x}_{n} - \mathbf{T}_{2}\mathbf{y}_{n}|| \le (||\mathbf{x}_{n} - \mathbf{T}_{2}\mathbf{y}_{n}|| + ||\mathbf{y}_{n} - \mathbf{T}_{1}\mathbf{x}_{n}||)/3$$
,

that

(10)
$$||T_1x_n - T_2y_n|| \leq (2 - \beta_n)||x_n - T_2y_n||/(2 + \beta_n).$$

From

$$||\mathbf{T}_{1}\mathbf{x}_{n} - \mathbf{T}_{2}\mathbf{y}_{n}|| \le (||\mathbf{x}_{n} - \mathbf{y}_{n}|| + ||\mathbf{x}_{n} - \mathbf{T}_{1}\mathbf{x}_{n}|| + ||\mathbf{y}_{n} - \mathbf{T}_{2}\mathbf{y}_{n}||)/3$$

we obtain

(11)
$$||T_1x_n - T_2y_n|| \le ||x_n - T_2y_n|| / (1 - \beta_n)$$
.

From (9) - (11) we obtain

$$||T_1x_n - T_2y_n|| \le 2||x_n - T_2y_n|| / (1 - \beta_n)$$
.

Therefore,

$$||T_{1}x_{n_{k}} - T_{2}y_{n_{k}}|| \leq 2 ||x_{n_{k}} - T_{2}y_{n_{k}}||/(1 - \beta_{n_{k}})$$

and (7) implies $\lim_{k} ||T_{1}x_{n_{k}} - T_{2}y_{n_{k}}|| = 0$,

whence

$$\lim_{k} ||x_{n_{k}} - T_{1}x_{n_{k}}|| = 0 ,$$

Now let us prove that this implies that

$$\lim_{k\to\infty} ||\mathbf{x}_{n_k} - \mathbf{T}_2 \mathbf{x}_{n_k}|| = 0.$$

This follows easily from

$$\begin{aligned} ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| &\leq ||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{k}}|| + ||\mathbf{T}_{1}\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| \\ &\leq ||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{k}}|| + \max\{(||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n}||)/2, \\ &\qquad (||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{k}}||)/3, \\ &\qquad (||\mathbf{x}_{n_{k}} - \mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}||)/3, \end{aligned}$$

which tends to 0 as $k \rightarrow \infty$ since

$$||\mathbf{x}_{\mathbf{n}_{k}} - \mathbf{T}_{\mathbf{1}}\mathbf{x}_{\mathbf{n}_{k}}|| \rightarrow 0 \text{ as } k \rightarrow \infty$$
.

Also $||T_1x_{n_k} - T_1x_{n_l}|| \le ||T_1x_{n_k} - T_2x_{n_k}|| + ||T_2x_{n_k} - T_1x_{n_l}||$

From (1) of Theorem 3.2,

$$\begin{split} ||\mathbf{T}_{1}\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| &\leq \max\{[||\mathbf{x}_{n_{\ell}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}||]/2 ,\\ [||\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}||]/3 ,\\ [||\mathbf{x}_{n_{\ell}} - \mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{\ell}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}||]/3 . \end{split}$$

If

$$\begin{aligned} &||\mathbf{T}_{1}\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| \leq [||\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}||]/3, \text{ then} \\ &3 ||\mathbf{T}_{1}\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| \leq ||\mathbf{x}_{n_{\ell}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}|| + ||\mathbf{T}_{1}\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| \\ &+ ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| + ||\mathbf{T}_{2}\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}|| , \end{aligned}$$

which implies

(11)
$$||T_1x_{n_{\ell}} - T_2x_{n_{k}}|| \le ||x_{n_{\ell}} - T_1x_{n_{\ell}}|| + ||x_{n_{k}} - T_2x_{n_{k}}||.$$

$$||\mathbf{T}_{1}\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| \leq [||\mathbf{x}_{n_{\ell}} - \mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{\ell}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}||]/3 ,$$

it follows, in a similar manner, that (11) holds. Therefore, in all cases, (11) is satisfied.

Therefore,

$$||\mathbf{T}_{1}\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{l}}|| \leq ||\mathbf{T}_{1}\mathbf{x}_{n_{k}} - \mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{l}} - \mathbf{T}_{1}\mathbf{x}_{n_{l}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}||,$$

which tends to 0 as $k \neq \infty$. Therefore $\{\mathbf{T}_{1}\mathbf{x}_{n_{k}}\}$ is a Cauchy sequence and hence it
converges, say, to u. Consequently

$$\lim_{n_k} x_n = \lim_{k} T_1 x_n = u.$$

Also,

$$\begin{split} ||u-T_{2}u|| &\leq ||u-x_{n_{k}}|| + ||x_{n_{k}}^{-T_{1}x_{n_{k}}}|| + ||T_{1}x_{n_{k}}^{-T_{2}u}|| \leq ||u-x_{n_{k}}|| + ||x_{n_{k}}^{-T_{1}x_{n_{k}}}|| \\ &+ \max \left\{ (||x_{n_{k}}^{-T_{1}x_{n_{k}}}|| + ||u - T_{2}u||)/2, \\ &(||(x_{n_{k}}^{-T_{2}u}|| + ||u - T_{1}x_{n_{k}}^{-}||)/3, \\ &(||x_{n_{k}}^{-u}|| + ||x_{n_{k}}^{-T_{1}x_{n_{k}}}|| + ||u - T_{2}u||)/3 \right\}. \end{split}$$

Taking the limit as $k \not \sim \infty,$ we obtain $||u - T_2 u|| = 0.$ Therefore, $u = T_2 u$. Now,

$$\begin{aligned} ||u - T_{1}u|| &\leq ||u - T_{2}u|| + ||T_{2}u - T_{1}u|| \\ &\leq \max \{(||u - T_{1}u|| + ||u - T_{2}u||)/2, \\ &(||u - T_{2}u|| + ||u - T_{1}u||)/3, \\ &(||u - u|| + ||u - T_{1}u|| + ||u - T_{2}u||)/3 \end{aligned}$$

This implies $||u - T_1 u|| = 0$. Therefore, $u = T_1 u$.

<u>ACKNOWLEDGEMENT</u>. Thanks are due to the referees for a critical reading of the manuscript. In particular, the present improved version of Theorem 4.1 is due to the suggestions of one of the referees who pointed our attention to reference [9].

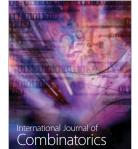
REFERENCES

- BONSALL, F.F. Lectures on some fixed point theorems of functional analysis, Tata Institute of Fundamental Research, Bombay, India, 1962.
- BROWDER, F.E. Non-expansive nonlinear operators in a Banach space. <u>Proc.</u> <u>Nat. Acad. Sci., 54</u> (1965), 1041-1043.

- ĆIRIĆ, Lj.B. On fixed point theorems in Banach spaces, <u>Publ. Inst. Math.</u>, <u>19</u> (33), (1975), 43-50.
- DIESTEL, J. Geometry of Banach spaces, Lecture notes, No. 485, <u>Springer-Verlag</u>, Berlin, 1975.
- GÖHDE, D. Zum Prinzip der Kontraktiven Abbildung, <u>Math. Nach.</u>, <u>30</u> (1965), 251-258.
- 6. KANNAN, R. Some results on fixed points III, Fund. Math., 70 (1971), 169-177.
- KIRK, W.A. A fixed point theorem for mappings which do not increase distances, <u>Amer. Math. Monthly</u>, <u>72</u> (1965), 1004-1006.
- OPIAL, Z. Nonexpansive and monotone mappings in Banach spaces, Lecture notes from January, 1967 lectures given at Center for Dynamical Systems at Brown University.
- RHOADES, B.E. Some fixed point theorems in Banach spaces, <u>Math. Seminar Notes</u>, 5 (1977), 69-74.

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

