A NOTE ON ALMOST CONTINUOUS MAPPINGS
AND BAIRE SPACES

JING CHENG TONG
Department of Mathematics
Wayne State University
Detroit, Michigan 48202

(Received April 20, 1982 and in revised form June 4, 1982)

ABSTRACT. We prove the following theorem:

THEOREM. Let Y be a second countable, infinite R_0-space. If there are
countably many open sets $0_1, 0_2, \ldots, 0_n, \ldots$ in Y such that $0_1 \not\subset 0_2 \not\subset \ldots \not\subset 0_n \cdots$,
then a topological space X is a Baire space if and only if every mapping $f: X \to Y$
is almost continuous on a dense subset of X. It is an improvement of a theorem due
to Lin and Lin [2].

KEY WORDS AND PHRASES. Separation axiom R_0, almost continuous mapping, Baire space.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 54C10, 54F65; Secondary
54D10.

1. INTRODUCTION.

This note is directed to mathematical specialists or non-specialists familiar
with general topology [1].

Lin and Lin [2] proved the following theorem:

THEOREM 1. Let Y be an arbitrary infinite Hausdorff space. If X is a topo-
logical space such that every mapping $f: X \to Y$ is almost continuous on a dense
subset $D(f)$ of X, then X is a Baire space.

In the theorem above, the almost continuity is in the sense of Husain [3].
The proof of the theorem depends on the following lemma (cf. Long [1, Prob. 14,
p. 147]):

LEMMA 1. Every infinite Hausdorff space contains a countably infinite discrete
subspace.
In this note, we prove a lemma similar to Lemma 1 under weaker conditions, and use it to improve Theorem 1.

2. PRELIMINARIES AND RESULTS.

Before stating the result, we first recall the definition of the separation axiom R_0 (cf. [4], [5], [6, p. 49]).

DEFINITION 1. A topological space X is R_0 if and only if for each $x \in X$ and open subset U, $x \in U$ implies $\overline{\{x\}} \in U$.

It is known [1] that R_0 is weaker than T_1 and is independent of T_0, in fact $T_1 = T_0 + R_0$. A Hausdorff space is R_0.

LEMMA 2. If an infinite space X is R_0, and there are countably infinite open sets $0_1, 0_2, \ldots, 0_n, \ldots$ such that $0_1 \not\subseteq 0_2 \not\subseteq \ldots \not\subseteq 0_n \not\subseteq \ldots$, then there is a countably infinite distinct set $S = \{y_1, y_2, \ldots, y_n, \ldots\}$ in X such that for each n, there is an open set V_n satisfying $V_n \cap S = \{y_n\}$.

PROOF. Without loss of generality we may assume that 0_1 is not empty. Let $y_1 \in 0_1$ be an arbitrary point. Since X is R_0, $\overline{\{y_1\}} \subseteq 0_1$. Let $V_1 = 0_1$. From $0_1 \not\subseteq 0_2$ we can find a $y_2 \in 0_2$ such that $y_2 \not\in 0_1$ and $\overline{\{y_2\}} \subseteq 0_2$. Let $V_2 = 0_2 \cap (0_1 \setminus \{y_1\})$. Then V_2 is an open set and $y_2 \in V_2$. If y_{n-1} is chosen and $V_{n-1} = 0_{n-1} \cap (0_{n-2} \setminus \{y_{n-1}\})$ is defined, then since $0_{n-1} \not\subseteq 0_n$, we may choose $y_n \in 0_n$ such that $y_n \not\in 0_{n-1}$ and $\overline{\{y_n\}} \subseteq 0_n$. Let $V_n = 0_n \cap (0_{n-1} \setminus \{y_{n-1}\})$. Then $y_n \in V_n$. Thus we have a countably infinite distinct set $S = \{y_1, y_2, \ldots, y_n, \ldots\}$ and countably infinite distinct open sets $V_1, V_2, \ldots, V_n, \ldots$ such that $y_n \in V_n$ (n = 1, 2, ...). Since $V_n = 0_n \cap (0_{n-1} \setminus \{y_{n-1}\})$, we have $y_i \not\in V_n$ for $i = 1, 2, \ldots, n-1$. Since $y_{n+m} \in 0_{n+m}$ (m > 1), $y_{n+m} \not\in 0_{n+m-1}$, but $0_n \not\subseteq 0_{n+m-1}$, hence $y_{n+m} \not\in 0_n$, $y_{n+m} \not\in V_n$. Therefore, $V_n \cap S = \{y_n\}$.

For convenience we say that a space X has an ascending chain of open sets if there are countably infinite open sets $0_1, 0_2, \ldots, 0_n, \ldots$ such that $0_1 \not\subseteq 0_2 \not\subseteq \ldots \not\subseteq 0_n \not\subseteq \ldots$.

LEMMA 3. An infinite Hausdorff space X is an R_0-space with an ascending chain of open sets.

PROOF. We need only to show that X has an ascending chain of open sets. By Lemma 1, there is a countably infinite discrete subspace $\{y_1, y_2, \ldots, y_n, \ldots\}$, hence
there are disjoint open sets $U_1, U_2, \ldots, U_n, \ldots$ such that $y_n \in U_n$. Let $0_n = \bigcup_{i=1}^{n} U_i$ ($n = 1, 2, \ldots$). Then $0_1, 0_2, \ldots, 0_n, \ldots$ is an ascending chain of open sets.

The converse of Lemma 3 is not true.

Example 1. Let $X = [0,1]$ with topology $\tau = \{X\setminus N; N$ is a countable set}. Then X is R_0 and $0 = \bigcap_{i=1}^{1, 2, \ldots} \bigcup_{i=1}^{1, 2, \ldots} (i = 1, 2, \ldots)$ is an ascending chain of open sets. X is not Hausdorff.

Now Theorem 1 can be improved as

Theorem 2. Let Y be an infinite R_0-space with an ascending chain of open sets. If X is a topological space such that every mapping $f: X \to Y$ is almost continuous on a dense subset of X, then X is a Baire space.

The proof is all the same as the proof of Theorem 2 in [2].

Similar to Theorem 3 in [2], we have

Theorem 3. Let Y be a second countable infinite R_0-space with an ascending chain of open sets. Then a topological space X is a Baire space if and only if every mapping $f: X \to Y$ is almost continuous on a dense subset of X.

References

Submit your manuscripts at http://www.hindawi.com