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BABSTRACT. Given a Riemann surface S, there exists a finitely generated Fuchsian
group G of the first kind acting on the upper half plane U, such that S = U/G.
This isomorphism makes it possible to use Fuchsian group methods to prcve theorems
about Riemann surfaces. In this note we give a proof of the Serre duality theorem
by Fuchsian group methods which is technically simpler than proofs depending on

sheaf theoretic methods.
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1. INTRODUCTION.

For a compact Riemann surface S of genus g > 1, the uniformization theorem
states that there exists a universal covering map m:U»S, where U is the upper half
plane. The covering group G is a finitely generated Fuchsian group of the first kind
without elliptic or parabolic elements. As a consequence of this result, it is
possible to prove theorems about Riemann surfaces in two different ways. For example,
Riemann and his followers constructed meromorphic functions on compact Riemann
surfaces by first constructing meromorphic differentials on the surfuace; the ratio
of two such differentials would then be a meromorphic function. On the other hand
Poincaré explicitly constructed certain series on U, which were automorphic forms
for a given Fuchsian group G, and their ratios were automorphic functions for G. The
isomorphism S = U/G then gives the existence of meromorphic functions of S. The fuact
that U is simply connected sometimes makes it easier to work there. In this note we
show that the Serre duality theorem for Riemann surfaces can be proven by Fuchsian
group methods. Though the structure of the proof is the same as in, say, Gunning [l],
certain technical simplifications are introduced by working in U. The main idea of
the proof is already contained in Kra [2], where a particular case of the duality
theorem is proved. To obtain the general case 1t is necessary to introduce appropriatc

definitions.
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The proof of the duality theorem in Gunning's book uses the sheaf of germs of
distributions on Riemann surfaces. Though we do not require distributions, we need
the concept of a generalized or weak derivative. We therefore begin by stating the
necessary definitions and results on weak derivatives.

Let D be an arbitrary open subset of the complex plane C, and f a measurable
function which is Lebesgue integrable over every compact subset of D. We say that g,

a Lebesgue integrable function on D, is a generalized - z - derivative of f if

ffD¢g dzadz = ~ffD¢;f dzadz (1.1)

holds for all infinitely differentiable functions ¢ with compact support in D, and

_ 193¢ L) . - . _
where ¢z = 2(8x + lay)' We write this relation between f and g as fz = g. In a

similar way we can use
ffD¢g dzadz = -ffD¢zf dzadz (1.2)
39 o)

l( - 15;), to define the generalized - z - derivative of f.

where ¢z = 3
We now state two lemmas which we require in the sequel. The first lemma
essentially says that if some function satisfies the Cauchy-Riemann relations in the
weak sense then it is holomorphic. The second lemma, which is technical, constructs
a partition of unity for a Fuchsian group G on U. Proofs of both lemmas are contained
in Kra [3].
LEMMA 1. Suppose f is a measurable function, which is Lebesgue integrable over
every compact subset of D, and f; = 0. Then there is a holomorphic function g on D

such that g = £ almost everywhere.

LEMMA 2. For a Fuchsian group G acting on U, there exists a function n € ce(U)

such that
(i) 0<n<l1
(ii) for each z € U, there is a neighborhood V of z and a finite set J < G, such

that nlq(V) = 0 for each g ¢ J, and

(iii) L n(gz) =1, z € U.
geG

2. STATEMENT OF THE DUALITY THEOREM.

We now give the necessary definitions to state the duality theorem. Let G be a
Furhsian group acting on the upper half plane U, such that, U/G is a compact Riemann
surface. The group G may have elliptic elements. Let K”, 0 and O* denote the sets
of C%®, holomorphic and nowhere vanishing holomorphic functions, respectively, on U.

A factor of automorphy for G is a function
$:6 x U>c* =c - {0}, (2.1)
such that, for a fixed g € G, ¢(g,z) € 0*, and for all 9,0 9, € G and all z e U,

¢(gl°g2'2) = ¢(gllg2(z))¢(g212). (2.2)
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The product of two factors of automorphy ¢1 and ¢2 is defined by
(¢l¢2)(g,z) = ¢l(g,z)¢2(g,z), for g€ G and z € U. (2.3)

With this product the set of factors of automophy forms a group. Of special importance

is the canonical factor of automorphy defined as
K(g,z) = g'(z), for g € G and z ¢ U. (2.4)

It is clear that a factor of automorphy for G projects to a line bundle on U/G (see
Gunning [l]).
Now let X denote either K* or 0. We define the action of a group G on X with

respect to a given factor of automorphy ¢ as follows:
(f * g)(2) = £(9(2))0(g,z) where f € X, g€ G and z € U. (2.5)
The zeroth cohomology group with respect to ¢ and with coefficients in X is

H°(G,X), = {f € X|f « g = f for all g € G}. (2.6)

¢
To any factor of automorphy ¢ there corresponds an integer C(¢), the Chern class of

¢. This may be defined by choosing an f € H®(G,0) Let deg f = the number of zeros

o
of f in a fundamental domain of G, counting multiplicity. Clearly deg f is independent
of the fundamental domain. Moreover, if fl is another function in H°(G,O)¢, then it

is obvious by using (2.5) and (2.6) that

f(z) _ f(g9(z))
£.(2)  f,(g(2)

for all g € G. (2.7)

£
Thus f—-is an automorphic function for G and deg f = deg f We define C(9) = deg £

1
for any f € H°(G,0)¢.

1°

To state the duality theorem we also require the first cohomology group with

respect to ¢ and with coefficients in X,

1
H (G,X) = space of 1 - cocycles with coefficients in X/space of 1

1 - coboundaries. (2.8)
A l-cocycle with coefficients in X is a map P taking g € G —> Pg € X, such that,

P =P *g_+P . (2.9)
o
9, 92 9, 2 92

Moreover, for each f € X the map g € G > f *» g - £ € X, which is obviously a l-cocycle,
is called a l-coboundary.
To enable us to define certain Banach spaces we would like to have a metric

corresponding to any factor of automorphy ¢. For example, the Poincaré metric,
1
2 = — .
y (@ Trz where z € U, (2.10)
which satisfies the property

Aytea) [g' ()| = A (=) for all ge G (2.11)
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will be viewed as a metric corresponding to the canonical factor of automorphy. For

any other factor of automorphy ¢ and with N as in lemma 2, we define the metric

Aplz) = 2 n(hz) [¢(h,z) |, which satisfies (2.12)
heG
A¢(g,z)|¢(g,z)| = A¢(z) for all g € G. (2.13)

We now define two Banach spaces corresponding to any factor of automophy ¢. The

first is LI(G,¢E) = the set of all measurable functions § on U which satisfy

U(gz)d(g,z)g'(z) = u(z) for all g € G, and (2.14)
_l -
ull) = PRI (z) |u(z)dzadz| < =, (2.15)

The other Banach space is Lw(G,¢-lK) = the set of all measurable functions Vv on U

which satisfy
U(gz)¢-l(g,z)g'(z) = V(z) for all g € G, and (2.16)

[Iv]], = sup Aal(z)kq)(z)lv(z)l <o (2.17)
zel

For ue L_l(G,¢E) and ve Lm(G,¢—1K) we have the inner product
(M,v) = fo/GU(z)V(z) dzadz. (2.18)

It is a consequence of the Riesz representation theorem that this inner product

- 1 -
defines L%(G, ¢ lK) as the dual of L™ (G,$K). We note that H°(G,0) is a subspace of

¢~
-1 . = . .
L®(G,$ K) and HO(G,Kw)¢E is a subspace of L*(G,$k), because any C® function on U is
bounded on any fundamental domain of G.
We are now in a position to state the duality theorem:

1
THEOREM 1. The vector spaces H°(G,O) and H (G,0)¢ are finite dimensional and

-1k
canonically dual to each other.
3. FINITE DIMENSIONALITY OF HO(G,O)¢.
As a first step toward the duality theorem we prove
THEOREM 2. H°(G,0)¢ is a finite dimensional vector space over the field of
complex numbers.

PROOF. Let n = C(¢) + 1 and let zl, z cees zn be n points in a fundamental

2!
domain of G. We claim that dim H°(G,0)¢ < n. For, if dim H°(G,0)¢ > n, then the

linear map

T:H®(G,0), » € given by T(f) = (F(z)), -ouy £(2)) (3.1)

o
has a nontrivial kernel. Suppose f € Ker T, f # 0. Then deg f > n > C(¢) which
contradicts the fact that deg f = C(¢).
4. A DE RHAM TYPE THEOREM.

We need the following lemma to prove an analogue of de Rham's theorem. It is

contained in Kra [2,3].
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LEMMA 3. The cohomology group Hl(G,K°°)¢ = {o0}.
1
PROOF. Let n be the C% function of lemma 2 and let P € H (G,Km)¢. Define the
C*® function

6(z) =-ZI n(gz)P _(2). (4.1)
geG 9

I1f A € G, then

(8 +2)(z) - 0(2)

- % [n(gaz)P_(Az)d (A,z) - N(g2)P (z)] (4.2)
geG g g

o

-z P
[n(gaz) ( 5

a(2) = Pu(2) - n(g2)P (2)] (4.3)
geG

I n(gaz)P_(z) = P_(z). (4.4)
o A A

Thus P is a l-coboundary and the lemma is proved.

H° (G,K®) =
THEOREM 3. Hl(G,O)¢ e —— 9K
aa°(c,x”)¢

PROOF. A proof of this result using exact sequences can be given. However, we

shall prove it directly. Consider a function f € H®(G,K”),=; thus

oKk’
f(gz)¢(g,2)g'(2) = £(z) for all g € G. (4.5)
Suppose 0(z) is a C*® solution of the differential equation ég = f(z) in U. Then
equation (4.5) implies that 9z
i_(e(gz)fb(g,Z) - 6(2)) =0, (4.6)

9z
and we see that 6 « g - 6 = Pg is a holomorphic function. It is easy to check that

g > Pg is a holomorphic l-cocyle and that we have obtained a well defined map

7:H° (G,K™) o Hl(G,O) (4.7)

o
This map is onto. For suppose P € Hl(G,0)¢. By lemma 3 there is a C® function 0
such that

0(gz)d(g,z) - B(z) = Pg(z) for all g € G. (4.8)
It is clear that ?—E € H°(G,K”)

9z ?
shown that the kernel of T is 0H°(G,K®)

< and that it will be mapped to P. It remains to be

o’ but this is straightforward.
5. SERRE'S DUALITY THEOREM.

If B is a Banach space then let B* denote the dual space of B; that is, members
of B* are bounded linear functionals on B. With this notation we have:

THEOREM 4. (Hl(G,O)¢)* = H°(G.O)¢-1K.

PROOF. This proof is a minor modification of the proof of a particular case in

Kra [3]. By theorem 3 it suffices to prove that

H® (G,K®) =\ *
_———%- = H° (G,0) b=lg (5.1)
an°(c,1<°°)¢

1f £ € H°(G,0) then f defines a linear functional & on H°(G,K”) ,- given by
oK

¢—1K.l
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L) = fo/Gf(z)w(z)dzAdE for Y € H°(G,K°°)¢E . (5.2)
Moreover, if Y = 9T where T € H°(G,Km)¢, then
L) = ffwf(z)ﬁr dzadz = ffwﬁ(fT) dzadz = -1, fTdz = o, (5.3)

In (5.3) we have chosen U/G to be the standard fundamental domain w (also called the
normal polygon) for G and applied Stokes' theorem. Thus % is a linear functional on
H° (G,K™ .

(©:K g o

distinct linear functionals, suppose that for some f € H°(G,0)¢-1K,

E/§H°(G,Km) To show that different functions in H°(G,0)¢-H:define

ffwf(deAdz = 0 for all Y €H°(G,K) (5.4)

ok
We consider only real valued functions Y in (5.4) and prove that this equation
implies Imf = 0. From this we shall conclude that f = 0. Equation (5.4) gives

dzadz

fwae(—2if)w 5 =0 for all real valued YeH° (G,K®) (5.5)

oK
If Re(-2if) is nonzero at some point z interior to w, then Re(-2if) has the same

¢

Y has support in VAw, ¥ > 0 in Vlw and Y(z) > 0. Since such a Y would contradict

sign in a neighborhood V of z. We can construct a function Ye H°(G,K®) - such that
(5.5) we must have f = 0.

It remains to prove that every bounded linear functional on H°(G,Kw)¢z/5ﬂ°(G,Km)

(0
is a member of H°(G,0) -1 . Now % can be viewed as a functional on H°(G,K®) - which
% x ok

vanishes on §H°(G,K®) By the Hahn-Banach theorem £ can be extended to a bounded

.

linear functional on Ll(G,¢E) and by the Riesz representation theorem there is a
1

Vv € L°(G,9 k), such that,
2(u) = (u,v) for all u € Ll(G,¢«l_<). (5.6)

Since £ vanishes on 5H°(G,K“) therefore,

¢I

(38,v) = 0 for all 6 € H®(G,K®) (5.7)

6"
Lemma 1 now implies that V is holomorphic. This proves theorem 4. The duality
result follows by combining theorems 2 and 4.

The reader may consult Kra[3] for other examples of theorems about Riemann

surfaces proven by Fuchsian group methods.

REFERENCES

1. GUNNING, R. Lectures on Riemann Surfaces, Princeton University Press, Princeton,
New Jersey, 1966.

2. KRA, I. On Cohomology of Kleinian Groups, Ann. of Math., 89(1969), 533-556.

3. KRA, I. Automorphic Forms and Kleinian Groups, Benjamin, Reading, Mass., 1972.




Advances in

Operations Research

Advances in

Decision SC|ences

Journal of

Applied Mathematics

Journal of
Probability and Statistics

The Scientific
\{\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Journal of

Mathematics

Journal of

Illsmelth alhemaics

Mathematical Problems
in Engineering

Journal of

Function Spaces

Abstract and
Applied Analysis

Stochastic A nalysws

,;,,\K J :1?"
#(ﬁ)}?ﬂ(ﬂﬁf
f. \') :

International Journal of

Differential Equations

ces In

I\/\athemamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization




