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ABSTRACT. Closed spectral measures, which are often used in the theory of operators,
have the desirable property that their Ll-space is complete. In this note criteria

are given which assure the closedness of spectral measures acting in Fréchet spaces.
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1. INTRODUCTION.

Closed vector measures were introduced by I. Kluvanek in [1]. Their basic
properties can be found in the monograph [2]; see also [3]. Applications, such as in
[31, [4], [2] and [5] for example, are based mainly on the fact that the t -space
of a closed vector measure is complete for the topology of uniform convergence of
indefinite integrals. 1In [5], the theory of integration with respect to closed spectral
measures was used to obtain results in operator theory.

Applications of this kind make it desirable to have available criteria which
guarantee the closedness of a given spectral measure. However, the criteria available
for arbitrary vector measures are often difficult to apply to operator-valued measures.
For example, any vector measure assuming its values in a complete metrizable locally
convex space is necessarily closed [2; IV Theorem 7.1]. However, the space of con-
tinuous linear operators on such a space is metrizable for the pointwise convergence
topology only if the underlying space is finite dimensional (this follows from [7;

§ 39 Proposition 4.6], for example).

In this note we prove two results which are concerned with the problem of deter-
mining the closedness of spectral measures. It is shown that if the underlying space
is a separable Freéchet space, then any spectral measure is necessarily closed (cf.
Theorem 1 below).

The second result is based on a relatively successful technique which is often
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used in the study of continuous linear operators on locally convex spaces, namely to
realize the given locally convex space as a projective limit of Banach spaces. It is
then possible to use the well developed theory for operators in Banach spaces. Using
this approach it is shown that if a spectral measure in an (arbitrary) Frechet space
is interpreted as the projective limit of a sequence of spectral measures, each of
which acts in a suitable Banach space, then the given measure is closed if and only

if each of the induced measures is closed (cf. Theorem 2 below).

2. PRELIMINARIES AND STATEMENT OF RESULTS

Throughout this note X will denote a FreEhet space, that is, a complete metrizable
locally convex Hausdorff space. Let [L(X) denote the space of continuous linear
operators of X dnto itself, equipped with the topology of pointwise convergence.

The space of continuous linear functionals on X is denoted by ¥'. The corres-

pondence zﬁxi @x," > e (L(X)', defined by
F7) = JROG,),xly, T e LD, (2.1)
7

is an (algebraic) isomorphism of the temsor product, X ® X', onto the dual of
L(X), [6; §39, Proposition 7.2].

An L(X)-valued operator measure is a o-additive map P : M > L(X), whose domain
M is a o-algebra of subsets of a non-empty set Q2. It follows from the identification
(2.1.) and the Orlicz-Pettis lemma that P is o-additive if and only if the complex-

valued set function
PC*)(x),x"y : E>(PE)(x), x>, & e M,

is o-additive for each x € X and ' € X'. Since X is barrelled it follows that the
range of P, that is, P(M) = {P(E)5 E < &}, is an equicontinuous part of L(X).

An operator-valued measure P : M - L(X) is said to be a spectral measure if it
is multiplicative and P(Q) is the identity operator on X. Of course, the multi-
plicativity of P means that P(E n F) = P(E)P(F), for every £ ¢ M and F ¢ L.

A net {Ea} of sets in M is said to be P-convergent to an element £ of
(respectively, to be P-Cauchy) if, for every neighbourhood U of zero in L(%),
there is an index ay such that P(F) ¢ U, for every set F c Eq& E=(Fu EQ)\

(E n Ea) (respectively, F c Ea A EB)’ F € M, whenever ay < a (respectively ay s
and oy < B).

An operator-valued measure P : M -~ L[(X) is said to be closed if M is
P-complete, that is, if every P-Cauchy net of sets in X is P-convergent to a member
of M; see [1].

Let P : M - L(X) be a spectral measure. A complex-valued, ¥-measurable
function f on © is said to be P-integrable if it is integrable with respect to every

measure ¢ P(*)(x),x'), £ € X and x' ¢ ¥', and if, for every I ¢ ¥, there exists an
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element (fP)(E) of L(X) such that

(fP) (B) (x) ,x"> = [fd<P(-)(x),z">,
E
for each x € X and x'e X'. The element (fP)(Q) is denoted simply by P(f). The

multiplicativity of P implies that (fP)(E) = P(E)P(f) = P(f)P(E), for every E e M.

Since the space L(X) is quasi-complete it follows that every bounded, measurable
function on @ is P-integrable [2; II Lemma 3.1].

The topology of X can be specified by a sequence of seminorms On, n=1,2,...,
satisfying the following compatibility conditions with respect to P, [8; Proposition
2.3].

(i) If f is measurable and ]f(w)] =1, we Q, then

g, P(N &) = q,(&), el

for each n = 1,2,....
(ii) If £ and g are bounded, measurable functions on Q such that 0 < f < g,

then
7, PN @) =g (P@E @), =eX,n=1,2,....

Moreover, the seminorms can be chosen so that ay, < qn+l’ n=1,2,....

If f is a bounded, measurable function on @, then
7, PPN @) < || Fll o,@, e X, (2.2)

for each n = 1,2,...; see [8; Proposition 2.4]. 1In particular, each of the closed
subspaces Qn'l({O}), n=1,2,..., is invariant for P(f).

Denote by Xh, n=1,2,..., the quotient space of X modulo the closed subspace
q;l({O}). The image of an element = € X, under the natural map of X onto Xn’ is
denoted by [x]n, n=1,2,.... The space Xn is a normed space with respect to the

norm

Izl |l = q,@, [=], €X,

for each »n = 1,2,.... The completion of Xn with respect to this norm is denoted by
Xn’ n=1.2,....

For eachm 2n, n = 1,2,..., the map wm,n: Xm > Xn given by

wm,n : [x]m - [xJn, [me € Xm,

is a well defined continuous linear map of Xm onto Xn with norm ngt exceeding one and
hence, has a unique continuous extension Em,n’ onto the whole of Xm.

If F € M, then each subspace q;l({o}), n=1,2, ..., is invariant for P(F) and
hence, there is induced a sequence of linear operators Pn(E): Xn > Xn’ n=1,2,...,

given by

P (D) ([xl) = [P@E) ()], [2]e X . (2.3)
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It is clear from (2.2) that each operator Pn(E)’ n=1,2,..., is continuous with norm
not exceeding one. Hence, each of the induced operators has a unique continuous
extension to }n denoted by 5n(E$, n=1,2,,... It is easily verified that the map

F% : M > L(Xn) given by

P :E~>P (B, Eecl,

is a spectral measure for each 7n = 1,2,.,., with norms uniformly bounded by one.

For each E e M and m2n, n =1,2,..., the formula

~

v (2.4)

mgno Pm(E) = Pn(E) ° wm,n’
is valid. Since X is the projective limit of the spaces 2;, n=1,2,..., the measure
P can be interpreted as the projective limit of the measures Pn’ n=1,2,...; see

[8; Theorem 2.71].

THEOREM 1. Let X be a separable Frechet space. Then any L(X)-valued measure
is a closed measure.

THEOREM 2. ILet X be a Frechet space. A spectral measure P:M + L(X), where
M is a o-algebra of sets, is closed if and only if each of the induced spectral
measures 5n M- L(?ﬂ), n=1,2,..., s closed.

In view of Theorem 1 and the fact that X is separable if and only if each of
the spaces }n’ n=1,2,..., is separable, it is clear that the criterion given in
Theorem 2 is of use mainly for spectral measures acting in a non-separable space. It
reduces the question of closedness for such a spectral measure to the same question
in Banach spaces.

3. PROOFS OF THE THEOREMS.

The following result [5; Proposition 3] is needed.

PROPOSITION. A spectral measure P : M -+ L(X) <is closed if and only if the range
PM) = {P(E); E € M} is a closed set in L(X).

It is interesting to note that the above Proposition is peculiar to spectral
measures. It is not valid for general operator-valued measures (hence, also not
valid for arbitrary vector measures).

For example, let X denote the Banach space of continuous functions on [0,1]
vanishing at zero, equipped with the uniform norm. For each Borel set E of [0,1]

define an element P(E) of L(X) by
s
P(E)(f) : s » [ xg{¥)f(t)dt, e e [0,1], f e X.
0
Then P is o-additive but not multiplicative. It follows from [2; IV Theorem 7.3]
that P is a closed measure because it is absolutely continuous with respect to

Lebesgue measure. However, the range of P 1is not closed in L(X). To see this,

define a sequence of Borel sets in [0,1] by

E =\itk/2", (k+1) 7233 1 < k < 2", k an odd integer},
k
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for each n =1,2,.... We show that {P(En)}:=1 has a limit in L(X) equal to the
operator %P([0,1]), which does not belong to the range of P.
Let Y denote the Banach space of bounded measurable functions on [0,1] with
the uniform norm. Then X 1is a closed subspace of Y. Each of the operators P(En),
n=1,2,..., and %P([0,1]), has a natural extension to a continuous linear operator
g(En), n=1,2,..., and %;([0,1]), on Y, respectively (without an increase in norm).
Let D denote the linear span of the family of characteristic functions based
on the dyadic intervals I(k,r) = (k2 7, (k+1)2™"), 0 <k < 2", and r = 1,2,....
Since elements of X can be approximated in Y by elements of D, to show that
?’(En) > 4P([0,1]) in L(X), it suffices to show that B(E ) (f) » %P([0,17)(f) for
each f € D, This can be easily verified for each f of the form XI(k,r)’ 0 <k < 2p,
r=1,2,..., and the resulc follows.
To prove Theorem 1, let the space X be separable and P : M ~ L(X) be an operator-
valued measure. Let {xn};=1 be a countable dense set in X. It follows from
[2, II Corollary 2] applied to the X-valued vector measure P(-)(xn) : E~> P(E)(xn),
E € M, that for each n = 1,2,..., there exists a finite, positive measure An on M,

such that if £ e M is a A -null set, then P(E)(xn) = 0. Let X = A, where

° o
a, > 0, n =1,2,..., are chosen such that A(Q) < «, It follows from ;Zelensity of
{xn}::1 in X that P(E) = 0 for each A-null set E of M. Hence, P is a closed
measure by [2; IV Theorem 7.3]. This completes the proof of Theorem 1.

To prove Theorem 2, let X be an arbitrary Frechet space. Suppose that
P : M~> L(X) is a closed spectral measure. It follows from [9; Corollary 13], that
there exists a localizable measure A on M such that <P(«)(x),x'> is absolutely
continuous with respect to A for each x € X and x' ¢ X', In particular, if E e¢ M
ind X(E) =0, then P(E) = 0. Since Xn is dense in ;n, it follows from (2.3) that
En(E) = 0, for each »n =1,2,.... Hence, ?n is closed for each n = 1,2,...; see
[2; IV Theorem 7.31].

Conversely, suppose that ;; is closed for each 7n =1,2,.... Let {P(Ea}aeA be
a Cauchy net in P(M). By the Proposition, it suffices to show that there exists a
set E € M such that P(Ea) > P(E), a € A, in L(X).

If x € X and 7 is a positive integer, then the identity
I8, ) (C)) - B @, | = q,(PE) @ - P(EY @),

for each a,B, € A, shows that {;n(Eu)(E)}ae is a bounded Cauchy net in %n for

A
each £ € X, Since {Pn Ea); o € A} is uniformly bounded in L(x), it follows that
{Pn(Ea)}ueA is a bounded Cauchy net in L(}n). As ?; is closed, there is a set

En € M such that
Pn(Ea) > Pn(En)’ a € 4, (3.1)

in L(X).
n
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If m 2 n, then it follows from (2.4) that

wﬂun ° Pﬁ(Ea) = Pn(Ea) o wngn’ o € A.

Taking the limit with respect to a € A gives
v P =7 o P 3.2
"’m, " Pm(Em) Pn (En) wm’ w2 (3.2)

for allm>n and % = 1,2,.... It follows from (3:2) that
Tvn(En) = T:n(Ek), k2n, n=1,2,.... (3.3

Define measurable sets F =(Ym E, for each n =1,2,.... It follows from
n k=n"k N
(3.3), the multiplicativity and o-additivity of Pn and the fact that the sequence of
r

sets (\‘ E , rz= coni
k=% n, decreases monoconically to Fn’ that

~

P(E ) =P/(F) = Pn(Fk), kz2n, n=1,2,.... (3.4

Let E = vy Fn' The identity (3.4) and the fact that FnT E, implies that ?n(En) =

n=1
Pn(E) for each n =1,2,.... It follows easily from (3.1) that P(Ea) +~ P(E), a € 4,

in L(X). This completes the proof.

Remarks. 1t is clear that Theorem 2 is valid for any sequence of seminorms

Qs M = 1,2,..., determining the topology of X, provided it is compatible with respect
to P.

If X is an arbitrary complete, locally convex Hausdorff space, not necessarily
metrizable, then any spectral measure P : M > L(X) can be interpreted as the pro-
jective limit of a directed set of spactral measures Ea’ a € A, acting on Banach
spaces Xa respectively, [8; Theorem 2.7]. The above proof shows that if L(X) is
quasi-complete and P is a closed measure, then so is each of the induced measures
?L, a € A, This part of the proof does not rely on the fact that the topology of X
is determined by a countable family of seminorms. However, the following example
shows that this condition is essential for the validity of the converse statement.

Let X = C[O’ljdenote the space of all complex-valued functions on [0,11],
equipped with the topology of pointwise convergence. Let M be the o-algebra of all

Borel sets of [0,1]. Define a spectral measure P : M > L(X) by the formula

P(E) : f ~ XEJ} f e X,
for each E € M,

For each finite subset F of [0,1] define a continuous seminorm qp on X, by

the formula
qF(f7 = max{|f(w)|; w e F}, f e X.

The family of seminorms {qF; F < [0,1], F finite}, determines the topology of X
and is compatible with respect to P, For each finite subset F of [0,1], the space

XF can be identified with the finite dimensional space CF and hence, the spectral

measure PF is closed. However, the measure P is not closed.
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