ON nth - ORDER DIFFERENTIAL OPERATORS WITH BOHR-NEUGEBAUER TYPE PROPERTY

ARIBINDI SATYANARAYAN RAO

Department of Mathematics, Concordia Univ., Montreal

(Received July 2, 1985 and in revised form July 31, 1986)

ABSTRACT. Suppose B is a bounded linear operator in a Banach space. If the differential operator $\frac{d^n}{dt^n}$ - B has a Bohr-Neugebauer type property for Bochner almost periodic functions, then, for any Stepanov almost periodic continuous function g(t) and any Stepanov-bounded solution of the differential equation $\frac{d^n}{dt^n} u(t) - Bu(t) = g(t), u^{(n-1)}, \dots, u', u$ are all almost periodic.

KEY WORDS AND PHRASES. Bounded linear operator, Bohr-Neugebauer property, Bochner (Stepanov or weakly) almost periodic function, completely continuous normal operator. 1970 AMS SUBJECT CLASSIFICATION SCHEME. PRIMARY 34C25, 34G05; SECONDARY 43A60.

1. INTRODUCTION.

Suppose X is a Banach space and J is the interval - $\infty < t < \infty$. A function $f \in L^p_{loc}(J;X)$ with $1 \leq p < \infty$ is said to be Stepanov - bounded or S^p -bounded on J if

$$\|f\|_{S^{p}} = \sup_{t \in J} \left[\int_{t}^{t+1} \|f(s)\|^{p} ds \right]^{1/p} < \infty.$$
 (1.1)

For the definitions of almost periodicity, weak almost periodicity and S^{P} -almost periodicity, we refer the reader to pp. 3, 39 and 77, Amerio-Prouse [1].

Suppose that B is a bounded linear operator having domain and range in X. We say that the differential operator $\frac{d^n}{dt^n}$ - B has Bohr-Neugebauer property if, for any almost periodic X-valued function f(t) and any bounded (on J) solution of the equation

$$\frac{d^n}{dt^n} u(t) - Bu(t) = f(t) \qquad \text{on } J, \qquad (1.2)$$

u⁽ⁿ⁻¹⁾,...,u', u are all almost periodic.

Our main result is as follows.

THEOREM 1. For a bounded linear operator B with domain D(B) and range R(B) in a Banach space X, let the differential operator $\frac{d^n}{dt^n}$ - B be such that, for any almost periodic X-valued function f(t) and any S^P-bounded solution u: $J \rightarrow D(B)$ of the equation (1.2), $u^{(n-1)}, \ldots, u'$, u are all S¹-almost periodic. If p > 1, then, for any S^P-bounded solution u: $J \rightarrow D(B)$ of the equation

$$\frac{d^{n}}{dt^{n}} u(t) - Bu(t) = g(t) \qquad \text{on } J, \qquad (1.3)$$

u⁽ⁿ⁻¹⁾,...,u',u are all almost periodic.

REMARK 1. Theorem 1 is a generalization of a result of Zaidman [6].

2. PROOF OF THEOREM 1.

By (1.3), we have the representation

$$u^{(n-1)}(t) = u^{(n-1)}(0) + \int_0^t Bu(s)ds + \int_0^t g(s)ds \quad \text{on } J.$$
 (2.1)

If $0 < t_2 - t_1 < 1$ and $p^{-1} + q^{-1} = 1$, then, by the Hölder's inequality,

$$\| \int_{t_{1}}^{t_{2}} Bu(s) ds \| \leq \|\beta\| \cdot \int_{t_{1}}^{t_{2}} \|u(s)\| ds$$

$$\leq \|\beta\| \cdot \left[\int_{t_{1}}^{t_{2}} \|u(s)\|^{p} ds \right]^{p^{-1}} \cdot (t_{2} - t_{1})^{q^{-1}}$$

$$\leq \|\beta\| \cdot \left[\int_{t_{1}}^{t_{1} + 1} \|u(s)\|^{p} \right]^{p^{-1}} \cdot (t_{2} - t_{1})^{q^{-1}}$$

$$\leq \|\beta\| \cdot \|u\|_{s}^{p} \cdot (t_{2} - t_{1})^{q^{-1}}.$$

$$(2.2)$$

Hence $\int_0^t Bu(s) ds$ is uniformly continuous on J. Further, by Theorem 8, p. 79, Amerio-Prouse [1], $\int_0^t g(s) ds$ is uniformly continuous on J. Consequently, $u^{(n-1)}$ is uniformly continuous on J.

Now consider a sequence $\{\rho_k(t)\}_{k=1}^{\infty}$ of non-negative continuous functions on J such that

$$\rho_{\mathbf{k}}(t) = 0 \text{ for } |t| \ge k^{-1}, \int_{-k^{-1}}^{k^{-1}} \rho_{\mathbf{k}}(t) dt = 1.$$
 (2.3)

The convolution between u and ρ_k is defined by

$$(u * \rho_k)(t) = \int_J u(t-s)\rho_k(s)ds = \int_J u(s)\rho_k(t-s)ds.$$
(2.4)

From (1.3), it follows that

$$\frac{d^{n}}{dt^{n}}(u * \rho_{k})(t) - B(u * \rho_{k})(t) = (g * \rho_{k})(t) \text{ on } J. \qquad (2.5)$$

Again by Hölder's inequality,

$$\begin{aligned} \|(\mathbf{u}^{*}\boldsymbol{\rho}_{k}) (\mathbf{t})\| &= \|\int_{-1}^{1} \mathbf{u}(\mathbf{t} - \mathbf{s})\boldsymbol{\rho}_{k}(\mathbf{s}) \, d\mathbf{s} \| \\ &\leq \left[\int_{-1}^{1} \|\mathbf{u}(\mathbf{t} - \mathbf{s})\|^{p} \, d\mathbf{s} \right]^{p-1} \int_{-1}^{1} \left[\hat{\boldsymbol{\rho}}_{k}(\mathbf{s}) \right]^{q} \, d\mathbf{s} \right]^{q-1} \\ &= c_{\boldsymbol{\rho}_{k}} \left[\int_{t-1}^{t+1} \|\mathbf{u}(\sigma)\|^{p} \, d\sigma \right]^{p} \\ &\leq 2 c_{\boldsymbol{\rho}_{k}} \|\mathbf{u}\|_{S}^{p} \text{ for all } \mathbf{t} \in J \text{ and } \mathbf{k} = 1, 2, \dots . \end{aligned}$$

$$(2.6)$$
Similarly, the S¹-almost periodicity of g(t) implies the almost periodicity of

 $(g^* \rho_k)$ (t) for all k = 1, 2, ...

Consequently, it follows from our assumption on the operator $\frac{d^n}{dt^n}$ - B that $(u * \rho_k)^{(n-1)}(t), \ldots, (u * \rho_k)'(t), (u * \rho_k)(t)$ are all S¹-almost periodic from J to X for all $k \ge 1$.

Further, since $u^{(n-1)}$ (t) is uniformly continuous on J, given $\varepsilon > 0$, there

exists $\delta > o$ such that

$$\|u^{(n-1)}(t_1) - u^{(n-1)}(t_2)\| \le \varepsilon \text{ for } |t_1 - t_2| \le \delta.$$
 (2.7)

Consequently, we have, for
$$|t_1 - t_2| \le \delta$$
,
 $\| (u^{(n-1)} * \rho_k) (t_1) - (u^{(n-1)} * \rho_k) (t_2) \|$
 $\le \int_{-k}^{k-1} \| u^{(n-1)} (t_1 - s) - u^{(n-1)} (t_2 - s) \| \rho_k$ (s) ds
 $\le \varepsilon \int_{-k}^{k-1} \rho_k$ (s) ds = ε , by (2.3). (2.8)
Hence, $(u * c_1)^{(n-1)} (t_1 - s) - (u^{(n-1)} * c_2) (t_1)$ is uniformly continuous on L. So, by

Hence $(u * \rho_k)^{(n-1)}$ $(t) = (u^{(n-1)} * \rho_k)$ (t) is uniformly continuous on J. So, by Theorem 7, p. 78, Amerio-Prouse [1], $(u^{(n-1)} * \rho_k)$ (t) is almost periodic.

Furthermore, by the uniform continuity of $u^{(n-1)}$ (t) on J, the sequence of convolutions $(u^{(n-1)} * \rho_k)$ (t) converges to $u^{(n-1)}$ (t) as $k \neq \infty$, uniformly on J. Hence $u^{(n-1)}$ (t) is almost periodic from J to X, and so is bounded on J. Therefore $u^{(n-2)}$ (t) is uniformly continuous on J. Consequently, $(u^{(n-2)} * \rho_k)$ (t) is almost periodic and $(u^{(n-2)} * \rho_k)$ (t) $\neq u^{(n-2)}$ (t) as $k \neq \infty$, uniformly on J. Hence $u^{(n-2)}$ (t) is almost periodic.

Thus we conclude successively that $u^{(n-1)}, \ldots, u', u$ are all almost periodic from J to X, which completes the proof of the theorem.

REMARK 2. The conclusion of Theorem 1 remains valid for any S^1 -bounded and uniformly continuous solution of the equation (1.3).

PROOF. By the Lemma of Rao [5], such a solution is bounded on J. Consequently, by the representation (2.1), $u^{(n-1)}$ is uniformly continuous on J.

REMARK 3. If B = 0, then Theorem 1 holds for $p \ge 1$.

3. NOTES.

(i) Suppose X is a separable Hilbert space, and consider the differential equation

$$\frac{d^{n}}{dt^{n}} u(t) - Bu(t) = f(t) \quad \text{on } J, \qquad (3.1)$$

where $f: J \rightarrow X$ is an almost periodic function, and $B: X \rightarrow X$ is a completely continuous normal operator. Then, if u is a bounded solution of $(3.1), u^{(n)}$ is almost periodic (as shown in the proof of Theorem 1 of Cooke [3]). Therefore, by the Corollary to Lemma 5 of Cooke [3], $u^{(n-1)}, \ldots, u', u$ are all almost periodic. That is, the operator $\frac{d^n}{dt^n}$ - B has Bohr-Neugebauer property.

Now assume that u is an S^p-bounded solution $(1 of the equation <math>(3.1)_{\circ}$. If we replace g by f in the proof of our Theorem 1, then, by the Bohr-Neugebauer property of the operator $\frac{d^n}{dt^n} - B$, it follows that $u^{(n-1)}, \ldots, u', u$ are all almost periodic. Hence the operator $\frac{d^n}{dt^n} - B$ satisfies the assumption of Theorem 1 for p > 1.

(ii) Finally, suppose X is a reflexive space and B = 0. Given an almost periodic X-valued function f(t), assume u(t) is a bounded solution of the differential equation

$$\frac{d^{n}}{dt^{n}} u(t) = f(t) \quad \text{on J.}$$
(3.2)

Then it follows from Lemma 2 of Cooke [3] that $u^{(n-1)}, \ldots, u'$ are all bounded on J. Hence we conclude successively that $u^{(n-1)}, \ldots, u', u$ are all almost periodic (see Amerio-Prouse [1], p. 55 and Authors' Remark on p. 82). Therefore the operator $\frac{d^n}{dt^n}$ has Bohr-Neugebauer property.

Now, given an S^1 -almost periodic continuous X-valued function g(t), suppose u(t) is an S^p -bounded solution $(1 \le p < \infty)$ of the differential equation

$$\frac{d^n}{dt^n} u(t) = g(t) \quad \text{on } J. \tag{3.3}$$

From (3.3), it follows that

$$\frac{d^{n}}{dt^{n}}(u * \rho_{k})(t) = (g * \rho_{k})(t) \quad \text{on } J, \qquad (3.4)$$

where $\{\rho_k(t)\}_{k=1}^{\infty}$ is the sequence defined in the proof of our Theorem 1. Then $(u * \rho_k)(t)$ is bounded on J and $(g * \rho_k)(t)$ is almost periodic from J to X. So, by the Bohr-Neugebauer property of the operator $\frac{d^n}{dt^n}$, $(u * \rho_k)^{(n-1)}(t), \ldots, (u * \rho_k)'(t)$, $(u * \rho_k)$ (t) are all almost periodic.

By (3.3), it follows from Theorem 8, p. 79, Amerio-Prouse [1] that $u^{(n-1)}(t)$ is uniformly continuous on J. Consequently, we conclude successively that $u^{(n+1)}(t), \ldots, u'(t), u(t)$ are all almost periodic. Hence the operator $\frac{d^n}{dt^n}$ satisfies the assumption of Theorem 1 for $p \ge 1$.

4. CONSEQUENCES OF THEOREM 1.

Let L(X,X) be the Banach space of all bounded linear operators on X into itself, with the uniform operator topology. As consequences of our Theorem 1, we demonstrate the following results.

THEOREM 2. In a reflexive space X, suppose $f : J \rightarrow X$ is an S^{p} -almost periodic continuous function $(1 \le p < \infty)$, and $B : J \rightarrow L(X,X)$ is almost periodic with respect to the norm of L(X,X). If $u : J \rightarrow X$ is any S^{p} -almost periodic solution of the differential equation

$$\frac{d^n}{dt^n} u(t) = B(t)u(t) + f(t) \quad \text{on } J, \tag{4.1}$$

then $u^{(n-1)}, \ldots, u', u$ are all almost periodic from J to X.

PROOF. Since B(t) is almost periodic from J to L(X,X), and u(t) is S^{P} -almost periodic from J to X, we can show that B(t)u(t) is S^{P} -almost periodic from J to X (see Rao [4]). Hence B(t)u(t) + f(t) is S^{P} -almost periodic from J to X. If we write

$$v(t) = B(t)u(t) + f(t)$$
 on J, (4.2)

then (4.1) becomes

$$\frac{d^{n}}{dt^{n}} u(t) = v(t) \quad \text{on } J.$$
(4.3)

By our Note (ii), the operator $\frac{d^n}{dt^n}$ satisfies the assumption of our Theorem 1 for $p \ge 1$. Since u is S^p -almost periodic, it is S^p -bounded on J. So, by Theorem 1, $u^{(n-1)}, \ldots, u', u$ are all almost periodic.

THEOREM 3. In a reflexive space X, suppose f : J + X is an S^{p} -almost periodic continuous function $(1 \le p < \infty)$, and B : X + X is a completely continuous linear operator. If u : J + X is a weakly almost periodic (strong) solution of the differential equation

$$\frac{d^{n}}{dt^{n}} u(t) = Bu(t) + f(t) \quad \text{on } J, \qquad (4.4)$$

then $u^{(n-1)}, \ldots, u', u$ are all almost periodic.

PROOF. Since B is a bounded linear operator, Bu is also weakly almost periodic. Further, B being a completely continuous operator, the range of Bu is relatively compact. Hence, by Theorem 10, p. 45, Amerio-Prouse [1], Bu is almost periodic. Consequently, Bu + f is S^{P} -almost periodic. Now, if we write

$$w(t) = Bu(t) + f(t)$$
 on J, (4.5)

then (4.4) becomes

$$\frac{d^n}{dt^n} u(t) = w(t) \quad \text{on J.}$$
(4.6)

Since u is weakly almost periodic, it is bounded on J. Therefore, by Theorem 1, $u^{(n-1)}, \ldots, u', u$ are all almost periodic.

REMARK 4. Suppose X is a Hilbert space and B (L(X,X) with $B \ge 0$. Consider the differential equation

$$\frac{d^2}{dt^2} u(t) - Bu(t) = f(t) ext{ on } J, ext{ (4.7)}$$

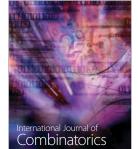
where $f: J \rightarrow X$ is an almost periodic function. Then any bounded solution $u: J \rightarrow X$ of the equation (4.7) is almost periodic (see Zaidman [7]). By (4.7), u'(t) is uniformly continuous on J. Hence, by Theorem 6, p. 6, Amerio-Prouse [1], u'(t) is almost periodic. Therefore the operator $\frac{d^2}{dt^2}$ - B has Bohr-Neugebauer property, and so satisfies the assumption of Theorem 1 for p > 1.

REFERENCES

- 1. AMERIO, L. and PROUSE, G. <u>Almost Periodic Functions and Functional Equations</u>, Van Nostrand Reinhold Company (1971).
- BOCHNER, S. and NEUMANN, J.V. On Compact Solutions of Operational-differential Equations 1, <u>Ann. of Math.</u>, <u>36</u> (1935), 255-291.
- 3. COOKE, R. Almost periodicity of Bounded and Compact Solutions of Differential Equations, <u>Duke Math. J.</u>, <u>36</u> (1969), 273-276.
- 4. RAO, A.S. On the Stepanov-almost periodic solution of an abstract differential equation, <u>Indiana Univ. Math. J.</u>, 23 (1973), 205-208.
- RAO, A.S. On the Stepanov-bounded primitive of a Stepanov-almost periodic function, <u>Istit. Lombardo Accad. Sci. Lett. Rend. A.</u>, <u>109</u> (1975), 65-68.
- 6. ZAIDMAN, S. A remark on Differential Operators with Bohr-Neugebauer property, Istit. Lombardo Accad. Sci. Lett. Rend. A., 105 (1971), 708-712.
- 7. ZAIDMAN, S. Soluzioni quasi-periodiche per alcune equazioni differenziali in spazi Hilbertiani, <u>Ric. Mat.</u>, <u>13</u> (1964), 118-134.

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

