CORRIGENDUM

QUASI-ADJOINT THIRD ORDER DIFFERENCE EQUATIONS: OSCILLATORY and ASYMPTOTIC BEHAVIOR

B. SMITH
Department of Mathematics
Texas Southern University Houston, Texas 77004 U.S.A.
There are some errors in the above paper which appeared in Vol. 9, No. 4, (1986), pages 781-784. These errors are corrected as follows:
The inequality and continued equality displayed after (2.1) on page 782 should be labeled (2.2).
Replace the sentence following (2.5) on page 784 with
The left member of (2.5) becomes unbounded as i $\rightarrow \infty$. The right member of (2.5) is bounded as $i \rightarrow \infty$.

ON THE BOUNDNESS AND OSCILLATON OF SOLUTIONS TO $\left(m(t) x^{\prime}\right) '+a(t) b(x)=0$

A.J. KROOPNICK
Division of Retirement and Studies Social Security Administration
1-B-10 Annex Building
Baltimore, Maryland 21235

The author would like to correct a remark made on his above paper which appeared in Volume 10, No. 2, (1987), page 47-50.

It was stated there that under certain hypotheses, the solutions to (m(t) $\left.x^{\prime}\right)^{\prime}+$ $a(t) b(x)=f(t)$ were bounded provided $f(t)$ was bounded and continuous. However, that is only true if it can be shown that x^{\prime} ultimately does not change sign; otherwise, one cannot invoke the mean value theorem which was done in that instance. In general, it is not true that the solutions are bounded even if the homogeneous equation has only bounded solutions. For example, consider the equation $x^{\prime \prime}+x=\cos (t)$. The general solution is given by $x(t)=A \sin (t)+B \cos (t)+t s i n(t) / 2$ which is unbounded while all solutions to the related homogenous equation $x^{\prime \prime}+x=0$ are bounded since its general soluion is $x(t)=A \sin (t)+B \cos (t)$.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

