M-QUASI-HYPONORMAL COMPOSITION OPERATORS

PUSHPA R. SURI and N. SINGH

Department of Mathematics Kurukshetra University Kurukshetra - 132 119, India

(Received November 12, 1985)

ABSTRACT. A necessary and sufficient condition is obtained for M-quasi-hyponormal composition operators. It has also been proved that the class of M-quasi-hyponormal composition operators coincides with the class of M-paranormal composition operators. Existence of M-hyponormal composition operators which are not hyponormal; and M-quasi-hyponormal composition operators which are not M-hyponormal and quasi-hyponormal are also shown.

KEY WORDS AND PHRASES. M-hyponormal, M-quasi-hyponormal, M-paranormal, normal composition operators.
1980 AMS SUBJECT CLASSIFICATION CODE. 47

1. PRELIMINARIES.

Let (X,S,m) be a sigma-finite measure space and T a measurable transformation from X into itself (that is one $mT^{-1}(E) = 0$ whenever m(E) = 0 for $E \in S$). Then the equation $C_T f = fo T$ for every f in $L^2(m)$ defines a linear transformation. If C_T is bounded with range in $L^2(m)$, then it is called composition operator. If X = N the set of all non-zero positive integers and m is counting measure on the family of all subsets of N, then $L^2(m) = \ell^2$ (the Hilbert space of all square summable sequences).

Let $f_0 = \frac{dmT^{-1}}{dm}$ be the Radon-Nikodym derivative of the measure mT^{-1} with

respect to the measure m,

 $\frac{dm(ToT)^{-1}}{dm^{T}} = g_{o'} \qquad \frac{dm(ToT)^{-1}}{dm} = h_{o'}$

Then $h_o = f_o g_o$.

Let B(H) denote the Banach algebra of all bounded linear operators on the Hilbert space H. An operator T ε B(H) is called M-quasi-hypornormal if there exists M > 0 such that

$$M^{2}T^{*T}T^{2} - (T^{T}T)^{2} \ge 0$$

or equivalently $||T^{*}Tx|| \le M ||T^{2}x||$ for all x in H [1]. T is said to be M-paranormal [2] if for all unit vectors x in H

$$|\mathbf{T}\mathbf{x}||^2 \leq \mathbf{M} ||\mathbf{T}^2\mathbf{x}||.$$

T is said to be M-hyponormal [2] if

$$||T\hat{x}|| \leq M ||Tx||$$
 for all x in H.

The purpose of this paper is to generalize the results on quasi-hyponormal composition operators in [3] for M-quasi-hyponormal composition operators.

2. M-QUASI-HYPONORMAL COMPOSITION OPERATORS.

In this section we obtain a necessary and sufficient condition for M-quasihyponormal composition operators and then show that the class of M-quasi-hyponormal composition operators on ℓ^2 coincides with the class of M-paranormal composition operators. We also show the existence of M-hyponormal composition operators which are not hyponormal, and M-quasi-hyponormal composition operators which are not M-hyponormal and quasi-hyponormal.

THEOREM 2.1. Let $C_T \in B(L^2)$. Then C_T is M-quasi-hyponormal if and only if $f_0^2 \leq M^2 h_0$.

PROOF. Since for any f in L^2 ,

$$(C_{T}^{*2}C_{T}^{2}f,f) = (C_{T}^{2}f,C_{T}^{2}f) = \int h_{o} |f|^{2} dm,$$

= $(M_{h_{o}}f,f),$

where M_{h_o} is the multiplication operator induced by h_o , therefore $C_T^{*2}C_T^2 = M_{h_o}$. Similarly it can be seen that $C_T^{*}C_T = M_{f_o}$. C_T is M-quasi-hyponormal if and only if

$$M^{2}C_{T}^{*^{2}}C_{T}^{2} - (C_{T}^{*}C_{T})^{2} \ge 0.$$

This implies that

$$M^2 M_{h_o} - M_{f_o}^2 \ge 0,$$

that is $f_0^2 \leq M^2 h_0$.

Hence the result.

COROLLARY. Let $C_T \in B(\ell^2)$. Then C_T is M-quasi-hyponormal if and only if $f_o \leq M^2 g_o.$

PROOF. Since $h_0 = f_0 \cdot g_0$ and f_0 is positive, therefore, by above theorem we get the result.

THEOREM 2.2. Let $C_T \in B(\ell^2)$. Then C_T is M-quasi-hyponormal if and only if C_T is M-paranormal.

 $^\circ$ PROOF. Necessity is true for any bounded operator A. For the sufficiency, let $C_{\rm T}$ be M-paranormal, then

M-QUASI-HYPONORMAL COMPOSITION OPERATORS

Hence $f_0^2 \leq M^2 h_0$; C_T is M-quasi-hyponormal.

THEOREM 2.3. Let $C_T \in B(\ell^2)$ and $T:N \to N$ be one-to-one. Then the following are equivalent.

(i)	Normal
(ii)	M-hyponormal
(iii)	M-quasi-hyponormal.

PROOF. (i) implies (ii), (ii) implies (iii) are always true for any bounded operator A. We show that (iii) implies (i). Let C_T be M-quasi-hyponormal. Then $||C_T^* C_T^f|| \leq M ||C_T^2f||$ for all f in ℓ^2 . Now T is onto because if T is not onto then N|T(N) is non-empty and for $n \in N|T(N)$

 $||C_{T}^{*}C_{T}X_{\{n\}}|| = 1 \text{ and } ||C_{T}C_{T}X_{\{n\}}|| = 0.$

There exists no M>O such that C_T is M-quasi-hyponormal which is a contradiction. Since T is one-to-one, therefore, T is invertible, by Theorem 2.2 [4] C_T is invertible and C_T is normal by Theorem 2.1 [3].

Here we give an example of a composition operator on l^2 which is M-hyponormal but not hyponormal.

EXAMPLE 1. Let T:N N be the mapping such that

$$T(1) = 2$$
, $T(2) = 1$, $T(3) = 2$ and
 $T(3n+m) = n+2$, $m = 1,2,3$ and $n \in N$.

Then C_{T} is not hyponormal as $f_{O}OT \leq f_{O}$ for n = 1. C_{T} is M-hyponormal for $M \geq \sqrt{2}$.

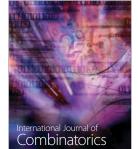
EXAMPLE 2. Let $T:N \rightarrow N$ be defined by T(1) = 2, T(2) = 1, T(3n+m) = n+1, m = 0,1,2 and n $\in N$. Then C_T is $\sqrt{2}$ - quasi-hyponormal but C_T is not $\sqrt{2}$ -hyponormal. C_T is not quasi-hyponormal also.

REFERENCES

- SURI, P.R. and SINGH, N. M-Quasi-Hyponormal Operators, <u>Bull. Austral. Math. Soc.</u> (Communicated).
- ARORA, S.S. and KUMAR, R. M-Paranormal Operators, <u>Publications De L'Institut</u> <u>Mathematique Nouvelle Serie</u> 29(1981), 5-13.
- SINGH, R.K., GUPTA, D.K. and KOMAL, B.S. Some Results On Composition Operators on l², <u>Internat. J. Math. and Math. Sci.</u> <u>2</u>(1979), 29-34.
- SINGH, R.K. and KOMAL, B.S. Composition Operator on l^P and its Adjoint, Proc. Amer. Math. Soc. 70(1978), 21-25.

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

