ON COINCIDENCE THEOREMS FOR A FAMILY OF MAPPINGS IN
CONVEX METRIC SPACES

OLGA HADZIC
Faculty of Science
Institute of Mathematics
Novi Sad, YUGOSLAVIA

(Received July 24, 1985 and in revised form July 30, 1986)

ABSTRACT. In this paper, a theorem on common fixed points for a family of mappings
declared on convex metric spaces is presented. This theorem is a generalization of
the well known fixed point theorem proved by Assad and Kirk. As an application a
common fixed point theorem in metric spaces with a convex structure is obtained.

KEY WORDS AND PHRASES. Common fixed points, convex metric spaces, metric spaces
with a convex structure.

1980 AMS SUBJECT CLASSIFICATION CODE. 47H10.

1. INTRODUCTION.

Some fixed point theorems and theorems on coincidence points in convex metric
spaces or spaces with a convex structure in the sense of Takahashi [1] are obtained
by many authors [1-8].

In this paper we shall give a generalization of Theorem 1 from [9] in the case
of a convex metric space and as an application we shall obtain a theorem on
coincidence points in metric spaces with a convex structure.

First, we shall give two definitions and a proposition which we shall use in the
sequel [2].

DEFINITION 1. A metric space (M,d) is convex if for each $x,y \in M$ with
$x \neq y$ there exists $z \in M$, $x \neq z \neq y$, such that

$$d(x,z) + d(z,y) \leq d(x,y).$$

DEFINITION 2. Let (M,d) be a metric space. The mapping W which maps
$M \times [0,1]$ into M is called a convex structure if for all $x,y,u \in M$ and
t $t \in [0,1]$:

$$d(u,W(x,y,t)) \leq td(u,x) + (1-t)d(u,y).$$

This definition is similar to the definition of metric spaces of hyperbolic
type. The class of metric spaces of hyperbolic type includes all normed linear
spaces, as well as all spaces with hyperbolic metric. Some further results on the
fixed point theory in such spaces are obtained by W.A. Kirk [5] and K.Goebel and
W.A. Kirk [10]. It is known that every metric space with a convex structure belongs
to the class of convex metric spaces. The following result is well known [2].

Proposition. Let \(K \) be a closed subset of a complete and convex metric space \(M \). If \(x \in K \) and \(y \notin K \), then there exists a point \(z \in \overline{K} \) such that:

\[
d(x,z) + d(z,y) = d(x,y).
\]

Let us recall that a pair of mappings \((A,S)\) is weakly commutative, where \((M,d)\) is a metric space, \(K \subseteq M \) and \(A,S : K \to M \), if:

\[
Ax,Sx \in K \implies d(ASx,SAx) \leq d(Sx,Ax) \quad [11].
\]

2. TWO COINCIDENCE THEOREMS.

First, we shall prove a generalization of Theorem 1 from [9] in the case of convex metric spaces. This theorem is also a generalization of a fixed point theorem proved by Assad and Kirk in [2], if the mapping \(\phi \) is single valued.

Theorem 1. Let \((M,d)\) be a complete, convex metric space, \(K \) a nonempty closed subset of \(M \), \(S \) and \(T \) continuous mappings from \(M \) into \(M \) so that \(\overline{K} \subseteq SK \cap TK \), for every \(i \in \mathbb{N} \) \(A_i : K \to M \) continuous mapping such that \(A_iK \cap K \subseteq SK \cap TK \), \((A_i,S)\) and \((A_i,T)\) weakly commutative pairs and there exists \(q \in [0,1) \) so that for every \(x,y \in K \) and every \(i,j \in \mathbb{N} \) (\(i \neq j \)):

\[
d(A_i^x,A_j^y) \leq q \ d(Sx,Ty).
\]

If for every \(i \in \mathbb{N} \) and \(x \in K \):

\[
Tx \in \overline{K} \implies A_i^x \in K \quad \text{and} \quad Sx \in \overline{K} \implies A_i^x \in K
\]

then there exists \(z \in K \) so that:

\[
z = Tz = Sz = A_i^z, \quad \text{for every} \quad i \in \mathbb{N}
\]

and if \(Tv = Sv = A_i^v, \quad \text{for every} \quad i \in \mathbb{N} \) then \(Tz = Tv \).

Proof. Let \(p \in \overline{K} \) and \(p_o \in K \) so that \(p = Tp_o \). Such \(p_o \) exists since \(\overline{K} \subseteq TK \). Further, \(Tp_o \in \overline{K} \) implies that for every \(i \in \mathbb{N} \), \(A_iP_0 \in K \) and so we have that \(A_iP_0 \subseteq A_iK \cap K \subseteq SK \). Let \(p_1 \in K \) be such that \(Sp_1 = A_iP_0 \in K \) and \(p_1' = A_iP_0 \), \(p_2' = A_iP_1 \). If \(p_2' \notin K \) then from \(A_2P_1 \subseteq A_2K \cap K \subseteq TK \) it follows that there exists \(p_2 \in K \) so that \(Tp_2 = A_2P_1 \). Suppose now that \(p_2' \notin K \). Then from the Proposition it follows that there exists \(q \in \overline{K} \) so that:

\[
d(Sp_1,Tp_2) + d(Tp_2,A_2P_1) = d(Sp_1,A_2P_1) \quad \text{where} \quad q = Tp_2.
\]

Such element \(p_2' \in K \) exists since \(\overline{K} \subseteq TK \). In this way we obtain two sequences \(\{p_1\}_{i \in \mathbb{N}} \) and \(\{p_1'\}_{i \in \mathbb{N}} \) so that for every \(n \in \mathbb{N} \) \(p_n \in K \), \(p_{n+1}' = A_{n+1}P_n \) and the following implications hold:

\[
(1) \quad p_{2n} \in K \implies p_{2n}' = Tp_{2n}.
\]

\[
P' \notin K \implies Tp' = q \in \overline{K} \quad \text{and} \quad p_{2n}' = Tp_{2n} \quad \text{for} \quad 2n \in \mathbb{N}
\]

\[
d(Sp_{2n-1},Tp_{2n}) + d(Tp_{2n},A_{2n}P_{2n-1}) = d(Sp_{2n-1},A_{2n}P_{2n-1}).
\]
COINCIDENCE THEOREMS IN CONVEX METRIC SPACES

(ii) \(p_{2n+1} \in K \Rightarrow p_{2n+1} = S_{2n+1} \).

\[p_{2n+1} \notin K \Rightarrow S_{2n+1} \in \partial K \quad \text{and} \]

\[d(T_{p_{2n}}, S_{2n+1}) + d(S_{2n+1}, A_{2n+1}P_{2n}) = d(T_{p_{2n}}, A_{2n+1}P_{2n}) . \]

Let:

\[P_0 = \{ p_{2n} \in \{ p_n \mid n \in \mathbb{N} \}, p_{2n}' = T_{p_{2n}}, n \in \mathbb{N} \} , \]

\[P_1 = \{ p_{2n} \in \{ p_n \mid n \in \mathbb{N} \}, p_{2n}' \notin T_{p_{2n}}, n \in \mathbb{N} \} , \]

\[Q_0 = \{ p_{2n+1} \in \{ p_n \mid n \in \mathbb{N} \}, p_{2n+1}' = S_{2n+1}, n \in \mathbb{N} \} , \]

\[Q_1 = \{ p_{2n+1} \in \{ p_n \mid n \in \mathbb{N} \}, p_{2n+1}' \notin S_{2n+1}, n \in \mathbb{N} \} . \]

Let us prove that there exists \(z \in K \) such that:

\[z = \lim_{n \to \infty} T_{p_{2n}} = \lim_{n \to \infty} S_{2n+1} \quad \text{for} \quad n \in \mathbb{N}. \]

Suppose that \(p_{2n} \in P_1 \). Then \(T_{p_{2n}} \in \partial K \) and so \(A_{2n+1}p_{2n} = p_{2n+1}' \in K \) which implies that \(p_{2n+1}' = S_{2n+1} \) and so \(p_{2n+1} \in Q_0 \). So we have the following possibilities:

\[(p_{2n}, p_{2n+1}) \in P_0 \times Q_0; (p_{2n}, p_{2n+1}) \in P_0 \times Q_1; (p_{2n}, p_{2n+1}) \in P_1 \times Q_0. \]

a) \((p_{2n}, p_{2n+1}) \in P_0 \times Q_0.\)

Then

\[d(T_{p_{2n}}, S_{2n+1}) = d(A_{2n}p_{2n-1}, A_{2n+1}P_{2n}) \leq d(S_{2n-1}, T_{p_{2n}}). \]

b) \((p_{2n}, p_{2n+1}) \in P_0 \times Q_1.\)

Then:

\[d(T_{p_{2n}}, S_{2n+1}) = d(T_{p_{2n}}, A_{2n+1}P_{2n}) - d(S_{2n+1}, A_{2n+1}P_{2n}) \leq d(T_{p_{2n}}, A_{2n+1}P_{2n}) \]

\[= d(A_{2n}p_{2n-1}, A_{2n+1}P_{2n}) \leq d(S_{2n-1}, T_{p_{2n}}). \]

c) \((p_{2n}, p_{2n+1}) \in P_1 \times Q_0 \Rightarrow d(T_{p_{2n}}, S_{2n+1}) \leq d(T_{p_{2n-2}}, S_{2n-1}).\)

In this case we have:

\[d(T_{p_{2n}}, S_{2n+1}) \leq d(T_{p_{2n}}, A_{2n}p_{2n-1}) + d(A_{2n}p_{2n-1}, S_{2n+1}) \leq \]

\[\leq d(T_{p_{2n}}, A_{2n}p_{2n-1}) + d(A_{2n}p_{2n-1}, A_{2n+1}P_{2n}) \leq \]

\[\leq d(T_{p_{2n}}, A_{2n}p_{2n-1}) + q d(S_{2n-1}, T_{p_{2n}}) \leq \]

\[\leq d(S_{2n-1}, T_{p_{2n}}) + d(T_{p_{2n}}, A_{2n}p_{2n-1}) = d(S_{2n-1}, A_{2n}p_{2n-1}) . \]

Since \(p_{2n} \in P_1 \) we have that \(p_{2n-1} \in Q_0 \) and so \(S_{2n-1} = A_{2n-1}P_{2n-2} \). Further

\[(p_{2n-1}, p_{2n}) \in Q_0 \times Q_0 \Rightarrow d(S_{2n-1}, T_{p_{2n}}) \leq d(T_{p_{2n-2}}, S_{2n-1}), \]

\[(p_{2n-1}, p_{2n}) \in Q_1 \times Q_0 \Rightarrow d(S_{2n-1}, T_{p_{2n}}) \leq d(T_{p_{2n-2}}, S_{2n-3}). \]
\((p_{2n}, p_{2n+1}) \in Q_o \times P_1 \Rightarrow d(S_{2n-1}, T_{2n}) \leq q \cdot d(T_{2n-2}, S_{2n-1})\)

If \(r = \max\{d(T_{2n}, S_{2n+1}), d(T_{2n}, S_{2n})\}\) then we can easily prove that:
\[d(T_{2n}, S_{2n+1}) \leq q^{n-1} \cdot r\] and \(d(S_{2n+1}, T_{2n+2}) \leq q^n \cdot r\)

for every \(n \in \mathbb{N}\).

This implies that for every \(n \in \mathbb{N}\):
\[d(T_{2n}, T_{2n+2}) \leq r(q^{n-1} + q^n)\]

Hence, the sequence \(\{T_{2n}\}_{n \in \mathbb{N}}\) is a Cauchy sequence and since \(M\) is complete and \(K\) is closed it follows that there exists \(z \in K\) so that \(z = \lim_{n \to \infty} T_{2n} = \lim_{n \to \infty} S_{2n+1}\).

We shall prove that \(Tz = Sz = A_m z\), for every \(m \in \mathbb{N}\). It is obvious that there exists a sequence \(\{n_k\}_{k \in \mathbb{N}}\) in \(\mathbb{N}\) such that \(T_{2n_k} = A_{2n_k} p_{2n_k-1}\), for every \(k \in \mathbb{N}\) or \(S_{2n_k-1} = A_{2n_k-1} p_{2n_k-2}\), for every \(k \in \mathbb{N}\). Suppose that \(T_{2n_k} = A_{2n_k} p_{2n_k-1}\), for every \(k \in \mathbb{N}\). Then for every \(k \in \mathbb{N}\) we have:
\[d(ST_{2n_k} A_m z) = d(SA_{2n_k} p_{2n_k-1} A_m z)\]
\[d(ST_{2n_k} A_m z) \leq d(SA_{2n_k} p_{2n_k-1} A_{2n_k} p_{2n_k-1}) + d(A_{2n_k} S_{2n_k-1} A_m z) \leq d(A_{2n_k} p_{2n_k-1} S_{2n_k-1}) + q \cdot d(S_{2n_k-1}, Sz) (m \neq 2n_k)\]

and when \(k \to \infty\) we obtain that:
\[d(Sz, A_m z) \leq q \cdot d(Tz, Sz), \text{ for every } m \in \mathbb{N}.\] (2.1)

If \(T = S\) the proof of the relation \(Sz = Tz = A_m z\) is complete.

Let us remark that (2.1) holds also in the case when \(S, T : K \to M\). Further, we have:
\[d(A_m p_{2n_k}, T_{2n_k}) = d(A_m p_{2n_k}, A_{2n_k} p_{2n_k-1}) \leq q \cdot d(T_{2n_k}, S_{2n_k-1}) (m \neq 2n_k)\]

and if \(k \to \infty\) we obtain that \(\lim_{k \to \infty} A_m p_{2n_k} = z\). Further, \(Sz = z\) since \(d(A_m p_{2n_k}, S_{2n_k}) \leq q \cdot d(T_{2n_k}, S_{2n_k-1}) (m \neq 2n_k)\) implies that \(d(z, Sz) \leq q \cdot d(z, Sz)\) where we use that \((A_{2n_k}, S)\) is weakly commutative.

Thus we obtain:
\[Tz = T(\lim_{k \to \infty} A_m p_{2n_k}) = \lim_{k \to \infty} T(A_m p_{2n_k}) = A_m z.\] (2.2)

Since \((A_m, T)\) is a weakly commutative pair of mappings we have that \(d(T(A_m p_{2n_k}), A_m (T_{2n_k})) \leq d(A_m p_{2n_k}, T_{2n_k})\) which implies that \(\lim_{k \to \infty} A_m (T_{2n_k}) = \lim_{k \to \infty} T(A_m p_{2n_k})\) and so from (2.2) we obtain that:
\[Tz = \lim_{k \to \infty} A_m (T_{2n_k}) = A_m (\lim_{k \to \infty} T_{2n_k}) = A_m z.\]
Using (2.1) we conclude that:

\[d(Sz, A_m z) = d(Sz, Tz) \leq q d(Tz, Sz) \]

and so \(Sz = A_m z = Tz \), for every \(m \in \mathbb{N} \).

Let \(u \in K \) be such that \(Tu = Su = A_m u \), for every \(m \in \mathbb{N} \). Then

\[d(Tu, Tz) = d(A_m u, A_{m+1} z) \leq q d(Tu, Tz) \]

which implies that \(Tu = Tz \).

REMARK 1. If \(z \) is an interior point in \(K \) it is enough to suppose that \(S, T : K \to M \) since from \(\lim_{k \to \infty} A_m z^{p_{2n_k}} = z \) it follows that there exists \(k_0 \in \mathbb{N} \) such that for all \(k \geq k_0 \), \(A_m z^{p_{2n_k}} \in K \). In this case \(T(A_m z^{p_{2n_k}}) \) is defined for every \(k \geq k_0 \).

We shall give some conditions when we can also suppose that \(S \) and \(T \) are defined only on \(K \).

a) \(d(Tu, Su) \leq t d(Su, A_m u) \), for some \(m \in \mathbb{N} \), where \(qt \in [0,1) \) and \(u \) belongs to the boundary of \(K \). Then

\[d(Sz, A_m z) \leq q d(Tz, Sz) \leq qt \]

and so \(Sz = A_m z = Tz \).

b) \(d(Tu, A_m u) \leq r_m d(Tu, Su) \), for some \(m \in \mathbb{N} \), where \((r_m + q) < 1 \) and \(u \) belongs to the boundary of \(K \). Then

\[d(Tz, Sz) \leq d(Tz, A_m z) + d(A_m z, A_2 n_k z^{p_{2n_k}-1}) + d(A_2 n_k z^{p_{2n_k}-1}, Sz) \]

and if \(k \to \infty \) we obtain that

\[d(Tz, Sz) \leq d(Tz, A_m z) + q d(Sz, Tz) \]

(\(r_m + q \) d(Tz, Sz) which implies that \(Tz = Sz = A_m z \), for every \(m \in \mathbb{N} \).

c) \(d(Tu, Su) \leq s_m d(Tu, A_m u) \), for some \(m \in \mathbb{N} \), where \(s_m (1+q) < 1 \) and \(u \) belongs to the boundary of \(K \). We have that

\[d(Tz, A_m z) \leq d(Tz, Sz) + d(Sz, A_2 n_k z^{p_{2n_k}-1}) + + d(A_2 n_k z^{p_{2n_k}-1}, A_m z) \]

and if \(k \to \infty \) we obtain that:

\[d(Tz, A_m z) \leq (1+q)d(Tz, Sz) \leq s_m (1+q)d(Tz, A_m z) \]

From this we conclude that \(Tz = A_m z = Sz \), for every \(m \in \mathbb{N} \).

REMARK 2. Suppose that \(z \in K \) is such that \(Tz = Sz = A_m z \), for every \(m \in \mathbb{N} \) and that \(Tz \in K \). In this case, we can prove that \(Tz \) is a common fixed point for \(S, T \) and \(A_m \) (\(m \in \mathbb{N} \)). Let \(m \neq n \). Then

\[d(A_m z, A_n z) \leq d(TA_m z, Sz) \leq q d(TA_m z, Sz) \leq q d(Tz, A_m z) + d(A_m z, A_n z) \leq q d(Tz, A_m z) + q d(A_m z, A_n z) = q d(A_m z, A_n z) \]

and so \(A_m Tz = Tz \), for every \(m \in \mathbb{N} \). From \(TA_m z = A_m Tz \) and \(SA_m z = A_m Sz \) (\(m \in \mathbb{N} \)) it follows that \(Tz \) is a fixed point for \(T, S \) and \(A_m \) (\(m \in \mathbb{N} \)). It is easy to prove the uniqueness of \(Tz \) as a coincidence point.

The next Theorem is an existence theorem for a coincidence point in metric spaces with a convex structure.

Let \((M, d)\) be a metric space with convex structure \(W \). If for all \((x, y, z, t) \in M \times M \times M \times [0,1)\):

\[d(W(x, z, t), W(y, z, t)) \leq t d(x, y) \]

then \(W \) satisfies condition II [7]. Let \(x_0 \in M \) and \(S : M \to M \). The mapping \(S \) is said to be \((W, x_0)\)-convex if for every \(z \in X \) and every \(t \in (0,1) : W(Sz, x_0, t) = S(W(z, x_0, t)) \). If \(M \) is a normed space and \(W(x, y, t) = tx + (1-t)y (x, y \in M, t \in [0,1]) \) then every homogeneous mapping \(S : M \to M \) is \((W, 0)\)-convex.
Let \(\alpha \) be the Kuratowski measure of noncompactness on \(M \) and \(K \) a nonempty subset of \(M \). If \(A, S : K \to M \) we say that \(A \) is \((\alpha, S)\)-densifying if for every \(B \subseteq K \) such that \(S(B) \) and \(A(B) \) are bounded the implication:

\[
\alpha(S(B)) \leq \alpha(A(B)) \Rightarrow B \text{ is compact}
\]

holds. In the next theorem we suppose that \(W \) satisfies condition II.

THEOREM 2. Let \((M, d)\) be a complete metric space with a convex structure \(W \), \(K \) a nonempty, closed subset of \(M \), \(x_0 \in K \) and for every \(x \in K \) and every \(t \in (0, 1) \), \(W(x, x_0, t) \in K \). Let, further, \(S \) and \(T \) be continuous, \((W, x_0)\)-convex mappings from \(M \) into \(M \) such that \(K \subseteq SK \cap TK \), for every \(i \in \mathbb{N}, A_i : K \to M \) continuous mapping, \(A_i(K) \) a bounded set and the following implications hold for every \(i \in \mathbb{N} \):

\[
Sx \in K \Rightarrow SA_i x = A_i Sx, \quad Sx \notin \partial K \Rightarrow A_i x \in K; \\
Tx \in K \Rightarrow TA_i x = A_i Tx, \quad Tx \notin \partial K \Rightarrow A_i x \in K.
\]

If there exists \(i_0 \in \mathbb{N} \) such that \(A_{i_0} \) is \((\alpha, I_i)\) or \((\alpha, S)\) or \((\alpha, T)\) densifying and:

\[
d(A_{i_0} x, A_{i_0} y) \leq d(Sx, Ty), \text{ for every } x, y \in K \text{ and } i, j \in \mathbb{N}(i \neq j)
\]

then there exists \(z \in K \) such that \(z = Tz = Sz = A_{i_0} z \), for every \(i \in \mathbb{N} \).

PROOF: Let, for every \(n \in \mathbb{N} \), \(r_n \in (0, 1) \) and \(\lim_{n \to \infty} r_n = 1 \).

For every \((i, n) \in \mathbb{N} \times \mathbb{N} \) and every \(x \in K \) let:

\[
A_{i,n} x = W(A_i x, x_0, r_n).
\]

Then for every \(n \in \mathbb{N} \), the family \(\{A_{i,n} \}_{i \in \mathbb{N}} \) satisfies all the conditions of Theorem 1, which will be proved.

First, we have that for every \(i, j \in \mathbb{N} (i \neq j) \) and every \(n \in \mathbb{N} \):

\[
d(A_{i,n} x, A_{j,n} y) \leq d(W(A_i x, x_0, r_n), W(A_j y, x_0, r_n)) \leq \sum_{r_n} d(A_i x, A_j y) \leq r_n d(Sx, Ty), \text{ for every } x, y \in K.
\]

Further, if \(Sx \in K \) we have that:

\[
SA_{i,n} x = SW(A_i x, x_0, r_n) = W(SA_i x, x_0, r_n) = W(A_i Sx, x_0, r_n) = A_{i,n} x
\]

and similarly \(Tx \in K \Rightarrow TA_{i,n} x = A_{i,n} Tx \). Let \(Sx \notin \partial K \). Then \(A_i x \in K \) and this implies that for every \(n \in \mathbb{N} \):

\[
W(A_i x, x_0, r_n) = A_{i,n} x \in K, \text{ for every } i \in \mathbb{N}.
\]

Similarly \(Tx \notin \partial K \Rightarrow A_{i,n} x \in K \), for every \((i, n) \in \mathbb{N} \times \mathbb{N} \).

Thus, for every \(n \in \mathbb{N} \) there exists \(x_n \in K \) so that:

\[
x_n = Sx_n = Tx_n = A_{i,n} x_n, \text{ for every } i \in \mathbb{N}.
\]

(2.3)

From (2.3) we obtain that:
COINCIDENCE THEOREMS IN CONVEX METRIC SPACES 459

\[d(x_n, A_x) = d(Sx_n, A_{x_n}) = d(Tx_n, A_{x_n}) = d(A_x, y) = d(W(A_{x_n}, x_0, r_n), A_{x_n}) \]
\[= d(y, A_{x_n}) \leq r_n d(A_x, y) + (1-r_n)d(A_x, x_0) \]
for every \((i, n) \in \mathbb{N}\). Since \(A_iK\) is bounded for every \(i \in \mathbb{N}\) it follows that:
\[\lim_{n \to \infty} d(x_n, A_{x_n}) = \lim_{n \to \infty} d(Sx_n, A_{x_n}) = \lim_{n \to \infty} d(Tx_n, A_{x_n}) = 0. \]

Suppose that there exists \(i_0\) such that \(A_{i_0}\) is \((a, S)\)-densifying. The proof is similar if \(A_{i_0}\) is \((a, I)\) or \((a, T)\)-densifying.

Since \(\lim_{n \to \infty} d(Sx_n, A_{i_0}x_n) = 0\) it follows that for every \(\varepsilon > 0\) there exists \(n_0(\varepsilon) \in \mathbb{N}\) so that:
\[\{Sx_n \mid n \geq n_0(\varepsilon)\} \subseteq \bigcup_{A_{i_0}} \bigcup L(y, \varepsilon), B = \{x_n \mid n \in \mathbb{N}\} \] (2.4)

Relation (2.4) implies that:
\[a(\{Sx_n \mid n \geq n_0(\varepsilon)\}) \geq a(A_{i_0} B) + 2\varepsilon. \]

Since \(a(SB) = a(\{Sx_n \mid n \geq n_0(\varepsilon)\})\) we obtain that:
\[a(SB) \leq a(A_{i_0} B) + 2\varepsilon. \]

Because \(\varepsilon > 0\) is an arbitrary positive number we obtain that \(a(SB) \leq a(A_{i_0} B)\) and since \(A_i\) is \((a, S)\)-densifying we obtain that \(B\) is relatively compact. Suppose that \(\lim_{k \to \infty} x_k = z\).

Then we obtain that:
\[d(z, A_z) = \lim_{k \to \infty} d(x_k, A_{x_k}) = d(A_z, z) = \lim_{k \to \infty} d(Sx_k, A_{x_k}) = \]
\[= d(A_z, z) = \lim_{k \to \infty} d(Tx_k, A_{x_k}) = 0 \]

and so \(z = z = z = A_z\), for every \(i \in \mathbb{N}\).

ACKNOWLEDGEMENT. This material is based on work supported by the U.S.-Yugoslavia Joint Fund for Scientific and Technological Cooperation, in cooperation with the NSF under Grant JFP 544.

REFERENCES

