BOUNDED SETS IN $\mathcal{L}(E, F)$

THOMAS E. GILSDORF

Department of Pure and Applied Mathematics
Washington State University
Pullman, Washington 99164
(Received October 27, 1987 and in revised form June 7, 1988)

Abstract: Let E and F be Hausdorff locally convex spaces, and let $\mathcal{L}(E, F)$ denote the space of continuous linear maps from E to F. Suppose that for every subspace $N \subset E$ and an absolutely convex set $A \subset E$ which is bounded, closed, and absorbing in N, there is a barrel $D \subset E$ such that $A=D \cap N$. Then it is shown that the families of weakly and strongly bounded subsets of $\mathcal{L}(E, F)$ are identical if and only if E is locally barreled.

Key Words and Phrases: Locally barreled space, S-topology, bounded set for S-topology.

1980 Mathematics Subject Classification Code (1985 Revision): Primary 46E10; Secondary 46A05.

I. INTRODUCTION.

Throughout this paper E and F will denote Hausdorff locally convex spaces, and $\mathcal{L}(E, F)$ the space of continuous linear maps from E to F. An absolutely convex set B in E will be called a disk. If A is any subset of E, its linear hull will be denoted by E_{A}. For a disk B in E, its linear hull is given by $E_{B}=\cup\{n B: n \geq 1\}$. Equipped with the topology generated by the Minkowski functional of B, E_{B} is a semi-normed space. This leads to the definition which follows.

DEFINITION 1: Let $B \subset E$ be a disk. If E_{B} is a barreled normed space, then B is called a barreled disk; E is locally barreled if each bounded set in E is contained in a closed, bounded barreled disk.

II. A UNIFORM BOUNDEDNESS THEOREM

It is proven in [1] that in a locally convex space E the families of $\sigma\left(E^{\prime}, E\right)$-bounded and $\beta\left(E^{\prime}, E\right)$ bounded sets are the same if E is locally barreled. This is proven for the general case $\mathcal{L}(E, F)$ in our first result below. Conversely, in section III. we will examine the local barreledness of E in terms of subsets of $\mathcal{L}(E, F)$ which are bounded for any S-topology, where S is a family of bounded sets which covers E.

THEOREM 2: If E is locally barreled then the families of bounded sets in $\mathcal{L}(E, F)$ are the same for all S-topologies, where S is a family of bounded sets in E which covers E.

PROOF: Assume E to be locally barreled. Let V be a closed, absolutely convex 0 -neighborhood in F. Let $H \subset \mathcal{L}(E, F)$ be pointwise bounded. Let

$$
D=\bigcap\left\{u^{-1}(V): u \in H\right\}
$$

Then D is a closed disk in E. Since H is pointwise bounded, we have:

$$
x \in E \Rightarrow \bigcup\{u(x): u \in H\} \subset \alpha V
$$

for some $\alpha>0$. By taking inverse images, it follows that D is absorbing in E; hence, D is a barrel in E. In 8.5, Chapter II of [2] it is proven that D absorbs all bounded Banach disks. A careful reading of that proof reveals that the only property of Banach spaces which is used is the property of being barreled. Hence, any barrel in E absorbs all closed, bounded barreled disks in E, as well. Moreover, if A is any bounded subset of E, then A is contained in some closed, bounded barreled disk B. Therefore, D absorbs A and 3.3, Chapter III of [2] now asserts that H is bounded for the topology of bounded convergence on $\mathcal{L}(E, F)$.

III. LOCALLY BARRELED SPACES AND BOUNDED SETS IN $\mathcal{L}(E, F)$.

Let (P) denote the following property of a locally convex space E :
(P) For each absolutely convex, closed, bounded set $A \subset E$ there exists a barrel $D \subset E$ such that $A=D \cap E_{A}$.

THEOREM 3: Let E and F be a Hausdorff locally convex spaces. Assume E satisfies property (P). Then the following are equivalent:
(a) The families of bounded subsets of $\mathcal{L}(E, F)$ are identical for all S-topologies on $\mathcal{L}(E, F)$, where S is a family of bounded subsets of E which covers E.
(b) E is locally barreled.

PROOF. In view of Theorem 2, we need only prove (a) $\Rightarrow(b)$.
If E is not locally barreled, then there exists an absolutely convex, closed, bounded set $B \subset E$ such that E_{B} is not barreled. We will first show that every set M which is closed and bounded in E_{B} is also closed in E. Denote by M_{0} the closure of M in E. Since M is bounded in $E_{B}, M \subset \lambda B$, for some $\lambda>0 . \lambda B$ is closed in E. Hence $M_{0} \subset \lambda B \subset E_{B}$. Take x_{0} in M_{0} and a net $\eta \subset M$ such that $\eta \longrightarrow x_{0}$ in the topology of E. The identity id : $E_{B} \longrightarrow E$ is continuous, and $\left\{k^{-1} B: k \in \mathbf{N}\right\}$ is a basis for the neighborhoods of zero in E_{B} consisting of sets closed in E. Therefore, by 3.2.4 of $[3], \eta \longrightarrow x_{0}$ in the topology of E_{B}. Finally, M is closed in E_{B}. Hence $x_{0} \in M$, so M is closed in E.

Now choose a barrel A in E_{B} which is not a 0 -neighborhood in E_{B}. Then we may choose a sequence $\left\{x_{n}\right\} \subset E_{B} \backslash A$ such that $x_{n} \longrightarrow 0$ in the topology of E_{B}. The normability of E_{B} implies that $\left(x_{n}\right)$ is locally convergent; thus we may choose a sequence $\left\{a_{n}\right\}$ of positive real numbers such that $a_{n} \uparrow \infty$ and $a_{n} x_{n} \longrightarrow 0$ in the normed space E_{B}. Since the normed topology of E_{B} is finer than the topology on E_{B} induced by E, the sequence $\left\{a_{n} x_{n}\right\}$ also converges to 0 with respect to the topology of E. This means

$$
S=\left\{a_{n} x_{n}: n \in \mathbf{N}\right\}
$$

is bounded in E.

Since $A \cap B$ is absolutely convex, bounded, and closed in E_{B}, it is also closed and bounded in E. By (P), there is a barrel $D \subset E$ such that

$$
A \cap B=D \cap E_{A \cap B}=D \cap E_{B}
$$

Now, $x_{n} \notin D$ for each n, and we may therefore choose $f_{n} \in E^{\prime}$ such that $\left|f_{n}(x)\right| \leq 1$ for any $x \in D$ while $f_{n}\left(x_{n}\right)=1$, where each f_{n} is real valued.

Let $y_{0} \in F \backslash\{0\}$, and define $g: \mathbf{R} \longrightarrow F$ by

$$
g(z)=z y_{0}
$$

for each $z \in \mathbf{R} . g$ is a linear map taking bounded sets in \mathbf{R} to bounded sets in F; therefore, g is continuous.

Now, for each $n \in \mathbf{N}$, define $h_{n}: E \longrightarrow F$ by

$$
h_{n}=g \circ f_{n}
$$

As the composition of two linear, continuous maps, each $h_{n} \in \mathcal{L}(E, F)$.

Put

$$
H=\left\{h_{n}: n \in \mathbf{N}\right\}
$$

First, notice that for each $x \in D,\left|f_{n}(x)\right| \leq 1$, hence $h_{n}(x) \in C$, where C is the line segment from $-y_{0}$ to y_{0} in F. Obviously, C is bounded in F; consequently,

$$
\bigcup\left\{h_{n}(x): n \in \mathbf{N}\right\}
$$

is bounded in F for each $x \in D$. Since D is absorbing in E,

$$
\bigcup\left\{h_{n}(x): n \in \mathbf{N}\right\}
$$

is bounded in F for each $x \in E$ as well; this makes H a pointwise bounded set.

Finally,

$$
\bigcup\left\{h_{n}(x): x \in S, n \in \mathbf{N}\right\}=\bigcup\left\{h_{n}\left(a_{n} x_{n}\right): n \in \mathbf{N}\right\}=\bigcup\left\{a_{n} g(1): n \in \mathbf{N}\right\}=\bigcup\left\{a_{n}\left\{y_{0}\right\}: n \in \mathbf{N}\right\}
$$

Letting $\alpha_{n}=a_{n}^{-1}$, then

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0
$$

while

$$
\lim _{n \rightarrow \infty} \alpha_{n}\left(a_{n}\left\{y_{0}\right\}\right)=y_{0} \neq 0
$$

This means $H(S)$ is not bounded in F; thus H is not bounded for the topology of uniform convergence on bounded sets.

Present address:
Department of Mathematics and
Computer Science
University of Wisconsin
River Falls, WI 54022

References

1 KUČERA, J., GILSDORF, T., A Necessary and Sufficient Condition for Weakly Bounded Sets to be Strongly Bounded, to appear.

2 SCHAEFER, H., Topological Vector Spaces, Springer, 1971.
3 JARCHOW, H., Locally Convex Spaces, B. G. Teubner Stuttgart, 1981.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

