ON FACTORIZATIONS OF FINITE ABELIAN GROUPS WHICH ADMIT REPLACEMENT OF A Z-SET BY A SUBGROUP

EVELYN E. OBAID

Department of Mathematics and Computer Science San Jose State University San Jose, CA 95192

(Received October 20, 1987)

ABSTRACT. A subset A of a finite additive abelian group G is a Z-set if for all $a \in A$, $na \in A$ for all $n \in Z$.

The purpose of this paper is to prove that for a special class of finite abelian groups, whenever the factorization $G = A \oplus B$, where A and B are Z-sets, arises from the series $G = K_1 \supset K_2 \supset \ldots \supset K_n \supset <0>$ then there exist subgroups S and T such that the factorization $G = S \oplus T$ also arises from this series. This result is obtained through the introduction of two new concepts: a series admits replacement and the extendability of a subgroup. A generalization of a result of L. Fuchs is given which enables establishment of a necessary and sufficient condition for extendability. This condition is used to show that certain series for finite abelian p-groups admit replacement.

KEY WORDS AND PHRASES. Finite abelian group, factorization, Z-set. 1980 AMS SUBJECT CLASSIFICATION CODES. 20K01, 20K25.

1. INTRODUCTION.

Let G be a finite abelian additive group and let A and B be subsets of G. If every element $g \in G$ can be uniquely represented in the form g = a + b, where $a \in A$, $b \in B$, then we write $G = A \oplus B$ and call this a factorization of G. A subset A is said to be a Z-set if for all $a \in A$, $na \in A$ for all $n \in Z$.

A.D. Sands [1] gave a method which yields all factorizations of a finite abelian good group. His method corrects one given previously by G. Hajos [2].

Our main purpose is to prove that for a special class of finite abelian groups, whenever the factorization $G = A \oplus B$, where A and B are Z-sets, arises from the series $G = K_1 \supset K_2 \supset \ldots \supset K_n \supset K_n \supset K_n \supset (see [3])$, then there exist subgroups S and T such that factorization $G = S \oplus T$ also arises from this series.

In order to achieve this result we introduce two new concepts: a series admits replacement and the extendability of a subgroup. We prove a generalization of a result of L. Fuchs [4] which enables us to derive a necessary and sufficient condition for extendability. This condition is used to show that certain series for finite abelian p-groups admit replacement.

2. PRELIMINARIES.

We shall use the term "Z-factorization" when referring to a factorization of the form $G = A \oplus B$, where A and B are Z-sets.

Our first two lemmas can be readily verified.

LEMMA 1. Let $G = S \oplus A$, where S is a subgroup of G and A is a Z-set. If H and K are subgroups of G with $H = H_S \oplus H_A$, $K = K_S \oplus K_A$, where H_S , K_S are subgroups of S, and H_A , K_A are Z-sets such that $H_A \subseteq A$, $K_A \subseteq A$, then $H \cap K = (H_S \cap K_S) \oplus (H_A \cap K_A)$.

LEMMA 2. Let $G = A \oplus B$ be a Z-factorization of G. If H is a subgroup of G such that $A \subseteq H$ then $H = A \oplus (H \cap B)$.

LEMMA 3. Let $G = G^{(0)} = S \oplus A \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset ... \supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset (2.1)$ $G^{(n+1)} = <0>$ be a series for G with $S^{(0)} \supset S^{(1)} \supset ... \supset S^{(n)} \supset <0>$ subgroups of G and $A = A^{(0)} \supset A^{(1)} \supset ... \supset A^{(n)} \supset \{0\}$ Z-sets. There exists a refinement of (2.1) which is a composition series for G and the subgroups in this refinement have the same properties as (2.1), i.e. any subgroup, H, in the refinement has the form $H = H_S \oplus H_A$, where H_S is a subgroup of S and H_A is a Z-set, $H_A \subseteq A$, and $H \subseteq K$ implies $H_S \subseteq K_S$ and $H_A \subseteq K_A$. Furthermore, if $H \subseteq K$ are successive groups in the refinement then either $H_S = K_S$ or $H_A = K_A$.

PROOF. It suffices to show that if there exists $\hat{G} \subset G$ with $G^{(i)} \supset \hat{G} \supset G^{(i+1)}$ then $\hat{G} = \hat{S} \oplus \hat{A}$ with $S^{(i)} \supseteq \hat{S} \supseteq S^{(i+1)}$, $A^{(i)} \supseteq \hat{A} \supseteq A^{(+1)}$, \hat{A} a Z-set, and either $\hat{S} = S^{(i)}$ or $\hat{A} = A^{(i)}$. $0 \le i \le n$.

Consider $G^{(i)} = S^{(i)} \oplus A^{(i)} \supset G^{(i+1)} = S^{(i+1)} \oplus A^{(i+1)}, 0 \le i \le n$.

Case 1. Suppose that $A^{(i)} = A^{(i+1)}$. Then for any \hat{G} such that $G^{(i)} \supset \hat{G} \supset G^{(i+1)}$ we have $\hat{G} = A^{(i)} \oplus (\hat{G} \cap S^{(i)})$ by Lemma 2. Clearly $S^{(i)} \supset \hat{G} \cap S^{(i)} \supset S^{(i+1)}$. In this case we have $\hat{A} = A^{(i)}$.

Case 2. Suppose that $A^{(i)} \neq A^{(i+1)}$. We can insert the subgroup $G = \tilde{G}^{(i+1)} + S^{(i)} = S^{(i)} \oplus A^{(i+1)}$ without altering the structure of the series, i.e. we have $G^{(i)} = S^{(i)} \oplus A^{(i)} \supset \tilde{G} = S^{(i)} \oplus A^{(i+1)} \supset G^{(i+1)} = S^{(i+1)} \oplus A^{(i+1)}$.

Let \hat{G} be such that $G^{(i)}\supset \hat{G}\supset G^{(i+1)}$. If $\hat{G}=\tilde{G}$ we are done. If $\tilde{G}\supset \hat{G}\supset G^{(i+1)}$ then by Case 1 \hat{G} has the required form. Finally, if $G^{(i)}\supset \hat{G}\supset \tilde{G}$ then by Lemma 2, $\hat{G}=S^{(i)}\oplus (\hat{G}\cap A^{(i)})$. Clearly $A^{(i)}\supset \hat{G}\cap A^{(i)}\supset A^{(i+1)}$. In this case we have $\hat{S}=S^{(i)}$. This completes the proof.

THEOREM 1. [5] If $G = B^{(1)} \oplus ... \oplus B^{(k)}$, where each $B^{(i)}$ is a Z-set, $1 \le i \le k$, and if $G = N^{(1)} \oplus ... \oplus N^{(r)}$, where each $N^{(j)}$ is a subgroup of G, $1 \le j \le r$, such that $(|N^{(i)}|, |N^{(j)}|) = 1$ for $i \ne j$, then

(a)
$$B^{(i)} = (N^{(1)} \cap B^{(i)}) \oplus ... \oplus (N^{(r)} \cap B^{(i)}), 1 \le i \le k,$$

(b)
$$N^{(j)} = (N^{(j)} \cap B^{(1)} \oplus ... \oplus (N^{(j)} \cap B^{(k)}), 1 \le j \le r.$$

The following lemma is a direct consequence of the Second Isomorphism Theorem. LEMMA 4. Let U, U₁, and K be subgroups of G with $U_1 \subseteq U$. Then $[U \cap K: U_1 \cap K] \subseteq [U: U_1]$.

Let S be a subgroup of G. We will say that S is homogeneous if S is a direct sum of cyclic groups of the same order.

Theorem 2, which is a generalization of the following result of L. Fuchs [4], p.79), can be readily verified.

(Fuchs) Let S be a pure homogeneous subgroup of G of exponent p^k and let H be a subgroup of G satisfying $p^kG \subseteq H$ and $S \cap H = <0>$. If M is a subgroup of G maximal with respect to the properties $H \subseteq M$ and $M \cap S = <0>$ then $G = S \oplus M$.

THEOREM 2. Let $S = {\overset{\bullet}{\bullet}} S_i$ be a pure subgroup of G with S_i , $1 \le i \le n$, homogeneous of exponent p^{k_i} , $k_1 > k_2 ... > k_n$, and let $U \subseteq G$. There exists a subgroup, T, of G with $U \subseteq T$ and $G = S \oplus T$ if and only if $[p^{k_j}G + {\overset{\bullet}{\bullet}} S_i + U] \cap S_j = <0>$, $1 \le j \le n$.

3. REDUCTION TO THE CAUSE OF P-GROUPS.

Consider the series

$$G = G^{(0)} = S \circledast A \supset G^{(1)} = S^{(1)} \circledast A^{(1)} \supset \ldots \supset G^{(n)} = S^{(n)} \circledast A^{(n)} \supset \langle 0 \rangle \qquad (3.1)$$
 where $S = S^{(0)} \supseteq S^{(1)} \supseteq \ldots \supseteq S^{(n)} \supseteq \langle 0 \rangle$ are subgroups of G and $A = A^{(0)} \supseteq A^{(1)} \supseteq \ldots \supseteq A^{(n)}$ $\supseteq \{0\}$ are Z-sets. We say the series $(3 \ 1)$ admits replacements if there exist subgroups, $T^{(i)}$, such that $T = T^{(0)} \supseteq T^{(1)} \supseteq \ldots \supseteq T^{(n)} \supseteq \langle 0 \rangle$ and $G^{(i)} = S^{(i)} \circledast T^{(i)}$, $0 \le i \le n$. Let us note that by Proposition 1 [3] there exist subgroups $T^{(i)}$ such that $G^{(i)} = S^{(i)} \circledast T^{(i)}$, $0 \le i \le n$. However it is not necessarily the case that $T^{(0)} \supseteq T^{(1)} \supseteq \ldots \supseteq T^{(n)}$. This problem will be treated in the next section.

A group C admits replacement if every series for G of the form (3.1) admits replacements. The following theorem enables us to restrict our investigations in this area to the case of p-groups.

THEOREM 3. Let $G = {0 \atop p} G_p$, where the G_p are the primary components of G. G admits replacement if and only if for each p, G_p admits replacement.

PROOF. Suppose G admits replacement. Let $H = G_p$ for some p and let $H = H^{(0)} = S^{(0)} \oplus A^{(0)} \supset H^{(1)} = S^{(1)} \oplus A^{(1)} \supset \ldots \supset H^{(m)} = S^{(m)} \oplus A^{(m)} \supset <0>$ be a series for H with $S^{(0)} \supseteq S^{(1)} \supseteq \ldots \supseteq S^{(m)} \supset <0>$ subgroups of H and $A^{(0)} \supseteq A^{(1)} \supseteq \ldots \supseteq A^{(m)} \supset \{0\}$ Z-sets. Define $K = \bigoplus_{p' \neq p} G_{p'}$ so that $G = H \oplus K = (S^{(0)} \oplus K) \oplus A^{(0)}$. Then $G = G^{(0)} = (S^{(0)} \oplus K) \oplus A^{(0)} \supset H^{(0)} = S^{(0)} \oplus A^{(0)} \supset H^{(1)} = S^{(1)} \oplus A^{(1)}$ $\supseteq H^{(m)} = S^{(m)} \oplus A^{(m)} \supseteq <0>$ is a series for G which by hypothesis admits replacements. Consequently the series $H = H^{(0)} \supset H^{(1)} \supset \ldots \supset H^{(m)} \supset <0>$ admits replacements.

Conversely, suppose $\mathbf{G}_{\mathbf{p}}$ admits replacement for each \mathbf{p} . Let

$$G = G^{(0)} = S^{(0)} \oplus A^{(0)} \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset ...\supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset <0>$$

be a series for G with $S^{(0)} \supseteq S^{(1)} \supseteq \ldots \supseteq S^{(n)} \supseteq <0>$ subgroups of G and $A^{(0)} \supseteq A^{(1)} \supseteq \ldots \supseteq A^{(n)} \supseteq <0>$ subgroups of G and $A^{(0)} \supseteq A^{(1)} \supseteq \ldots \supseteq A^{(n)} \supseteq <0$ subgroups of G and $A^{(0)} \supseteq A^{(1)} \supseteq A^{(1)} \supseteq \ldots \supseteq A^{(n)} \supseteq A$

Define
$$S_{p}^{(i)} = S_{p}^{(i)} \cap G_{p}^{(i)}$$
, $A_{p}^{(i)} = A_{p}^{(i)} \cap G_{p}^{(i)}$, $0 \le i \le n$. Clearly

$$S_p^{(0)} \supseteq S_p^{(1)} \supseteq \ldots \supseteq S_p^{(n)} \supseteq <0> \text{ and } A_p^{(0)} \supseteq A_p^{(1)} \supseteq \ldots \supseteq A_p^{(n)} \supseteq \{0\}. \quad \text{Thus for each p,}$$

$$G_{p} = G_{p}^{(0)} = S_{p}^{(0)} \oplus A_{p}^{(0)} \supset G_{p}^{(1)} = S_{p}^{(1)} \oplus A_{p}^{(1)} \supset ... \supset G_{p}^{(n)} = S_{p}^{(n)} \oplus A_{p}^{(n)} \supset <0>$$

is a series for G $_p$ which by assumption admits replacements. Thus for each p there exist subgroups $T_p^{\mbox{(i)}}$ such that

(i)
$$T_p = T_p^{(0)} \supseteq T_p^{(1)} \supseteq ... \supseteq T_p^{(n)} \supset \langle 0 \rangle$$

and

(ii)
$$G_p^{(i)} = S_p^{(i)} \oplus T_p^{(i)}$$
, $0 \le i \le n$.

Define $T^{(i)} = \sum_{p} T^{(i)}_{p}$, $0 \le i \le n$. Note that this sum is direct. From (i) we have

that $T = T^{(0)} \supset T^{(1)} \supset ... \supset T^{(n)} \supset <0>$ and (ii) implies that

$$G^{(i)} = \underset{p}{\oplus} G_{p}^{(i)} = \underset{p}{\oplus} (S_{p}^{(i)} \oplus T_{p}^{(i)}) = (\underset{p}{\oplus} S_{p}^{(i)}) \oplus (\underset{p}{\oplus} T_{p}^{(i)}) = S^{(i)} \oplus T^{(i)},$$

 $0 \le i \le n$. This completes the proof.

4. EXTENDABILITY

Let $G = S \oplus A \supset G' = S' \oplus A' = S' \oplus T'$, where $S' \subseteq S$ are subgroups of F, $A' \subseteq A$ are Z-sets, and T' is a subgroup of G'. We say T' is extendable to G if there exists T, a subgroup of G, such that $T' \subseteq T$ and $G = S \oplus T$.

The following theorem provides a necessary and sufficient condition for extendability of a subgroup T' when G is a p-group.

THEOREM 4. Let G be a finite abelian p-group of exponent p^k and let G' be a subgroup of G. Suppose $G = S \oplus A$, $G' = S' \oplus A' = S' \oplus T'$ with $S' \subseteq S$, subgroups of G, $A' \subseteq A$, Z-sets, and T' a subgroup of G'. T' is extendable to G if and only if there exist subgroups, T_i , such that $T' \supseteq T_1 \supseteq T_2 \supseteq \ldots \supseteq T_{k-1} \supseteq <0>$ and $G' \cap p^iG = S' \cap p^iS) \oplus T_i$, $1 \le i \le k-1$.

PROOF. By Lemma 1 we have that $G' \cap p^{i}G = (S' \cap p^{i}S) \oplus (A' \cap p^{i}A), 1 \le i \le k-1$.

Assume there exists subgroups, T_i ; with $T'\supseteq T_1\supseteq\ldots\supseteq T_{k-1}\supseteq <0>$ and

 $G' \cap p^iG = (S' \cap p^iS) \oplus T_i$, $1 \le i \le k-1$. Let $S = \bigoplus_{i=1}^k S_i$, where each S_i is homogeneous of exponent p^i , $1 \le i \le k$. By Theorem 2, to prove the existence of a subgroup, T, of G with $T \supseteq T'$ and $G = S \oplus T$ we must verify

and

$$(p^{j_G} + \bigoplus_{i < j} S_i + T') \cap S_j = <0>, 1 \le j \le k-1$$
 (4.2)

For (4.1), suppose $s_k = \sum_{i \le k} s_i + t'$, $s_i \in S_i$, $1 \le i \le k$, $t' \in T'$. Since

 $T' \subseteq G'$ we have t' = s' + a', $s' \in S'$, $a' \in A'$. Thus $s_k = \sum_{i < k} s_i + s' + a'$ so that

a' = 0 by the definition of S \oplus A. But then $t' \in S' \cap T' = <0>$. Consequently,

 $s_k = \sum_{i \le k} s_i$. However, since S is a direct sum of S_1 , S_2 ,..., S_k , we have $s_k = 0 + 0 + 1$

... + 0 + s_k . Together these imply that $s_k = 0$. Hence (4.1) is true.

Let $1 \le j < k$. Note that $p^j S_i = \langle 0 \rangle$ if $i \le j$. Thus we have $p^j G = \bigoplus_{i > j} S_i \bigoplus_{i > j} A$.

Suppose

$$s_{j} = p^{j}g + \sum_{i < j} s_{i} + t' = \sum_{i > j} p^{j}s_{i} + p^{j}a + \sum_{i < j} s_{i} + t',$$

where $s_i \in S_i$, $1 \le i \le k$, $a \in A$, $t' \in T'$. Since $T' \subseteq G' = S' \oplus A'$

we have

$$t' = s' + a', s' \in S', a' \in A'$$
 (4.3)

Thus $s_j = \sum_{i>j} p^j s_i + \sum_{i< j} s_i + s' + p^j a + a'$. Therefore

$$p^{j}a = -a' \in p^{j}A \cap A' \subseteq G' \cap p^{j}G$$
 (4.4)

$$s_{j} = \sum_{i>j} p^{j} s_{i} + \sum_{i>j} s_{i} + s'$$

$$(4.5)$$

Since $p^jA \cap A'$ is clearly a Z-set we have from (4.4) that $a' \in p^jA \cap A'$. By hypothesis, $G' \cap p^jG = (S' \cap p^jS) \oplus T_j$ with $T_j \subseteq T'$. Therefore (4.4) implies that $a' = \sum_{i>j} p^j \tilde{s}_i + t_j$,

where $\sum_{i>j}^{\Sigma} p^{j} \hat{s}_{i} \in S' \cap p^{j} S = S' \cap \bigoplus_{i>j} p^{j} S_{i}$ and $t_{j} \in T_{j} \subseteq T'$. But then (4.3) becomes

 $\texttt{t'} = \texttt{s'} + \sum_{\substack{i > j}} p^j \hat{\textbf{s}}_i + \texttt{t}_j, \text{ where } \texttt{s'} + \sum_{\substack{i > j}} p^j \tilde{\textbf{s}}_i \in \texttt{S'} \text{ and } \texttt{t}_j \in \texttt{S'} \text{ and } \texttt{t}_j \in \texttt{T'}. \text{ Consequently }$

 $s' + \sum_{i>j} p^j \tilde{s}_i = 0$ by the definition of S' \oplus T', and we have $s' = -\sum_{i>j} p^j \tilde{s}_i$.

Substituting this expression for s' into (4.5) we obtain

$$s_j = \sum_{i>j} p^j s_i + \sum_{i>j} s_i - \sum_{i>j} p^j \tilde{s}_i$$
 so that $s_j = 0$. Hence (4.2) is true.

Conversely, suppose there exists a subgroup $T \supseteq T'$ such that $G = S \oplus T$. By Lemma 1, $G' \cap p^i G = (S' \cap p^i S) \oplus (T' \cap P^i T)$, $1 \le i \le k-1$. Clearly $T' \supseteq T' \cap pT \supseteq T' \cap p^2 T \supseteq \cdots \supseteq T' \cap p^{k-1} T$. Thus we can complete the proof by choosing $T_i = T' \cap p^i T$, $1 \le i \le k-1$.

Let us note that if $G = S \oplus A$, where S is a subgroup of G and A is a Z-set, is an elementary abelian p-group, and G' is a subgroup of G such that $G' = S' \oplus A'$ = $S' \oplus T'$, where $S' \subseteq S$, $T' \subseteq G'$, and A' is a Z-set contained in A, then T' is always extendable to G.

LEMMA 5. Let $G = S \oplus A \supseteq G' = S' \oplus A$ be a series for G with $S' \subseteq S$ subgroups of G and A a Z-set. If T is a subgroup of G' such that $G' = S' \oplus T$ then $G = S \oplus T$.

PROOF. Let \tilde{S} be a set of coset representatives for S modulo S'. Then $G = S \oplus A = \tilde{S} \oplus S' \oplus A = \tilde{S} \oplus S' \oplus T = S \oplus T$.

5. SOME GROUPS WHICH ADMIT REPLACEMENT.

We noted in Section 4 that given the series

$$G = G^{(0)} = S^{(0)} \oplus A^{(0)} \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset \ldots \supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset <0> \qquad (5.1)$$
 where $S = S^{(0)} \supseteq S^{(1)} \supseteq \ldots \supseteq S^{(n)} \supseteq <0>$ are subgroups and $A = A^{(0)} \supseteq A^{(1)} \supseteq \ldots \supseteq A^{(n)}$ $\supseteq <0>$ are $S = S^{(0)} \supseteq S^{(n)} \supseteq \ldots \supseteq S^{(n)} \supseteq <0>$ are subgroups $S = S^{(n)} \supseteq S^$

We will briefly illustrate how successive applications of Theorem 4 when G is a finite abelian p-group of exponent p^3 results in Figure 1 since this lattice-type structure clarifies the proof of the major theorem in this section. By Lemma 3 we may assume that (5.1) is a composition series for G.

We introduce the following notation to simplify the discussion:

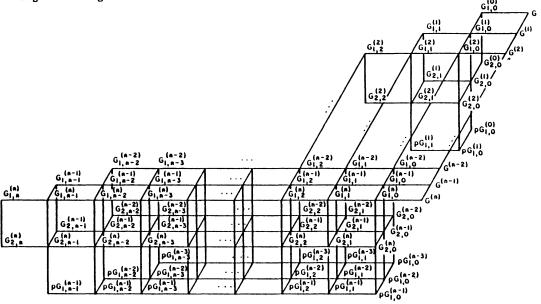
$$G_{j,\ell}^{(i)} = G^{(i)} \cap p^{j}G^{(\ell)},$$
 $S_{j,\ell}^{(i)} = S^{(i)} \cap p^{j}S^{(\ell)},$
 $A_{j,\ell}^{(i)} = A^{(i)} \cap p^{j}A^{(\ell)},$

where $0 \le i \le n$, $0 \le \ell \le n$, j = 1, 2. By Lemma 1 we have $G_{j,\ell}^{(i)} = S_{j,\ell}^{(i)} \oplus A_{j,\ell}^{(i)}$, $0 \le i \le n$, $0 \le \ell \le n$, j = 1, 2.

In addition, $T_{j,\ell}^{(i)}$ will denote any subgroup of $G_{j,\ell}^{(i)}$ such that

 $G_{j,\ell}^{(i)} = S_{j,\ell}^{(i)} \oplus A_{j,\ell}^{(i)} = S_{j,\ell}^{(i)} \oplus T_{j,\ell}^{(i)}, \text{ and } T_{h,1,\ell}^{(i)} \text{ will denote any subgroup of } p^h G_{1,\ell}^{(i)} \text{ such that } f_{h,1,\ell}^{(i)} = f_{h,\ell}^{(i)} \oplus f_{h,\ell}^{(i)} = f_{h,\ell}^{(i)} \oplus f_{h,\ell}^{(i)} \oplus$

 $p^{h}G_{1,\ell}^{(i)} = p^{h}S_{1,\ell}^{(i)} \oplus p^{h}A_{1,\ell}^{(i)} = p^{h}S_{1,\ell}^{(i)} \oplus T_{h,1,\ell}^{(i)} 0 \le i \le n, 0 \le \ell \le i, j = 1, 2, h \text{ a non-negative integer.}$



Consider a subgroup $T^{(n)}$ such that in the series (5.1) we have $G^{(n)} = S^{(n)} \oplus T^{(n)}$.

By Theorem 4, $T^{(n)}$ will be extendable to $G^{(i)}$, $0 \le i \le n-1$, if an only if there exist subgroups $T^{(n)}_{j,1}$ such that $T^{(n)} \supseteq T^{(n)}_{1,i} \supseteq T^{(n)}_{2,i}$ with $G^{(n)}_{j,i} = S^{(n)}_{j,i}$, $0 \le i \le n-1$, j = 1,2.

We have the following array for the containments of the subgroups $G^{(n)}_{j,i}$, $0 \le i \le n$, j=1,2:

$$G_{1,n}^{(n)} = pG^{(n)} \supseteq G_{1,n-1}^{(n)} \supseteq G_{1,n-2}^{(n)} \supseteq \dots \supseteq G_{1,1}^{(n)} \supseteq G_{1,0}^{(n)} \supseteq G^{(n)}$$

$$U1 \qquad U1 \qquad U1 \qquad U1 \qquad U1$$

$$G_{2,n}^{(n)} = p^{2}G^{(n)} \supseteq G_{2,n-1}^{(n)} \supseteq G_{2,n-2}^{(n)} \subseteq \dots \subseteq G_{2,1}^{(n)} \supseteq G_{2,0}^{(n)}$$

Thus if we can find subgroups $T_{j,i}^{(n)}$, $0 \le i \le n$, j = 1,2, $T_{j}^{(n)}$, such that

$$T_{1,n}^{(n)} \subseteq T_{1,n-1}^{(n)} \subseteq T_{1,n-2}^{(n)} \subseteq \dots \subseteq T_{1,1}^{(n)} \subseteq T_{1,0}^{(n)} \subseteq T_{1,0}^{(n)} \subseteq T_{1,0}^{(n)} \subseteq T_{2,n-2}^{(n)} \subseteq \dots \subseteq T_{2,1}^{(n)} \subseteq T_{2,0}^{(n)}$$

and $G_{j,i}^{(n)} = S_{j,i}^{(n)} \oplus T_{j,i}^{(n)}$, $0 \le i \le n$, j = 1,2, $G_{j}^{(n)} = S_{j}^{(n)} \oplus T_{j}^{(n)}$, we would have $T_{j}^{(n)}$ extendable to $G_{j}^{(i)}$, $0 \le i \le n-1$.

Later it will become apparent that we need $T_{1,i}^{(n)}$ extendable to $G_{1,i}^{(n-1)}$, $0 \le i \le n-1$. We will show how this can be incorporated in our discussion on $T^{(n)}$.

Using Lemma 4 with $U = G^{(n-1)}$, $U_1 = G^{(n)}$, $K = pG^{(i)}$, $0 \le i \le n-1$, we have $\begin{bmatrix} G_{1,i}^{(n-1)} \colon G_{1,i}^{(n)} \end{bmatrix} \le p. \quad \text{Thus } pG_{1,i}^{(n-1)} \subseteq G_{1,i}^{(n)} \text{ so that } G_{1,i}^{(n)} \cap pG_{1,i}^{(n-1)} = pG_{1,i}^{(n-1)}, \ 0 \le i \le n-1.$

Note that $G_{1,i}^{(n-1)}$ has exponent at most p^2 . By Theorem 4, $T_{1,i}^{(n)}$ is extendable to $G_{1,i}^{(n-1)}$, $0 \le i \le n-1$, if and only if there exists a subgroup $T_{1,1,i}^{(n-1)}$ such that $T_{1,i}^{(n)} \ge T_{1,1,i}^{(n-1)}$

and $pG_{1,i}^{(n-1)} = pS_{1,i}^{(n-1)} \oplus T_{1,1,i}^{(n-1)}, 0 \le i \le n-1.$ Since $pG_{1,i}^{(n-1)} = p(G^{(n-1)} \cap pG^{(i)})$

 $\subseteq pG^{\left(n-1\right)} \cap p^2G^{\left(i\right)} \subseteq G^{\left(n\right)} \cap p^2G^{\left(i\right)} = G^{\left(n\right)}_{2,i}, \ 0 \ \leqq \ i \ \leqq \ n-1, \ we \ have the following array array of the following arra$

for the subgroups $G^{(n)}$, $G^{(n)}_{j,i}$, $pG^{(n-1)}_{l,i}$, $0 \le i \le n-1$, j = 1,2:

$$\begin{split} G_{1,n}^{(n)} &\subseteq G_{1,n-1}^{(n)} \subseteq G_{1,n-2}^{(n)} \subseteq \ldots \subseteq G_{1,1}^{(n)} \subseteq G_{1,0}^{(n)} \subseteq G^{(n)} \\ & \text{U1} & \text{U1} & \text{U1} & \text{U1} & \text{U1} \\ G_{2,n}^{(n)} &\subseteq G_{2,n-1}^{(n)} \subseteq G_{2,n-2}^{(n)} \subseteq \ldots \subseteq G_{2,1}^{(n)} \subseteq G_{2,0}^{(n)} \\ & \text{U1} & \text{U1} & \text{U1} & \text{U1} \\ & pG_{1,n-1}^{(n-1)} &\subseteq pG_{1,n-2}^{(n-1)} \subseteq \ldots \subseteq pG_{1,1}^{(n-1)} \subseteq pG_{1,0}^{(n-1)} \end{split}$$

Thus if we can find subgroups $T_{j,i}^{(n)}$, $T_{1,1,i}^{(n-1)}$, $0 \le i \le n$, $0 \le i' \le n-1$, j = 1,2, $T_{j,i}^{(n)}$ such that

$$T_{1,n}^{(n)} \subseteq T_{1,n-1}^{(n)} \subseteq T_{1,n-2}^{(n)} \subseteq \dots \subseteq T_{1,1}^{(n)} \subseteq T_{1,0}^{(n)} \subseteq T^{(n)}$$

$$U1 \qquad U1 \qquad U1 \qquad U1 \qquad U1$$

$$T_{2,n}^{(n)} \subseteq T_{2,n-1}^{(n)} \subseteq T_{2,n-2}^{(n)} \subseteq \dots \subseteq T_{2,1}^{(n)} \subseteq T_{2,0}^{(n)}$$

$$U1 \qquad U1 \qquad U1 \qquad U1$$

$$T_{1,1,n-1}^{(n-1)} \subseteq T_{1,1,n-2}^{(n-1)} \subseteq \dots \subseteq T_{1,1,1}^{(n-1)} \subseteq T_{1,1,0}^{(n-1)}$$

with $G_{j,i}^{(n)} = S_{j,i}^{(n)} \oplus T_{j,i}^{(n)}$, $pG_{l,i}^{(n-1)} = pS_{l,i}^{(n-1)} \oplus T_{l,l,i}^{(n-1)}$, $0 \le i \le n$, $0 \le i' \le n-1$, j = 1, 2 $G_{j,i}^{(n)} = S_{j,i}^{(n)} \oplus T_{j,i}^{(n)}$, we would have $T_{l,i}^{(n)}$ extendable to $G_{l,i}^{(n-1)}$, $0 \le i \le n-1$, and $T_{j,i}^{(n)}$ extendable to $G_{j,i}^{(n)}$. In particular, we would know there exists

a subgroup $T^{(n-1)}$ with $T^{(n-1)} \supseteq T^{(n)}$ and $G^{(n-1)} = S^{(n-1)} \oplus T^{(n-1)}$. However, we must ensure that our choice for $T^{(n-1)}$ is extendable to $G^{(i)}$, $0 \le i \le n-2$. Appyling the previous argument to $T^{(n-1)}$ and then to $T^{(i)}$, $0 \le i \le n-3$, we obtain Figure 1. We remark that lattice-type structures similar to Figure 1 can be obtained for finite abelian p-groups of exponent p^k , where k is any non-negative integer. Such structures become rather complicated when the exponent of the group exceeds p^3 .

The following definitions will facilitate references to Figure 1.

DEFINITION 1. The row for $G^{(i)}$, $0 \le i \le n$, is the series

$$G^{(i)} \supseteq G_{1,0}^{(i)} \supseteq G_{1,1}^{(i)} \supseteq \dots \supseteq G_{1,i}^{(i)}$$

DEFINITION 2. The row for $G_{2,0}^{(i)}$, $0 \le i \le n$, is the series

$$G_{2,0}^{(i)} \supseteq G_{2,1}^{(i)} \supseteq G_{2,2}^{(i)} \supseteq \dots \supseteq G_{2,i}^{(i)}$$
.

DEFINITION 3. The row for $pG_{1,0}^{(i)}$, $0 \le i \le n-1$, is the series

$$pG_{1,0}^{(i)} \supseteq pG_{1,1}^{(i)} \supseteq pG_{1,2}^{(i)} \supseteq \dots \supseteq pG_{1,i}^{(i)}$$
.

DEFINITION 4. The sub-figure for $G^{(i)}$, $0 \le i \le n$, consists of the rows for $G^{(\ell)}$, $G_{2.0}^{(\ell)}$, and $pG_{1.0}^{(\ell)}$, $i \le \ell \le n$, $i-1 \le \ell' \le n-1$.

DEFINITION 5. We say the sub-figure for $G^{(i)} = S^{(i)} \oplus A^{(i)}$, $0 \le i \le n$, is complete if

- (i) for every subgroup H in the sub-figure for $G^{(i)}$, $H = S_H \oplus A_H$, S_H a subgroup of $S^{(i)}$, A_H a Z-set, $A_H \subseteq A^{(i)}$, there exists a subgroup T_H such that $H = S_H \oplus T_H$,
- (ii) for all sub-groups H, K in the sub-figure for $G^{(i)}$ with $H \subseteq K$ we have $T_H \subseteq T_K$. Let us note that, by the construction of Figure 1, if the sub-figure for $G^{(i)}$, $1 \le i \le n$, is complete then $T^{(i)}$ is extendable to $G^{(i-1)}$ and $T^{(i)}_{1,\ell}$ is extendable to $G^{(i-1)}_{1,\ell}$, $0 \le \ell \le i$.

DEFINITION 6. The row for $G^{(i)}$, $1 \le i \le n$, is complete if there exist subgroups $T^{(i)}$, $T_{1,\ell}^{(i)}$, $0 \le \ell \le i$, such that

(i)
$$T^{(i)} \supseteq T^{(i)}_{1,0} \supseteq T^{(i)}_{1,1} \supseteq \dots \supseteq T^{(i)}_{1,i} \supseteq <0>$$
,

(ii)
$$G^{(i)} = S^{(i)} \oplus T^{(i)}$$
, $G_{1,\ell}^{(i)} = S_{1,\ell}^{(i)} \oplus T_{1,\ell}^{(i)}$, $0 \le \ell \le i$,

(iii) $T^{(i)}$ is extendable to $G^{(i-1)}$ and $T^{(i)}_{1,\ell}$ is extendable to $G^{(i-1)}_{1,\ell}$, $0 \le \ell \le i$.

We will say that the sub-figure (row) for $G^{(i)}$ can be completed if we can prove the existance of the subgroups T_H ($T^{(i)}$, $T^{(i)}_{1,\ell}$ discussed in the definition for "The subfigure (row) for $G^{(i)}$ is complete."

PROPOSITION 1. Let G be a finite abelian p-group and let

 $G = G^{(0)} = S \oplus A \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset \dots \supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset <0> \text{ be a composition}$ series for G with $S = S^{(0)} \supseteq S^{(1)} \supseteq \dots \supseteq S^{(n)} \supseteq <0> \text{ subgroups of G and}$ $A = A^{(0)} \supseteq A^{(1)} \supseteq \dots \supseteq A^{(n)} \supseteq \{0\} \text{ Z-sets.}$ The following statements are true for $0 \le i \le n-1, \ 0 \le i' \le n$:

(a)
$$\left[G_{1,i}^{(i)}:G_{1,i+1}^{(i+1)}\right] \leq p$$

(b)
$$\left[G_{1,\ell}^{(i)}:G_{1,\ell}^{(i+1)}\right] \leq p, 0 \leq \ell \leq i+1$$

(c)
$$\left[G_{1,\ell'+1}^{(i)}: G_{1,\ell'+1}^{(i+1)}\right] \le \left[G_{1,\ell'}^{(i)}: G_{1,\ell'}^{(i+1)}\right]$$
, $0 \le \ell' \le i$

(d)
$$\left[G_{1,\ell}^{(i')}:G_{1,\ell'+1}^{(i')}\right] \leq p, 0 \leq \ell' \leq i'.$$

(e)
$$\left[G_{1,\ell'}^{(i+1)}:G_{1,\ell'+1}^{(i+1)}\right] \leq \left[G_{1,\ell'}^{(i)}:G_{1,\ell'+1}^{(i)}\right], 0 \leq \ell' \leq i.$$

(f)
$$\left[G_{2,\ell}^{(i)}:G_{2,\ell}^{(i+1)}\right] \leq \left[G_{1,\ell}^{(i)}:G_{1,\ell}^{(i+1)}\right]$$
, $0 \leq \ell \leq i+1$

PROOF. Let $G^{(i)} = \bigoplus_{k=1}^{r} \langle g_k \rangle$. Since $\left[G^{(i)} \colon G^{(i+)} \right] = p$ we have $G^{(i+1)} = \langle g_1 \rangle \oplus \langle g_2 \rangle \oplus \ldots \oplus \langle pg_j \rangle \oplus \ldots \oplus \langle g_k \rangle$ for some j, $1 \le j \le r$.

Then
$$G_{1,i}^{(i)} = pG^{(i)} = \bigoplus_{k=1}^{r} \langle pg_k \rangle$$
 and $G_{1,i+1}^{(i+1)} = pG^{(i+1)} = \langle pg_1 \rangle \oplus \langle pg_2 \rangle \oplus \dots \oplus \langle p^2g_j \oplus \dots \oplus \langle pg_k \rangle$.

If
$$o(g_j) = p$$
, then $G_{1,i}^{(i)} = G_{1,i+1}^{(i+1)}$. If $o(g_j) > p$, then $\left[G_{1,i}^{(i)} : G_{1,i+1}^{(i+1)}\right] = p$.

This proves (a).

Each of properties (b) through (f) can be deduced from Lemma 4 by choosing U, \mathbf{U}_1 , and K appropriately as follows:

(b)
$$U = G^{(i)}$$
, $U_1 = G^{(i+1)}$, $K = G_{1,\ell}^{(\ell)}$, $0 \le \ell \le i+1$.

(c)
$$U = G_{1,\ell'}^{(i)}$$
, $U_1 = G_{1,\ell'}^{(i+1)}$, $K = G_{1,\ell'+1}^{(\ell'+1)}$, $0 \le \ell' \le i$.

(d)
$$U = G_{1,\ell'}^{(\ell')}$$
, $U_1 = G_{1,\ell'+1}^{(\ell'+1)}$, $K = G_{1,\ell'+1}^{(i')}$, $0 \le \ell \le i'$.

(e)
$$U = G_{1,\ell}^{(i)}$$
, $U_1 = G_{1,\ell+1}^{(i)}$, $K = G_{1,\ell+1}^{(i+1)}$, $0 \le \ell' \le i$.

(f)
$$U = G_{1,\ell}^{(i)}$$
, $U_1 = G_{1,\ell}^{(i+1)}$, $K = G_{2,\ell}^{(\ell)}$, $0 \le \ell \le i+1$.

Observe that $G^{(i)}: G^{(i+1)} = p$ implies that $pG^{(i)} \subseteq G^{(i+1)}$ and $p^2G^{(i)} \subseteq pG^{(i+1)} \subseteq G^{(i+2)}$.

Thus
$$\left[G_{1,i}^{(i)}: G_{1,i}^{(i+1)}\right] = 1$$
, $0 \le i \le n-1$, $\left[G_{2,i}^{(i)}: G_{2,i}^{(i+1)}\right] = 1$, $0 \le i \le n-1$, and $\left[G_{2,i}^{(i+1)}: G_{2,i}^{(i+2)}\right] = 1$, $0 \le i \le n-2$.

PROPOSITION 2. Let G be a finite abelian p-group and let $G = G^{(0)} = S \oplus A \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset \ldots \supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset <0>$ be a composition series for G with $S = S^{(0)} \supseteq S^{(1)} \supseteq \ldots \supseteq S^{(n)} \supset <0>$ subgroups of G and $A = A^{(0)} \supseteq A^{(1)} \supseteq \ldots \supseteq A^{(n)} \supseteq \{0\}$ Z-sets. The following statements are true for $0 \le i \le n-1$, $0 \le \ell \le i$, $0 \le \ell' \le i-1$.

(a) If
$$\left[G_{1,\ell}^{(i)}:G_{1,\ell+1}^{(i+1)}\right]=1$$
 and $\left[G_{1,\ell}^{(i)}:G_{1,\ell}^{(i+1)}\right]=p$, then $\left[G_{2,\ell}^{(i)}:G_{2,\ell}^{(i+1)}\right]=1$.

(b) If
$$\left[G_{1,\ell'+1}^{(i)}: G_{1,\ell'+1}^{(i+1)}\right] = \left[G_{1,\ell'+1}^{(i-1)}: G_{1,\ell'+1}^{(i)}: G_{1,\ell'+1}^{(i)}\right] = 1$$
 and $\left[G_{1,\ell'}^{(i)}: G_{1,\ell'}^{(i+1)}\right] = p$, then $\left[G_{1,\ell'}^{(i-1)}: G_{1,\ell'}^{(i)}\right] = 1$.

PROOF. We have $G_{2,\ell}^{(i)} \subseteq G_{1,\ell+1}^{(i)} = G_{1,\ell+1}^{(i)} \subseteq G_{2,\ell}^{(i+1)}$. Therefore $G_{2,\ell}^{(i)} = G_{2,\ell}^{(i)} \cap G_{2,\ell}^{(i+1)}$

$$= G_{2,\ell}^{(i+1)}. \quad \text{Hence (a) is true.} \quad \left[G_{1,\ell'+1}^{(i)} \colon G_{1,\ell'+1}^{(i+1)}\right] = 1 \text{ and } \left[G_{1,\ell'}^{(i)} \colon G_{1,\ell'}^{(i+1)}\right] = 1$$

imply that
$$\left[G_{1,\ell}^{(i)}:G_{1,\ell+1}^{(i)}\right] = p$$
 and $\left[G_{1,\ell}^{(i+1)}:G_{1,\ell+1}^{(i+1)}=1\right] = 1$. By (d) and (e) of

Proposition 1 we have that
$$\left[G_{1,\ell'}^{\left(i-1\right)}\colon G_{1,\ell'+1}^{\left(i+1\right)}\right]$$
 = p. Consequently $\left[G_{1,\ell'}^{\left(i-1\right)}\colon G_{1,\ell'}^{\left(i\right)}\right]$ = 1.

We can eliminate from consideration several combinations of indices in Figure 1 since by Proposition 2 it is impossible for them to occur.

LEMMA 6. Let W, X, Y and Z be subgroups with the following properties:

- (i) $W \subseteq X$, $Y \subseteq X$, $Z = W \cap Y$
- (ii) [W:Z] = [X:Y] = p
- (iii) $X = S_X \oplus A_X$, $W = S_W \oplus A_W = S_W \oplus T_W$, $Y = S_X \oplus A_Y = S_X \oplus T_Y$, where S_W , S_X , T_W , T_Y are subgroups with $S_W \subset S_X$ and A_W , A_Y , A_X are Z-sets with $A_W \subseteq A_X$, $A_Y \subseteq A_X$.

(iv)
$$Z = S_W \oplus T_Z$$
 with $T_Z \subseteq T_W$ and $T_Z \subseteq T_Y$.

Then $X = S_X \oplus T_X$, where $T_X = T_W + T_Y$.

PROOF. By Lemma 1 we have $Z = W \cap Y = (S_W \cap S_X) \oplus (A_W \cap A_Y) = S_W \oplus (A_W \cap A_Y)$. The following diagram illustrates the relations between the subgroups W, X, Y, and Z.

$$W = S_W \oplus A_W = S_W \oplus T_W$$

$$Y = S_X \oplus A_Y = S_X \oplus T_Y$$

$$Z = W \cap Y = S_W \oplus (A_W \cap A_Y) = S_W \oplus T_Z$$

We will first show that X = W + Y. We have $Y \subseteq W + Y \subseteq X$ and [W:Y] = p. Since [W:Z] = p we must have $X = W + Y = S_X + (T_W + T_Y)$.

We will complete the proof by showing that $\mathbf{S}_{X} \, \cap \, (\mathbf{T}_{W} \, + \, \mathbf{T}_{Y}) \, = \, <0>$. Let

$$s_X = t_W + t_Y, s_X \in S_X, t_W \in T_W, t_Y \in T_Y$$
 (5.2)

We can write $t_W = s_W + a_W$, $t_Y = s_X' + a_Y$, $s_W \in S_W$, $s_X' \in S_X$, $a_W \in A_W$, $a_Y \in A_Y$. Thus (5.2) becomes $s_X = s_W + a_W + s_X' + a_Y$ and we have $s_X - s_X' = s_W$ and $-a_W = a_Y \in A_W \cap A_Y \subseteq Z$. Consequently we can write $a_W = s_W' + t_Z$, $s_W' \in S_W$, $t_Z \in T_Z$. But then $t_W = s_W + s_W' + t_Z$. Since $T_Z \subseteq T_W$ and $T_W \cap S_W = <0$ we must have $s_W + s_W' = 0$. Similarly, $t_Y = s_X' - s_W' - t_Z$ so that $s_X' - s_W' = 0$. Hence $s_X = s_W + s_W' - s_W' - s_X' = 0$.

THEOREM 5. Let G be a finite abelian p-group of exponent p^k , $k \ge 1$, and let

$$G = G^{(0)} = S \oplus A \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset ... \supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset <0> \quad (5.3)$$
 be a series for G with $S = S^{(0)} \supseteq S^{(1)} \supseteq ... \supseteq S^{(n)} \supseteq <0>$ subgroups of G and
$$A = A^{(0)} \supseteq A^{(1)} \supseteq ... \supseteq A^{(n)} \supseteq \{0\} \text{ Z-sets.} \quad \text{If } p^2A = \{0\} \text{ then the series } (5.3) \text{ admits}$$

PROOF. By Lemma 3 we can assume that (5.3) is a composition series for G. Note that for $0 \le i \le n$, $0 \le \ell \le i$, $j \ge 2$, $h \ge 1$,

$$A_{j,\ell}^{(i)} = A^{(i)} \cap p^{j}A^{(\ell)} \subseteq p^{2}A = \{0\},$$

and

replacements.

$$p^{h}A_{1,\ell}^{(i)} \subseteq p^{h+1}A^{(\ell)} \subseteq p^{2}A = \{0\}.$$

Thus we have $G_{j,\ell}^{(i)} = S_{j,\ell}^{(i)}$ and $p^h G_{1,\ell}^{(i)} = p^h S_{1,\ell}^{(i)}$, $0 \le i \le n$, $0 \le \ell \le i$, $j \ge 2$, $h \ge 1$. Consequently we must have $T_{j,\ell}^{(i)} = T_{h,1,\ell}^{(i)} = <0>$, $0 \le i \le n$, $0 \le \ell \le i$, $j \ge 2$, $h \ge 1$.

We use a "backward induction" on i to show that the sub-figure for each $G^{(i)}$, $0 \le i \le n$, can be completed.

For i = n, $|G^{(n)}| = p$ implies that $G^{(n)}$ is cyclic of forder p. Thus the subfigure for $G^{(n)}$ is trivially complete.

Now assume the sub-figure for $G^{(i+1)}$ is complete. In view of the preceding comments on the subgroups $T_{j,\ell}^{(i)}$, $T_{h,1,\ell}^{(i)}$, $0 \le \ell \le i$, $j \ge 2$, $h \ge 1$, if we can complete the row for $G^{(i)}$ in such a way that $T_{1,\ell}^{(i+1)} \subseteq T_{1,\ell}^{(i)}$, $0 \le \ell \le i$, $T^{(i+1)} \subseteq T^{(i)}$, then the sub-figure for $G^{(i)}$ will be complete as well.

By Lemma 3 we must consider two cases, (1) $A^{(i)} = A^{(i+1)}$, and (2) $S^{(i)} = S^{(i+1)}$.

By Lemma 3 we must consider two cases, (1) $A^{(i)} = A^{(i+1)}$, and (2) $S^{(i)} = S^{(i+1)}$. Case (1). By hypothesis, the sub-figure for $G^{(i+1)}$ is complete so that there exist subgroups $T^{(i+1)} \supseteq T_{1,0}^{(i+1)} \supseteq T_{1,1}^{(i+1)} \supseteq \cdots \supseteq T_{1,i+1}^{(i+1)}$ such that

 $G^{(i+1)} = S^{(i+1)} \oplus T^{(i+1)}, \ G^{(i+1)}_{1,\ell} = S^{(i+1)}_{1,\ell} \oplus T^{(i+1)}_{1,\ell}, \ 0 \le \ell \le i+1, \ \text{and} \ T^{(i+1)} \ \text{is}$ extendable to $G^{(i)}_{1,\ell}$, $T^{(i+1)}_{1,\ell}$ is extendable to $T^{(i)}_{1,\ell}$, $T^{(i+1)}_{1,\ell}$ is extendable to $T^{(i)}_{1,\ell}$, $T^{(i+1)}_{1,\ell}$ is extendable to $T^{(i)}_{1,\ell}$, $T^{(i+1)}_{1,\ell}$, $T^{(i+1)}_{$

Case (2). We have $\left[G_{1,\ell}^{(i)}\colon G_{1,\ell}^{(i+1)}\right] \leq p$, $0 \leq \ell \leq i$, by (b) of Proposition 1.

If $\left[G_{1,\ell}^{(i)}\colon G_{1,\ell}^{(i+1)}\right]=1$, $0\leq\ell\leq i$, we can complete the sub-figure for $G^{(i)}$ by choosing $T_{1,\ell}^{(i)}=T_{1,\ell}^{(i+1)}$, $0\leq\ell\leq i$, and extending $T^{(i+1)}$ to $G^{(i)}$. $(T^{(i+1)}$ is extendable to $G^{(i)}$ by the hypothesis that the sub-figure for $G^{(i+1)}$ is complete).

Now suppose there exists ℓ_0 such that

$$\left[\mathsf{G}_{1,\mathfrak{L}}^{(\mathtt{i})} : \mathsf{G}_{1,\mathfrak{L}}^{(\mathtt{i}+1)}\right] = \begin{cases} 1 \text{ for } \ell_{0} < \ell \leq \mathtt{i} \\ p \text{ for } 0 \leq \ell \leq \ell_{0} \end{cases}$$

This situation is illustrated in Figure 2, where, for simplicity, we have omitted the subgroups $G_{j,\ell}^{(r)}$ and $G_{h,1,\ell}^{(r)}$ since $T_{j,\ell}^{(r)} = T_{h,1,\ell}^{(r)} = <0>$, $0 \le \ell \le n$, $1 \le h \le k-2$,

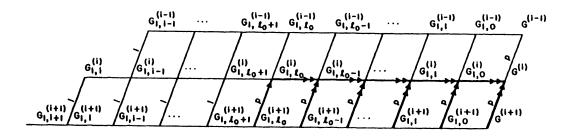
 $2 \le j \le k-1$, r = i+1, i, i-1. The numbers 1 and p in Figure 2 represent indices.

We can choose $T_{1,\ell}^{(i)} = T_{1,\ell}^{(i+1)}$ for $\ell_0 < \ell \le i$. As remarked previously, the hypothesis that the sub-figure for $G^{(i+1)}$ is complete implies that $T_{1,\ell_0}^{(i+1)}$ can be extended to $G_{1,\ell_0}^{(i)}$. This extension is indicated in Figure 2 by a single arrow.

Setting $X = G_{1,\ell}^{(i)}$, $Y = G_{1,\ell}^{(i+1)}$, $W = G_{1,\ell+1}^{(i)}$, $0 \le \ell \le \ell_0$ -1, we have

 $Z = W \cap Y = G_{1,\ell+1}^{(i+1)}$, $0 \le \ell \le \ell_0$ -1, so that W,X,Y,Z satisfy the conditions of Lemma 6.

Thus we can apply Lemma 6 to obtain $G_{1,\ell}^{(i)} = S_{1,\ell}^{(i+1)} \oplus T_{1,\ell}^{(i)}$, where $T_{1,\ell}^{(i)} = T_{1,\ell+1}^{(i)} + T_{1,\ell}^{(i+1)}$, $0 \le \ell \le \ell_0$ -1. We can again apply Lemma 6, taking $X = G^{(i)}$, $W = G_{1,0}^{(i)}$, $Y = G^{(i+1)}$, $Z = W \cap Y = G_{1,0}^{(i+1)}$, to obtain $G^{(i)} = S^{(i+1)} \oplus T^{(i)}$, where $T^{(i)} = T_{1,0}^{(i)} + T^{(i+1)}$. These sums are indicated in Figure 2 by double arrows. Clearly, $T^{(i)} \supseteq T_{1,0}^{(i)} \supseteq \cdots \supseteq T_{1,\ell}^{(i)}$ and $T_{1,\ell}^{(i+1)} \subset T_{1,\ell}^{(i)}$, $0 \le \ell \le i$. Thus the sub-figure for $G^{(i)}$ is complete.



COROLLARY 1. If G is a finite abelian p-group of exponent less than or equal to p^2 then G admits replacement.

PROOF. Let $G = G^{(0)} = S \oplus A \supset G^{(1)} = S^{(1)} \oplus A^{(1)} \supset ... \supset G^{(n)} = S^{(n)} \oplus A^{(n)} \supset <0>$ (5.4) be a series for G with $S = S^{(0)} \supseteq S^{(1)} \supseteq ... \supseteq S^{(n)} \supseteq <0>$ subgroups of G and $A = A^{(0)} \supseteq A^{(1)} \supseteq ... \supseteq A^{(n)} \supseteq \{0\}$ Z-sets. We have $P^2A = \{0\}$ since by hypothesis $P^2G = <0>$. By Theorem 5 the series (5.4) admits replacements. Hence G admits replacement.

6. RELATION TO A VARIATION OF A METHOD OF A.D. SANDS.

Our terminology will be the same as in [3] when referring to factorizations which are obtained by the variation of Sands' method.

The following Proposition can be readily verified.

PROPOSITION 3. Let $G = K_1 \supset K_2 \supset ... \supset K_n \supset <0>$ be a series for G with coset representatives H_i , $1 \le i \le n$, $K_n = H_n$. If $H_i \oplus H_{i+2} \oplus ...$ is a subgroup (Z-set) then $H_{i+2} \oplus H_{i+4} \oplus ...$ is also a subgroup (Z-set).

THEOREM 6. Let G be a finite abelian group which admits replacement and let

$$G = K_1 \supset K_2 \supset \dots \supset K_n \supset \langle 0 \rangle$$
 (6.1)

be a series for G. If $G = A \oplus B$ is a Z-factorization of G arising from (6.1) then there exist subgroups S, T such that the factorization $G = S \oplus T$ arises from the series (6.1).

PROOF. We will assume that n is odd since the proof for n even is similar. We will proceed by induction on the order of the group G.

If |G|=p, then $G=G\oplus <0>$ is the only Z-factorization of G. Thus in any series from which this factorization arises we must have $G=K_1=S$, $T=K_1=<0>$, $i\geq 2$.

Assume the theorem is true for groups of order less than G. Let $G = A \oplus B$ be a Z-factorization of G arising from (6.1). By Lemma 5 of [3] we may assume

$$A = H_1 \oplus H_3 \oplus H_5 \oplus \ldots \oplus H_n$$

$$B = H_2 \oplus H_4 \oplus H_6 \oplus \dots \oplus H_{n-1},$$

where $0 \in H_i$, $1 \le i \le n$.

We have the H_3 + H_5 +...+ H_n is a Z-set by Proposition 3.

Thus

$$K_2 = (H_3 \oplus H_5 \oplus ... \oplus H_n) \oplus (H_2 \oplus H_4 \oplus ... \oplus H_{n-1})$$

is a Z-factorization of ${\rm K}_2$ arising from the series

$$K_2 \supset K_3 \supset \dots \supset K_n \supset \langle 0 \rangle \tag{6.2}$$

 $|K_2| < |G|$ implies, by the induction hypothesis, that there exist subgroups, S', T' such that the factorization $K_2 = S' \oplus T'$ arises from the series (6.2). Thus, by Lemma 5 [3] there exist transversals H_i' , $2 \le i \le n$, such that

$$S' = H_2' \oplus H_4' \oplus ... \oplus H_{n-1}'$$

$$T' = H_3' \oplus H_5' \oplus \ldots \oplus H_n',$$

where $0 \in H'_i$, $2 \le i \le n$.

Note that $K_n = H_n = H_n^{\dagger}$ and

$$K_{i} = H'_{i} \oplus K_{i+1} = H_{i} \oplus K_{i+1}, 2 \le i \le n-1$$
 (6.3)

since both H_i and H_i' are coset representatives for K_i modulo K_{i+1} , $2 \le i \le n$. Using (6.3) successively, starting with i = n-1, we see that we can choose H_1 , H_3 , H_5 , ..., H_n , H_2' , H_4' , H_6' , ..., H_{n-1}' as coset representatives for the series (6.1) to obtain the factorization

$$G = (H_1 \oplus H_3 \oplus ... \oplus H_n) \oplus (H_2' \oplus H_4' \oplus ... \oplus H_{n-1}') = A \oplus S'$$
 (6.4)

By Proposition 3, H_i \oplus H_{i+2} \oplus ... \oplus H_n is a Z-set, $i=1,3,\ldots n$, and H_i' \oplus H_{i+2}' \oplus ... \oplus H_{n-1}' is a subgroup, $i=2,4,\ldots,n-1$. Set

$$S^{(i)} = H'_{i} \oplus H'_{i+2} \oplus ... \oplus H'_{n-1}, i = 2,4,..., n-3$$

$$S^{(n-1)} = H_{n-1}^{i}$$

$$A^{(i)} = H_i \oplus H_{i+2} \oplus \dots \oplus H_n$$
, $i = 1,3,\dots$, $n-2$

$$A^{(n)} = H_n = K_n.$$

Then the series (6.1) can be written as

$$G = K_1 = S^{(2)} \oplus A^{(1)} \supset K_2 = S^{(2)} \oplus A^{(3)} \supset K_3 = S^{(4)} \oplus A^{(3)} \supset \dots \supset K_{n-1} = S^{(n-1)} \oplus A^{(n)} \supset K_n = A^{(n)} \supset 0$$

where $S^{(2)} = S'$ and $A^{(1)} = A$. In general,

$$K_{i} = \begin{cases} S^{(i)} \oplus A^{(i+1)} & \text{for i even, } 2 \leq i \leq n-1 \\ \\ S^{(i+1)} \oplus A^{(i)} & \text{for i odd, } 1 \leq i \leq n-2, \quad K_{n} = A^{(n)} = H_{n}. \end{cases}$$

By hypothesis G admits replacement. Thus there exist subgroups $T^{(1)} \supseteq T^{(2)} \supseteq \ldots \supseteq T^{(n)}$ such that

$$K_{i} = \begin{cases} S^{(i)} \oplus T^{(i)} & \text{for i even, } 2 \le i \le n-1, \\ \\ S^{(i+1)} \oplus T^{(i)} & \text{for i odd, } 1 \le i \le n-2, K_{n} = T^{(n)} = H_{n} = A^{(n)}. \end{cases}$$

Define $H'' = T^{(n)} = A^{(n)}$. We have

$$K_{n-1} = S^{(n-1)} \oplus T^{(n-1)} = S^{(n-1)} \oplus A^{(n)} = S^{(n-1)} \oplus T^{(n)}$$

 $K_{n-1} = S^{(n-1)} \oplus T^{(n-1)} = S^{(n-1)} \oplus A^{(n)} = S^{(n-1)} \oplus T^{(n)}$ so that $|T^{(n-1)}| = |T^{(n)}|$. But $T^{(n)} \subseteq T^{(n-1)}$. Therefore $T^{(n-1)} = T^{(n)}$.

$$K_{n-2} = S^{(n-1)} \oplus T^{(n-2)}, T^{(n-1)} \subseteq T^{(n-2)}.$$

If we choose $H_{n-2}^{"}$ a set of coset representatives for $T^{(n-2)}$ modulo $T^{(n-1)}$ we have $T^{(n-2)} = H_{n-2}'' \oplus T^{(n-1)} = H_{n-2}'' \oplus T^{(n)} = H_{n-2}'' + H_{n}'', \text{ and } K_{n-2} = S^{(n-1)} \oplus H_{n-2}'' \oplus T^{(n)}$

= H_{n-2}'' \bullet K_{n-1} . Thus H_{n-2}'' is also a set of coset representatives for K_{n-2} modulo K_{n-1} .

$$K_{n-3} = S^{(n-3)} \oplus T^{(n-3)} = S^{(n-3)} \oplus A^{(n-2)}$$
 and

$$K_{n-2} = S^{(n-1)} \oplus T^{(n-2)} = S^{(n-1)} \oplus A^{(n-2)}$$
 imply that $|T^{(n-3)}| = |A^{(n-2)}| = |T^{(n-2)}|$.

But $T^{(n-2)} \subset T^{(n-3)}$. Hence we have that $T^{(n-2)} = T^{(n-3)}$ and

$$K_{n-3} = S^{(n-3)} \oplus T^{(n-2)} = (H'_{n-3} \oplus H'_{n-1}) \oplus T^{(n-2)} = H'_{n-3} \oplus K_{n-2}.$$

In general, given $T^{(i)}$ for i odd we have $T^{(i-1)} = T^{(i)}$ and $T^{(i-2)} = H''_{i-2} \oplus T^{(i)}$

so that the factorizations of K_i , $1 \le i \le n$, are as follows:

$$K_n = T^{(n)} = H_n'' = H_n$$

$$K_{n-1} = S^{(n-1)} \oplus T^{(n)} = H'_{n-1} \oplus H''_{n}$$

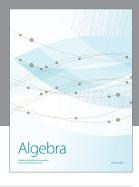
$$K_{n-2} = S^{(n-1)} \oplus T^{(n-2)} = H'_{n-1} \oplus H''_{n-2} \oplus T^{(n)} = H'_{n-1} \oplus (H''_{n-2} \oplus H''_{n})$$

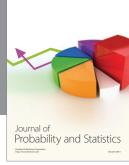
$$\begin{split} &K_{n-3} = S^{(n-3)} \oplus T^{(n-2)} = (H'_{n-3} \oplus H'_{n-1}) \oplus (H''_{n-2} \oplus H''_{n}) \\ &K_{n-4} = S^{(n-3)} \oplus T^{(n-4)} = S^{(n-3)} \oplus H''_{n-4} \oplus T^{(n-2)} = (H'_{n-3} \oplus H'_{n-1}) + (H''_{n-4} \oplus H''_{n-2} \oplus H''_{n}) \\ &\vdots \\ &\vdots \\ &K_{3} = S^{(4)} \oplus T^{(3)} = S^{(4)} \oplus H''_{3} \oplus T^{(5)} = (H'_{4} \oplus H'_{6} \oplus \dots \oplus H'_{n-1}) + (H''_{3} \oplus H''_{5} \oplus \dots \oplus H''_{n}) \\ &K_{2} = S^{(2)} \oplus T^{(3)} = (H'_{2} \oplus H'_{4} \oplus \dots \oplus H'_{n-1}) + (H''_{3} \oplus H''_{5} \oplus \dots \oplus H''_{n}) \\ &K_{1} = S^{(2)} \oplus T^{(1)} = S^{(2)} \oplus H''_{1} \oplus T^{(3)} = (H'_{2} \oplus H'_{4} \oplus \dots \oplus H'_{n-1}) \oplus (H''_{1} \oplus H''_{3} \oplus \dots \oplus H''_{n}). \end{split}$$

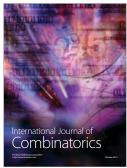
We can complete the proof by defining $S = S^{(2)} = H_2' \oplus H_4' \oplus H_6' \oplus \ldots \oplus H_{n-1}'$ and $T = T^{(1)} = H_1'' \oplus H_3'' \oplus H_5'' \oplus \ldots \oplus H_n''$ to obtain the factorization $G = S \oplus T$, $S \subseteq G$, $T \subseteq G$, which arises from the series (6.1).

REFERENCES

- SANDS, A.D., On the factorization of finite abelian groups I, <u>Acta. Math. Acad.</u> <u>Sci. Hung.</u> 8(1957), 65-86.
- HAJOS, G, Sur la factorisation des groupes abeliens, <u>Casopis Pest. Math. Fys.</u> 74(1950), 157-162.
- OBAID, E.E., On a variation of Sands' method, <u>Internat. J. Math. & Math. Sci.</u> 9(3)(1986), 597-604.
- 4. FUCHS, L., Abelian Groups, Pergamon Press, 1960.
- OKUDA, C., The factorization of Abelian groups, doctoral dissertation, the Pennsylvania State University, University Park, PA, 1975.







Submit your manuscripts at http://www.hindawi.com

