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ABSTRACT. A new class of contact manifolds (carring a global non-vanishing timelike
vector field) is introduced to establish a relation between spacetime manifolds and
contact structures. We show that odd dimensional strongly causal (in particular,
globally hyperbolic) spacetimes can carry a regular contact structure. As examples,
we present a causal spacetime with a non regular contact structure and a physical
model [G&del Universe] of Homogeneous contact manifold. Finally, we construct a model

of 4-dimensional spacetime of general relativity as a contact CR-submanifold.
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1. INTRODUCTION.

A smooth (2n+l1)-dimensional manifold N is called contact manifold if it carries a
global 1-form n such that

nALdn" £0

everywhere on N, where dn is the exterior derivative of the contact from n. N is
then orientable. The name contact is due to S. Lie [1]. Classically there have been
two large classes of contact manifolds, namely, the principle circle bundle of the
boothby-wang fibrations including the odd-dimensional spheres and the tangent sphere
bundles. A thorough disussion may be found in [2]. The theory of contact manifolds
has been widely used in mathematical physics. For example, in thermodynamics [3], a
contact manifold is named as thermodynamic phase space (TPS) with contact form n = du
- Tds + pdv +..., where u, 8, v, p and T are the internal energy, the entropy, the

volume, the pressure and the temperature respectively.

Contact manifolds have an interplay with Cauchy Riemann (CR) manifolds [4,5] in
the following way. The 2n-dimensional contact distribution D = {X € TN/n(X) = 0O} has
a complex structure. Thus, the complexification of D has a holomorphic sub-bundle H
such that (N,H) is a CR-manifold if the contact structure is normal [6]. Recently,
the present author introduced a new area of research, namely, Lorentzian Geometry of
CR submaniflds with applications to relativity [7,8); cf. also [9]. As normal contact
manifold is an example of CR manifolds (see Blair [2] p. 62), a systematic study on
the Lorentzan geometry (mathematical theory for relativity) of contact manifolds is

needed.
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Motivated by above, as a first step, the objective of this paper is to establish

a relation between spacetime manifolds and contact structures.

Our study is in line with the latest trend of relating the Riemannian and

Lorentzian geometry (see, for example [13, 14, 17]).

2. PRELIMINARIES.

A spacetime (M,g) is a connected smooth Hausdorff manifold of dimension > 2 with
a Lorentz metric g of signature (-,+,...,+) and is time oriented, that is, has a
global timelike vector field. All non-compact manifolds admit Lorentz metrics,
whereas, a compact manifold is Lorentz iff 1its Euler characteristic vanishes. Any
compact spacetime contains a closed timelike curve. For example, on the cylinder
R x S1 with ds2 = -dt2 + dGz, the circles t = const. are closed timelike curves. In
relativity, each point of spacetime corresponds to an event relative to time. Thus,
physically, closed timelike curves are forbidden as this raises the possibility that a
person might meet himself in the past. Therefore, all physical spacetimes are assumed
non-compact. Let C: [a,b] + M be a curve in M. The point p € M is called the end

polnt of C for t = b if 1im C(t) = p. A nonspacelike curve is future (resp., past)
t + b-

inextendible if it has no future (resp., past) endpoint. A nonspacelike future (resp.
past) inextendible curve C does one of the following:

(1) Traps within a compact set,g.

(2) Does not trap in any compact set but continually re-enter a compact set,g.

(3) Does not trap in any compact set and does not re-enter in any such set more than a

finite number of times.

If (3) holds then C goes off to the edge of spacetime to infinity or a singularity
point. For (1) and (2), C is called totally and partially imprisoned in )& ,
respectively. Carter [10] has given following example of a causal spacetime M having
imprisoned nonspacelike inextendible curves. The metric is:

dsz = (cosh t - 1)2(dy2 - dtz) - dtdy + d22 )

Identify

Identify after shifting
an irrational number

(FPig. 1)
M=RsSls! = {(e,y,z) e R} (t,y,z) ~ (t,y,z+l) and (t,y,z) ~ (y,y+l,z+a), where a
is an irrational number. A Cauchy hypersurface S in M is a subset that meets exactly

once every inextendible nonspacelike curve in M. M is globally hyperbolic iff it
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admits a Cauchy hypersurface. According to Geroch [11] a globally hyperbolic
spacetime is a product manifold of the form (M = RxS: g = -dt2 G) with (S,G) a
compact Riemannian manifold. Minkowski spacetime and Einstein static universe are
simple examples. Given any two points p,q of M, q is in the chronological future
(resp. past) of p, denoted by p <K q (resp. q << p), if there is a future (resp. past)
directed timelike curve from p to q. The chronological future (resp. past) of p are
the sets I+(p) = {g eM: p<qland I (p) = {q eM: q < p}e The causal future
(resp. past) of p are the sets J+(p) = {q eM: p <q}land J(p) = {q eM: p <q} for
nonspacelike curves. This means that M, with no closed nonspacelike curve is causal
space. Also, as any compact spacetime contains a closed timelike curve, it fails to
be causal. The sets I+(p) and I (p) are always open in any space time, but the sets
J+(p) and J (p) are neither open nor closed in general. M is strongly causal if its
every point has arbitrarily small neighbourhoods which no nonspacelike curve
intersects more than once. A strongly causal M is globally hyperbolic, if for each p,
q of M, J'(p)nJ7(q) 1s compact.

PROPOSITION 1. If the strong causality condition holds on a compact set of a
spacetime, then there can be non imprisoned inextendible curves (Hawking and Ellis

[12]). For details on above (with examples) we refer [13].

3. CONTACT SPACE TIMES.

A (2n+l1)-dimensional smooth manifold N is called an almost contact metric
manifold 1if there exists a tensor field ¢ of type (1,1), a vector field § 1-

form n and a semi-Riemannian metric g such that:

2= -1 + n®E, ¢E=10, np=0, n(g) =1 (2)
S(E» E) = €, g(‘x: ¢Y) = S(X:Y) - en(X) n(Y)

where € = +1 or -1 according as £ is spacelike or timelike and rank(¢) = 2n.
If dn(X,Y) = g(¢X,Y) for every X,Y of N, then N is called a contact metric manifold.

For € = +1 and g definite, N is the usual contact metric structure [2]. Here, we
study a larger class to allow indefinite metric. For example, if € = -1,
then N contains a timelike vector field. However, the signature of g is restricted by
the following result.

PROPOSITION 2. The 2n-dimensional contact distribution D(n = 0) of a contact
manifold (n > 2) cannot carry a Lorentz metric.

PROOF. D admits a Hermitian structure which cannot carry a Lorentz metric unless

n = 1 (for details see Flaherty [14]). Based on above proposition the following holds.

THEOREM 1. For a contact metric manifold N, the following are equivalent:
(a) N is a spacetime manifold
(b) the contact vector field £ is timelike and the contact distribution D (defined
by n= 0) is spacelike [except when dim(N) = 3, then £ spacelike and D timelike is
possiblel].
In this paper, a contact manifold with a Lorentz metric will be called a contact
spacetime. An almost contact manifold is said to be normal if the Nijenhuis tensor
of ¢ satisfies:
(¢, ¢] + 2dn B E=0 3)



548 K. L. DUGGAL

EXAMPLE, Consider a (2n+l)-dimensional spacetime manifold N with a 1local

i

i
coordinate system (X'; y , t) 1 = 1,...,n. N being timenoriented admits a global

timelike vector field, say E. Define a l-form n =1 (dt - I yldx!) so that

1
£ = 23t. Then, from a classical theorem of Darboux [2], N is a contact manifold with
contact from n and timelike contact vector field £. The Lorentz metric g:

n
g =Y [z (@xhH?+ @whH?)-nen
1

gives a contact metric structure to the spacetime N for € = -1l. Therefore, N is a

contact spacetime. With respect to an orthonormal ¢-basis (Ui; Un+i’ £), where

1
Ug =231, U+ 2(3x1 PR, Wy = U, Wy Y

the metrix of the components of g is given by:

- gid 1
TR 0 y

1
% 0 aij 0
—yj 0 -1

THEOREM 2. An odd dimensional globally hyperbolic spacetime can carry a contact
structure.

PROOF. Congider an almost Hermitian manifold [Mzn,G,J
G(X,Y) for every X,Y of MZ“. Construct a globally hyperbolic spacetime

N = {Rmzn, g = -t + G}. Denote a vector field on N by X = (n(X)
2n

2. -1] and G(JX,JY) =

d
ac X) where X

is tangent to M“", t is the coordinate of R and n(X) is a smooth function on N.

Set n = dt so that £ = ( d—: , 0) is timelike global vector field. Then with
on® ., x) = (0,30
dt’ ’

p— — d P .
gln® $ 0, (D L DI = 6D - @D,
we recover a contact metric structure on N for € = -l.

In particular, let R™ be n-dimensional pseudo-Euclidean space of signature (-

+,.0,+) with q negative and n—q positive eigenvalues. Hence, for a local

30y

coordinate system (Xi), {=1,...,n, its metric is given by:

q n 2
as? = - def»r I axg
1 q+l

Define for r » 0 (see Wolf [15 section 4.2])

n n+l, 2 2 2 2
slm{)(eRl .—X1+X2+...+Xn+l r’}

and ) ) ) 2 2
ntl - e + = -
1 C x1 xl + . X r’}

n
Hl={XER n+1
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Topologically, S? is R1 x sn—l and B? is S1 x Rn-l. Also, S? is a Lorentzian analogue
of the sphere of radius r with positive curvature r2. The Universal

n
1

covering ﬁ? of H
curvature -r-z. ST (ﬁ?) are called de-Sitter (anti de-sitter) spaces [12]. ST is

is topologically R?, and, thus, a hyperbolic space of negative
globally hyperbolic but ﬁ? is not. Thus, we have

COROLLARY. 0dd dimensional de-sitter spaces can carry a contact structure.

4. REGULAR CONTACT SPACE TIMES.

A contact structure on N is regular if every point p of N has a cubical
coordinate neighbourhood u such that the integral curves of £ passing through u pass
this neighborhood only once. If N is compact, then the maximal integral curves
of £ are homeomorphic to circles and therefore Boothby-Wang theorem [16] will hold.
For noncompact spacetimes, comparing the definitions of strongly causal spacetimes and
regular contact spaces, we get

THEOREM 2. An odd dimensional strongly causal spacetime can carry a regular
contact structure.
COROLLARY. 0dd dimensional globally hyperbolic spacetimes can carry a regular

contact structure.

Well-known examples are Minkowski spacetime, Lorentz spheres and Robertson-Walker

spacetimes.

On the other hand, there exist causal spacetimes which can not carry a regular
contact structure. To illustrate this point consider a 3-dimensional contact manifold
M, defined by n = cosh =z dt - sinh z dy and £ = cosh zat + sinh 239y for a coordinate

system (t,y,z). The Lorentz metric
2 2
g = cosh 2z dy” +dz” - (1 + sinh 2z)dtdy = n n

= coshzz[dy2 - dt2] + d22 - dtdy. (4)
glves a contact metric structure on spacetime H3. In particular, for coshzz-cosht:—l)-l
and t > O, H3 is Carter's example (see section 2) of a causal spacetime with
inextendible nonspacelike imprisoned curves. Note that the integral curves
of £ through (y,y+l,a) induce an irrational flow as a is irrational. Therefore £ is

not regular.

The discussion, so far, opens the way to address the following basic problem.

"Characterise regular contact spacetimes"

For the characterisation of regular contact Riemannian manifolds, we refer [16]. The
following results may be useful.
PROPOSITION 3 (0'Neill [17]). Maximal integral curves of a vector field V of a

spacetime are inextendible.

This means that the maximal integral curves of the regular contact vector
field £ are extendible. On the topology of such spacetimes, we know that Open sets of
the form I+(p) N I7(q) for any p,q of any spacetime N form a basis of a topological
structure on N, called Alexandrov topology. This topology 1is related with the
strongly causal spacetimes (and, therefore, regular contact spacetimes) by the

following result:
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PROPOSITION 4. (Penrose [18]) The Alexandrov topology for a spacetime N agrees
with the given manifold topology iff N is strongly causal.

A contact manifold N is said to be homogeneous if there is a connected Lie group

G acting transitively and effective as a group of differentiable homomorphism on N

which leave n invariant. Boothby and Wang [16] have proved that the integral curves

of £ are necessarily regular for homogeneous contact manifolds but N need not be
compact. Also, following holds:

THEOREM 4 (Boothby-Wang) [16]). The integral curves of the contact vector

field £ of a homogeneous contact manifold are either closed curves or open arcs.

Relating above result with homogeneous spacetimes, we present the following

example:

Kurt Gédell [19] discovered a homogeneous spacetime, called Gdédell Universe,
whose metric g is a direct sum of the metric:
2 4 ax? - Vzexp(Z (jz) ax)dy2 - 2exp( (/E ) ax)dtdy, (5)
on the 3-dimensional manifold Mj defined by the coordinates (t,x,y), where a > 0 is a

g, = —dt

constant, and the metric g, = dz2 on the manifold R! defined by the coordinate z. For
golutions of the Einstein's field equations, it is sufficient to consider only

(M3,g1). Transforming into new coordinates (t',r,¢) by
exp((jz)ax) = cosh 2r + cos¢ sinh 2r,
ay exp((jz)ax) = sin ¢ sinh 2r,
tanls, (¢ + at - (/Z)t') = exp(-2r)tan Yo,

the metric g; takes the new form , _ ,
2 _ (sinhAr—sinhzr)d ¢ + 2(v2) sinh’r d¢de].

g, = 22 2l-ac? T T

r=0 (coordinate axis)

Motter’
world line |(r, @ constant)
rclog(1+v2)

(closed spacelike
curve)

rylogl(1+v2Z) |

(closed timelike |

curve) | .
r=log(1+v2) \t=0
(closed null
curve)

(FPig. 2)
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The flow vector of the fluid is u = (a//-Z-)at. The space 1is rotationally
symmetric about the axis r = O (see fig. 2). The 1light cones on the axis r = 0
contain the direction of u. The 1light cone opens out and tips over as r increases
resulting in closed timelike curves. At a radius r = log (1+/—2.), 3¢ is a null
vector. For a greater value of r, 3,6 is a timelike vector and circles of constant r,
t' are closed timelike curves. (M3,gl) is a contact spacetime define by

n= (/E/a)(dt' + Ad¢), E = (a//E) [a": + A-l 3¢], where A2 = sinhar - sinhzr. Thus,
Gédel universe is an example of a homogeneous contact spacetime such that the integral

curves of £ [for r > log (1 + ¥2) and t' constant] are closed timelike curves.

Further research in this direction 1s needed to find the topology of homogeneous
contact spacetimes. For results on these topics with respet to Riemanian metric see
[16].

5. CONTACT STRUCTURE AND PHYSICAL SPACE TIME.

By a physical spacetime we mean 4-dimensional spacetime in the context of
relativity (special or general). As contact manifolds are odd dimensional (there do
exist even dimensional contact manifolds [20] which we are not discussing here), to
relate them with the physical spacetime, we embed physical spacetime as submanifold of
contact manifold. There are three popular classes of submanifolds of contact
manifolds. First, invariant submanifolds [21] which inherit almost all properties of
the ambient manifold. Second, anti-invariant submanifolds [22]. Third, contact CR
manifolds [4,5] (See G&enner [23] for details on the isometric embedding of
spacetimes. In particular, every 4-dimensional spacetime M can be seen (locally) as a
submanifold of a Minkowski space R'I' of n < 10, Globally, n < 46 or 87 according as M
is compact or noncompact). An invariant submanifold of a contact manifold inherits
contact struture and, therefore, must be ruled out for our purpose. Out of the other

two classes, we consider CR submanifolds as they include anti-invariant class.

Let M be a real m~dimensional submanifold of a contact metric manifold
(N, ¢, & n, g) with semi-Riemannian metric metric g. We use same symbol g for the

metric of M. Let £ be tangent to M.

DEFINITION. M is called a contact CR submanifold of N if there exist two
distributions D and Dl on M satisfying

(1) T™ = pepl e {€}, where D, Dl and {£} are mutually orthogonal to each other;

(2) D is invariant by ¢ [¢(D) = D];

(3) pt is anti-invariant by ¢ [¢(D‘LCTM
The same concept was studied under the name semi-invariant submanifolds [5]. Here we
define a larger class to include indefinite metric. Dim(D) = O (resp. dim(Dl ) =0
implies M is anti-invariant (resp. invariant), otherwise it is a non-trivial contact

CR submanifold.

|

Based on above definition, we now construct a mathematical model of 4-dimensional
spacetimes as contact CR submanifolds.

MODEL. Let (N,g) be a 5-dimensional spacetime with a local coordinate system
(x,8,y,z,t). Define a l-form n =1/2 [dt - ydx - zds] so that there exists a vector
field £ = 23t on N. N has a contact metric structure (¢,&,n,g) with contact form n and

g =Y [ax? + dy2 +ds? + dz2 - nenl (6)
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as the defining equations (2) hold for € = -1. There exists an orthonormal ¢—basis
(Ui;Vi;E) where
Ul = 23y, U

=23, V) =23 +y3), V, =23 +z3),

2 1

W=V, oV, =-U,1=12

Let (M,g) be a 4-dimensional spacetime embedded in N. So that (Ul,UZ,Vl,ﬁ) is an
orthonormal basis for TP(M). Then, the complexified tangent space CT(M) has a
holomorphic subbundle H generated by (Z,Z) with Z = Uj+ 1V, and JZ = -1Z(J is complex
structure on H). Thus, there exists a real distribution D = Re(H + H) generated by
(Ul’vl) invariant by ¢ and anti-invariant distribution pt = {UZ}’ D, p! and £ are
mutually orthogonal to each other. Therefore, by definition, M is a contact CR
submanifold of N with timelike contact vector field £ and spacelike 1invariant
distribution D. In general, the dimension of the embedding manifold N may be higher
than 5 (subject to restrictions as stated in [23]).

REMARK. It is worth mentioning that the embedding manifold has been used as
auxiliary space for deriving physical properties of the embedded spacetime. In
particular, several exact solutions of the Einstein's field equations have been found
by this technique, at least for some cases of low embedding class (the minimum number
of extra dimension 1s called the embedding class). For example, the maximal analytic
extension of the Schwarzschild solution was found by embedding technique [24].

However, unfortunately, no systematic research has been done to find solutions of
embedding class greater than two. Difficulty is the lack of effective method for
solving embedding equations.

Hopefully, by supplying some differential geometric structure (such as the

contact structure discussed in this paper), it may help to provide more insight on the

geometry of spacetime needed for physical problems (including finding exact solutions)

in relativity.

In another direction, the disussion in this section leads to a new area of

research, namely, Lorentzian geometry of CR submanifolds (including contact CR

submanifolds as subcase), introduced by the present author [7,8]. For related
references on some progress in this direction and, in general, bridging the gap
between Differential Geometry and Mathematical Physics of Relativity, see [13, 14, 17,
25-27].
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