INVARIANTS OF NUMBER FIELDS RELATED TO CENTRAL EMBEDDING PROBLEMS

H. OPOLKA

Mathematics Institute Bunsenstrasse 3-5 D-3400 Gottingen

(Received December 7, 1988)

ABSTRACT. Every central embedding problem over a number field becomes solvable after enlarging its kernel in a certain way. We show that these enlargements can be arranged in a universal way.

KEY WORDS AND PHRASES. Central embedding problems, strict cohomological dimension, Leopoldt-conjecture.

1980 AMS CLASSIFICATION CODES. 12A55, 12A60

1. CENTRAL EMBEDDING PROBLEMS.

Let K be a number field and let p be a prime number. Then there is a smallest natural number t = t(k,p) depending only on k and p, the so called p-exponent of k, with the following properties:

(1) Every central embedding problem $E_m = E(G, Z/p^m, c)$ for the absolute Galois group $G_k = Gal(\bar{k}/k)$ of k, where G = Gal(K/k) is the Galois group of a finite Galois subextension K/k of \bar{k}/k which is ramified only at p and ∞ and where $k(\mu_m)/k$ is provided by the cyclic, has exponent 42m + t. Recall that E_m is solvable, i.e. there is an epimorphism $\Psi : G_k + G(c)$ of G_k onto the central group extension G(c) defined by the co-cycle c:G x G + Z/p^m such that Ψ composed with the natural map G(c) + G yields the given epimorphism $G_k + G$, if and only if the class of (c) becomes trivial in the Brauer group $Br(k(\mu_m))$ of $k(\mu_m)$, $\mu_m =$ group of roots of unity of \bar{k}^* of order dividing p^m ; this means that if $\chi_m : Z/p^m + \mu_m$ is an isomorphism then (c) becomes trivial under the map

$$\widehat{\chi}_{\mathfrak{m}}: H^{2}(G, \mathbb{Z}/p^{\mathfrak{m}}) \stackrel{inf}{\to} H^{2}(G_{k}, \mathbb{Z}/p^{\mathfrak{m}}) \stackrel{\mathfrak{res}}{\to} H^{2}(G_{k}(\mu_{p})\mathbb{Z}/p^{\mathfrak{m}}) \stackrel{\chi_{\mathfrak{m}}}{\to} H^{2}(G_{k}(\mu_{p}), \overline{k}^{\star}) \stackrel{\simeq}{\to} Br(k(\mu_{p}))$$

where χ_{m}^{*} is the map induced by χ_{m} on cohomology see Hoechsmann, [1]). The exponent of E_{m} is the smallest natural number n > m such that the embedding problem E_{n} which is obtained from E_{m} by considering the co-cycle c:G x G + Z/p^m + Z/pⁿ is solvable.

In order to prove (1), choose for any natural number $\hat{m} > m$ an isomorphism $\chi_{\hat{m}}: Z/p^{\hat{m}} + \mu_{\hat{m}}$ such that $\chi_{\hat{m}}^{p^{\hat{m}-m}} = \chi_{m}$. Then we have a map $\hat{\chi}_{\hat{m}}: H^{2}(G, Z/p^{\hat{m}}) \rightarrow Br(k(\mu_{\hat{m}}))$, and the resulting diagram relating $\hat{\chi}_{m}$ and $\hat{\chi}_{\hat{m}}$ commutes. Since $\hat{\chi}_{\hat{m}}((c))$ can be represented by a Galois co-cycle all of whose values are roots of unity, the algebra class $\hat{\chi}_{\hat{m}}((c))$ splits and only if it splits locally at all places above p and ∞ and this is the case if it splits at ∞ and

$$(k_v(\mu_m):k_v(\mu_m)) \equiv 0 \mod p^m$$
 for all v above p;
p p

(see classels [2], p. 191, 10.5 ff). It is clearly possible to find a smallest integer d = d(k,p) depending only on k and p such that $\chi_{n}((c))$ splits with $\hat{m} = 2m + d$. For instance, for k = Q we can take d = d(Q,p) = 0 for all p. The p-exponent of E_m is the smallest natural number n > m such that the induced embedding problem E_n has a solution which is ramified only at p and ∞ . The smallest integer s > 0 such that the p-exponent of k (if it exists).

(2) If p does not divide the class number of $Q(\mu_p)$ then the strong p-exponent of every cyclotomic field $k = Q(\mu_{p1})$ exists and is equal to its (usual) p-exponent. This can be shown as follows: Let E_m be a central embedding problem for G_k . Then for t = t(k,p) the induced embedding problem $E_{2m} + t$ is solvable. The assumption implies that p does not divide the class number of $Q(\mu_{p1})$ for every 1 (see Iwasawa [3]). Therefore the Galois theoretic obstruction to the existence of a solution which is unramified outside p and ∞ as described in Neukirch [4], (8.1), is trivial.

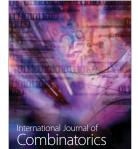
The p-adic Leopoldt conjecture for k implies that $H^2(G_k(p),Q/Z) = 0$, where $G_k(p)$ is the Galois group of the maximal p-extension k^p/k which is unramified outside p and ∞ . This shows that every central embedding problem E_m for $G_k(p)$ has finite p-exponent, (see Opolka [5], (5.2)). Does this imply that the strong p-exponent of k is finite? If so, how is it related to the usual p-exponent of k? Conversely, if the strong p-exponent of k is finite then $H^2(G_k(p),Q/Z) = 0$ and the p-adic Leopoldt conjecture holds for k.

REFERENCES

- 1. HOECHSMANN, K., Zum Einbettungsproblem, JRAM, 229(1968), 81-106.
- 2. CASSELS, J.W.S., A. Fröhlich: Algebraic Number Theory, Ac. Press, London, 1967.
- IWASAWA, K., A Note on Class Numbers of Algebraic Number Fields, <u>Abh. Math. Sem.</u> Hamburg, <u>20</u> (1956), 257-258.
- NEUKIRCH, J., Uber das Einbettungsproblem der Algebraischen Zahlentheorie, Inventiones Math., 21 (1973), 59-116.
- OPOLKA, H., Cyclotomic Splitting Fields and Strict Cohomological Dimension, Israel J. of Math., 52 (1985), 225-230.

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

