INVARIANTS OF NUMBER FIELDS RELATED TO CENTRAL EMBEDDING PROBLEMS

H. OPOLKA
Mathematics Institute
Bunsenstrasse 3-5
D-3400 Gottingen

(Received December 7, 1988)

ABSTRACT. Every central embedding problem over a number field becomes solvable after enlarging its kernel in a certain way. We show that these enlargements can be arranged in a universal way.

KEY WORDS AND PHRASES. Central embedding problems, strict cohomological dimension, Leopoldt-conjecture.
1980 AMS CLASSIFICATION CODES. 12A55, 12A60

1. CENTRAL EMBEDDING PROBLEMS.

Let K be a number field and let p be a prime number. Then there is a smallest natural number $t=t(k, p)$ depending on $1 y$ on k and p, the so called p-exponent of k, with the following properties:
(1) Every central embedding problem $E_{m}=E\left(G, Z / p^{m}, c\right)$ for the absolute Galois group $G_{k}=G a l(\bar{k} / k)$ of k, where $G=G a l(K / k)$ is the Galois group of a finite Galois subextension K / k of \bar{k} / k which is ramified only at p and ∞ and where $k\left(\mu_{p}\right) / k$ is cyclic, has exponent $\leqslant 2 m+t$. Recall that E_{m} is solvable, i.e. there is an epimorphism $\Psi: G_{k} \rightarrow G(c)$ of G_{k} onto the central group extension $G(c)$ defined by the co-cycle $c: G \times G \rightarrow Z / p^{m}$ such that Ψ composed with the natural map $G(c) \rightarrow G$ yields the given epimorphism $G_{k} \rightarrow G$, if and only if the class of (c) becomes trivial in the
 dividing p^{m}; this means that if $X_{m}: Z / p^{m} \rightarrow \mu_{p} m$ is an isomorphism then (c) becomes
trivial under the map
where X_{m}^{*} is the map induced by X_{m} on cohomology see Hoechsmann, [1]). The exponent of E_{m} is the smallest natural number $n \geqslant m$ such that the embedding problem E_{n} which is obtained from E_{m} by considering the co-cycle c: $G x G \rightarrow Z / p^{m} \rightarrow Z / p^{n}$ is solvable.

In order to prove (1), choose for any natural number $\hat{m} \geqslant m$ an isomorphism
 and the resulting diagram relating \hat{X}_{m} and $\hat{X}_{\hat{m}}$ commutes. Since $\hat{X}_{\hat{m}}((c))$ can be represented by a Galois co-cycle all of whose values are roots of unity, the algebra class $\hat{X}_{\hat{m}}((c))$ splits and only if it splits locally at all places above p and ∞ and this is the case if it splits at ∞ and

$$
\left(k_{v}\left(\mu_{p} \hat{m}^{\prime}\right): k_{v}\left(\mu_{p}\right)\right) \equiv 0 \bmod p^{m} \text { for all } v \text { above } p ;
$$

(see classels [2], p. 191, 10.5 ff). It is clearly possible to find a smallest integer $d=d(k, p)$ depending only on k and p such that $\hat{X}_{\hat{m}}((c))$ splits with $\hat{m}=2 m+d$. For instance, for $k=Q$ we can take $d=d(Q, p)=0$ for all p. The p-exponent of E_{m} is the smallest natural number $n \geqslant m$ such that the induced embedding problem E_{n} has a solution which is ramified only at p and ∞. The smallest integer $s \geqslant 0$ such that the p-exponent of every E_{m} is $\leqslant 2 m+s$ is called the strong p-exponent of k (if it exists).
(2) If p does not divide the class number of $Q\left(\mu_{p}\right)$ then the strong p-exponent of every cyclotomic field $k=Q\left(\mu_{p}\right)$ exists and is equal to its (usual) p-exponent. This can be shown as follows: Let E_{m} be a central embedding problem for G_{k}. Then for $t=t(k, p)$ the induced embedding problem $E_{2 m+t}$ is solvable. The assumption implies that p does not divide the class number of $Q\left(\mu_{p} 1\right)$ for every 1 (see Iwasawa [3]). Therefore the Galois theoretic obstruction to the existence of a solution which is unramified outside p and ∞ as described in Neukirch [4], (8.1), is trivial.

The p-adic Leopoldt conjecture for k implies that $H^{2}\left(G_{k}(p), Q / Z\right)=0$, where $G_{k}(p)$ is the Galois group of the maximal p-extension k^{p} / k which is unramified outside p and ∞. This shows that every central embedding problem E_{m} for $G_{k}(p)$ has finite $p-$ exponent, (see Opolka [5], (5.2)). Does this imply that the strong p-exponent of k is finite? If so, how is it related to the usual p-exponent of k ? Conversely, if the strong p-exponent of k is finite then $H^{2}\left(G_{k}(p), Q / Z\right)=0$ and the p-adic Leopoldt conjecture holds for k.

REFERENCES

1. HOECHSMANN, K., Zum Einbettungsproblem, JRAM, 229(1968), 81-106.
2. CASSELS, J.W.S., A. Frohlich: Algebraic Number Theory, Ac. Press, London, 1967.
3. IWASAWA, K., A Note on Class Numbers of Algebraic Number Fields, Abh. Math. Sem. Hamburg, 20 (1956), 257-258.
4. NEUKIRCH, J., Uber das Einbettungsproblem der Algebraischen Zahlentheorie, Inventiones Math., 21 (1973), 59-116.
5. OPOLKA, H., Cyclotomic Splitting Fields and Strict Cohomological Dimension, Israe1 J. of Math., 52 (1985), 225-230.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

