SOME BAZILEVIČ FUNCTIONS OF ORDER BETA

S.A. HALIM
Department of Mathematics and Computer Sciences
University of Wales
University College of Swansea
Singleton Park Swansea SA2, 8PP, U.K.
(Paper Received Apri1 4, 1988 and in Revised form September 13, 1988)

ABSTRACT. Distortion theorems and coefficient estimates are obtained for a new class of Bazilevic functions.

KEYWORDS AND PHRASES. Bazilevic Functions, Functions Whose Derivative has Positive Real Part, Coefficient Estimates. 1980 AMS Classification Code. Primary 30C45.

1. INTRODUCTION.

Let S be the class of normalized functions regular and univalent in the unit disc $D=z:\{|z|<1\}$ and S^{*} the subclass of starlike functions. Denote by $P(\beta)$, the class of functions which are regular in D and such that for $h \in P(\beta), h(0)=1$ and $\operatorname{Re} h(z)>B$ for $z \in D$. We write $P=P(0)$.

Bazilevic [1] showed that the class of normalized regular functions f with representation

$$
\begin{equation*}
f(z)=\left(\alpha \int_{0}^{z} p(t) g(t)^{\alpha} t^{-1} d t\right)^{\frac{1}{\alpha}} \tag{1.1}
\end{equation*}
$$

when $\alpha>0, g \in S^{*}$ and $p \in P$ for $z \in D$ forms a subclass of S. We denote this class of functions by $B(\alpha)$. See also [2].

Let $\alpha>0$. Then it follows easily from (1.1) that $f \in B(\alpha)$ if, and only if, there exists $g \in S^{*}$ such that for $z \in D$

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)^{1-\alpha} g(z)^{\alpha}}>0 \tag{1.2}
\end{equation*}
$$

In [3], Singh considered the subclass $B_{1}(\alpha)$ of $B(\alpha)$ obtained by taking $g(z) \equiv z$ in (1.2). Thus $f \in B_{1}(\alpha)$ if, and only if, for $\alpha>0$ and $z \in D$

$$
\operatorname{Re} \frac{z^{1-\alpha_{f}^{\prime}}(z)}{f(z)^{1-\alpha}}>0
$$

We extend this class of functions as follows:
DEFINITION. Let f be regular in D with

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.3}
\end{equation*}
$$

Then if $\alpha>0$ and $0 \leqslant \beta<1, f \in B_{1}(\alpha, \beta)$ if, and only if, for $z \in D$

$$
\begin{equation*}
\operatorname{Re} \frac{z^{1-\alpha^{\prime}} f^{\prime}(z)}{f(z)^{1-\alpha}}>\beta \tag{1.4}
\end{equation*}
$$

We note that $B_{l}(1,0)=R$, the class of functions whose derivative has real part [4]. $B_{1}(1,3)$ was considered in [5]. Zamorski [6] and Thomas [7] solved the coefficient problem for $f \in B\left(\frac{1}{N}\right)$, in the case when N is a positive integer. In [7], sharp distortion theorems were obtained for $f \in B_{1}(\alpha)$ for $\alpha>0$. The object of this paper is to extend these results to the class $B_{1}(\alpha, \beta)$. The class $B_{1}(\alpha, \beta)$ has also recently been considered in [8].

2. RESULTS.

Distortion Theorems

THEOREM 1. Let $f \in B_{1}(\alpha, \beta)$. Then for $z=r e^{i \theta} \in D, 0 \leqslant r<1$,
(i) $Q_{2}(r)^{\frac{1}{\alpha}} \leqslant|f(z)| \leqslant Q_{1}(r)^{\frac{1}{\alpha}}$,
(ii) if $0<\alpha<1$,

$$
r^{\alpha-1} Q_{2}(r)^{\frac{1-\alpha}{\alpha}}\left(\frac{(1-r)(1-\beta)}{(1+r)}+\beta\right) \leqslant\left|f^{\prime}(z)\right| \leqslant r^{\alpha-1} Q_{1}(r)^{\frac{1-\alpha}{\alpha}}\left(\frac{(1+r)(1-\beta)}{(1-r)}+\beta\right)
$$

and if $\alpha \geqslant 1$

$$
r^{\alpha-1} Q_{1}(r)^{\frac{1-\alpha}{\alpha}}\left(\frac{(1-r)(1-\beta)}{(1+r)}+\beta\right) \leqslant\left|f^{\prime}(z)\right| \leqslant r^{\alpha-1} Q_{2}(r)^{\frac{1-\alpha}{\alpha}}\left(\frac{(1+r)(1-\beta)}{(1-r)}+\beta\right)
$$

where

$$
Q_{1}(r)=\alpha \int_{0}^{r} \rho^{\alpha-1}\left(\frac{(1+\rho)(1-\beta)}{(1-\rho)}+\beta\right) d \rho
$$

and

$$
Q_{2}(r)=\alpha \int_{0}^{r} \rho^{\alpha-1}\left(\frac{(1-\rho)(1-\beta)}{(1+\rho)}+\beta\right) d \rho
$$

Equality holds in all cases for the function f_{ϕ}, defined by

$$
\begin{equation*}
f_{\phi}(z)=\left(\alpha \int_{0}^{z} t^{u-1}\left(\frac{\left(1+t e^{i \phi}\right)(1-\beta)}{\left(1-t e^{i \phi}\right)}+\beta\right) d t\right)^{\frac{1}{\alpha}} \tag{2.1}
\end{equation*}
$$

where $\phi=0$ or π.

PROOF.
(i) Since $f \in B_{1}(\alpha, \beta)$, and it follows from (1.4) that

$$
(1-\beta) p(z)=\frac{z^{1-\alpha} f^{\prime}(z)}{f(z)^{1-\alpha}}-\beta
$$

for $z \in D$ and $p \in P$.
Thus

$$
\begin{equation*}
f(z)^{\alpha}=\alpha \int_{0}^{z} t^{\alpha-1}(p(t)(1-\beta)+\beta) d t \tag{2.2}
\end{equation*}
$$

and since $|p(z)| \leqslant \frac{1+r}{1-r}$ for $z \in D$, (see eg. [9]),

$$
\begin{gathered}
|f(z)|^{\alpha} \leqslant \alpha \int_{0}^{r} \rho^{\alpha-1}\left(\frac{(1+\rho)(1-\beta)}{1-\rho}+\beta\right) d \rho \\
=Q_{1}(r)
\end{gathered}
$$

To obtain the left-hand inequality in (i), write

$$
\begin{equation*}
h(z)=\frac{z^{1-\alpha_{1}}(z)}{f(z)^{1-\alpha}} \tag{2.3}
\end{equation*}
$$

Then (1.4) shows that $h \in p(\beta)$. Thus from, [5] (Theorem 1 with $c=1-2 \beta$ and $n=1$), we obtain

$$
\begin{equation*}
\frac{(1-r)(1-\beta)}{(1+r)}+\beta \leqslant|h(z)| \leqslant \frac{(1+r)(1-\beta)}{(1-r)}+\beta . \tag{2.4}
\end{equation*}
$$

Hence from (2.3) and (2.4) we have

$$
\begin{equation*}
\left|\frac{d}{d z}[f(z)]^{\alpha}\right| \geqslant \alpha r^{\alpha-1}\left(\frac{(1-r)(1-\beta)}{(1+r)}+\beta\right) \tag{2.5}
\end{equation*}
$$

Now let $z_{1},\left|z_{1}\right|=r$ be chosen so that $\left|f\left(z_{1}\right)^{\alpha}\right| \leqslant\left|f(z){ }^{\alpha}\right|$ for all z with $|z|=r$. Writing $\omega=f\left(z_{1}\right)^{\alpha}$, it follows that since f is univalent, the line segment λ from 0 to w lies entirely in the image of D. Let f be the pre-image of λ, then by (2.5)

$$
\begin{aligned}
|f(z)|^{\alpha} \geqslant\left|f\left(z_{1}\right)\right|^{\alpha} & =\int_{\lambda}|d \omega|=\rho_{L}\left|\frac{d \omega}{d z_{1}}\right|\left|d z_{1}\right| \\
& \geqslant \int_{0}^{r} \alpha \rho^{\alpha-1}\left(\frac{(1-\rho)(1-\beta)}{(1+\rho)}+\beta\right) d \rho
\end{aligned}
$$

which is the left-hand inequality in (i).
(ii) From (2.3) we have for $z=r e^{i \theta}$

$$
\begin{equation*}
\left|f^{\prime}(z)\right|=r^{\alpha-1}|f(z)|^{1-\alpha}|h(z)| \tag{2.6}
\end{equation*}
$$

if $0<\alpha \leqslant 1$, the inequalities follow at once from (2.6), (2.4) and (i). If $\alpha>1$, (i) gives

$$
\begin{equation*}
Q_{1}(r)^{\frac{1-\alpha}{\alpha}} \leqslant|f(z)|^{1-\alpha} \leqslant Q_{2}(r)^{\frac{1-\alpha}{\alpha}} . \tag{2.7}
\end{equation*}
$$

Applying (2.4) and (2.7) to (2.6) gives the required result. Equality is attained in and (i) for f_{0} and in (ii) for f_{0} when $0<\alpha<1$ and for f_{π} when $\alpha \geqslant 1$.

The following shows that as $\alpha \rightarrow 0$ the bounds in Theorem 1 are asymptotic to the distortion theorems for starlike functions of order $\beta>0$ (see eg. [9]).

THEOREM 2. For $0 \leqslant r<1$, let $Q_{1}(r)$ and $Q_{2}(r)$ be defined as in Theorem 1. Then as $\alpha \rightarrow 0$
(i) $Q_{1}(r)^{\frac{1}{\alpha}} \sim \frac{r}{(1-r)^{2(1-\beta)}}$,
(ii) $Q_{2}(r)^{\frac{1}{\alpha}} \sim \frac{r}{(1+r)^{2(1-\beta)}}$,
(iii) $Q_{1}(r) \sim Q_{2}(r) \sim 1$.

PROOF.
We prove (i), since (ii) and (iii) are similar.
As $\alpha \rightarrow 0$,

$$
\begin{aligned}
& Q_{1}(r)^{\frac{1}{\alpha}}=\alpha \int_{0}^{r} \rho^{\alpha-1}\left(\frac{(1+\rho)(1-\beta)}{1-\rho}+\beta\right) d \rho \\
& \quad=r\left(1+2 \alpha(1-\beta) r^{-\alpha} \int_{0}^{r} \frac{\rho^{\alpha}}{1-\rho} d \rho\right)^{\frac{1}{\alpha}} \\
& \sim r\left(1-2 \alpha(1-\beta) r^{-\alpha} \log (1-r)\right)^{\frac{1}{\alpha}} \\
& \sim r e^{-2(1-\beta) \log (1-r)}=\frac{r}{(1-r)^{2(1-\beta)}}
\end{aligned}
$$

COROLLARY.
Suppose that $f(z) \neq \omega$ for $z \in D$, then

$$
|\omega|>Q_{2}(1)^{\frac{1}{\alpha}} \sim 4^{\beta-1} \text { as } \alpha>0 .
$$

PROOF.
Let $a>0$, and ω be a point on the boundary of $f(D)$ closest to the origin. Let L_{1} denote the straight line from 0 to ω and L its pre-image in D. Then $|\omega|>|F(z)|$ for $z \in L \cap D$. Since the circle $|z|=r$ intersects L, at least once, Theorem 1 (i) gives $|w| \geqslant Q_{2}(r)^{\frac{1}{\alpha}}$.
Thus Theorem 2 (ii) gives

$$
|\omega|>Q_{2}(1)^{\frac{1}{\alpha}} \sim 4^{\beta-1} \text { as } \alpha \rightarrow 0
$$

3. A COEFFICIENT THEOREM

Notation: $\sum_{n=0}^{\infty} \alpha_{n} z^{n} 《 \sum_{n=0}^{\infty} \beta_{n} z^{n}$ means $\left|\alpha_{n}\right| \leqslant\left|\beta_{n}\right|$ for $n \geqslant 0$.

THEOREM 3. Let $\mathrm{f} \in \mathrm{B}_{1}\left(\frac{1}{N}, \beta\right)$ and be given by (1.3) where N is a positive integer. Suppose also that for $z \in D$,

$$
f_{0}(z)=z+\sum_{n=0}^{\infty} \gamma_{n} z^{n} \text { where } f_{0}(z) \text { is given by (2.1). }
$$

Then (i) $f(z) \ll f_{0}(z)$,
and

$$
\text { (ii) } \gamma_{n} \sim\left(\frac{2(1-B)}{N}\right)^{N}\left(\frac{N}{n}\right)(\log n)^{N-1} \text { as } n \rightarrow \infty
$$

PROOF.
(i) Thomas [7], proved that if $\left|\alpha_{n}\right| \leqslant\left|\beta_{n}\right|$, then for $m=1,2,3, \ldots$,

$$
\left(\sum_{n=1}^{\infty} \alpha_{n} z^{n}\right)^{m} \ll\left(\sum_{n=1}^{\infty} B_{n} z^{n}\right)^{m}
$$

Write $p(z)=1+\sum_{k=1}^{\infty} p_{k} z^{k}$. Then (2.2) gives

$$
\begin{aligned}
f(z)^{\frac{1}{N}} & =\frac{1}{N} \int_{0}^{z} t^{\alpha-1}\left[\left(1+\sum_{k=1}^{\infty} p_{k} t^{k}\right)(1+\beta)+\beta\right] d t \\
& =\frac{1}{N}\left[N(1-\beta) z^{\frac{1}{N}}+(1-\beta) \sum_{k=1}^{\infty}\left(\frac{P_{k} z^{k+\frac{1}{N}}}{k+\frac{1}{N}}\right)+\beta N z^{\frac{1}{N}}\right] \\
& =z^{\frac{1}{N}}\left(1+\frac{(1-\beta)}{N} \sum_{k=1}^{\infty} \frac{P_{k} z^{k}}{\left(k+\frac{1}{N}\right)}\right) .
\end{aligned}
$$

Thus

$$
f(z)=z\left(1+\frac{(1-\beta)}{N} \sum_{k=1}^{\infty} \frac{P_{k} z^{k}}{\left(k+\frac{1}{N}\right)}\right)^{N}
$$

and since $p \in P$, we have $\left|P_{k}\right| \leqslant 2[6]$. Hence

$$
\begin{aligned}
& \left.f(z)=z\left(1+\frac{(1-\beta)}{N} \sum_{k=1}^{\infty} \frac{P_{k} z^{k}}{\left(k+\frac{1}{N}\right)}\right)^{N} 《 z_{i} 1+\frac{(1-\beta)}{N} \sum_{k=1}^{\infty} \frac{2 z^{k}}{\left(k+\frac{1}{N}\right)}\right)^{N}=f_{0}(z) . \\
& \text { (ii) Putting } \alpha=\frac{1}{N} \operatorname{in}(2 \cdot 1) \text {, we have }
\end{aligned}
$$

$$
\begin{aligned}
f_{0}(z) & =z+{ }_{n}^{\infty}{\underset{\Sigma}{2}}^{\gamma_{n}} z^{n}=z\left(1+\frac{2(1-\beta)}{N} \sum_{n=1}^{\infty} \frac{z^{n}}{\left(n+\frac{1}{N}\right)}\right)^{N} \\
& =z \sum_{V=0}^{\infty}\binom{N}{V}\left(\frac{2(1-\beta)}{N}\right)^{\nu}\left(\sum_{n=1}^{\infty} \frac{z^{n}}{\left(n+\frac{1}{N}\right)}\right)^{\nu} .
\end{aligned}
$$

Let

$$
\left(\sum_{n=1}^{\infty} \frac{z^{n}}{\left(n+\frac{1}{N}\right)}\right)^{\nu}=\sum_{n=v}^{\infty} D_{n}(v)_{z} n \quad(\nu=0,1,2,3, \ldots)
$$

Thomas [7] proved that $D_{n}(v) \sim \frac{v}{N}(\log n)^{v-1}$ as $n \rightarrow \infty$ and so this gives

$$
\begin{gathered}
\gamma_{n}=\sum_{\nu=0}^{\infty}\binom{N}{\nu}\left(\frac{2(1-\beta)}{N}\right)^{\nu} D_{n}^{(\nu)} \\
\sim\left(\frac{2(1-\beta)}{N}\right)^{N}\binom{N}{n}(1 \log n)^{N-1} \text { as } n+\infty .
\end{gathered}
$$

references

1. BAZILEVIČ, I.E., On a case of integrability in quadratures of the Loewner Kufarev equation, Mat. Sb. 37(79)(1955), 471-476.
2. THOMAS, D.K., On Bazilevič functions, Math, Z. 109(1969), 344-348.
3. SINGH, R., On Bazilevič functions, Proc. Ame r. Mat. Soc. 38(1973), 261-271.
4. MACGREGOR, T.H., Functions whose derivative has positive real part, Trans. Ame r. Math. Soc. 104 (1962), 532-537.
5. TONTI, NORMAN E. \& TRAHAN, DONALD H., Analytic functions whose real parts are bounded below, Math. Z. 115(1970), 252-258.
6. ZAMORSKI, J., On Bazilevič Schlicht functions, Ann. Polon. Math. 12 (1962), 8390.
7. THOMAS, D.K., On a subclass of Bazilevič functions, Internat. J. Math. and Math. Sci., Vol.8, No. 4 (1985), 799-783.
8. HALIM, ABDUL S., On the coefficients of some Bazilevič functions of order β.. To appear.
9. GOODMAN, A.W., Univalent functions, Vol.I ., Mariner Publishing Co., Tampa Florida, 1983.
10. POMMERENKE, Ch., Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

