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ABSTRACT. This paper is concerned primarily with conditions for semiseparation and
separation of lattices. These conditions are expressed in terms of the general Wall-
man space.
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1. INTRODUCTION.

Let X be an abstract set and &, and &, lattices of subsets of X such that £c,
If ANB=p, A€X, BEX, implies there exists a C&L, such that COB, and ANC = 9
then z, is said to semiseparate xz. This notion is important in topological spaces,
where &, and zz are specific lattices such as, for example, the zero-sets and the
closed sets.

We investigate this property in terms of associated measures and outer measures
associated with the respective lattices, and also with respective Wallman spaces. This
gives us new conditions for one lattice to semiseparate another, and gives additional
facts pertaining to the measures. These investigations are carried out in sections 3
and 4. In section 2 we give some background material, which ‘is fairly standard by now,
and can be found in [1-3]. This material has been added mainly for the reader's con-
venience.

2. BACKGROUND AND NOTATIONS.

Let X be an abstract set and &£ a lattice of subsets of X. It is assumed that
p,x €L. We denote by (<L) the algebra generated by £ ; d(L), the lattice of all
countable intersections of sets from o&.

DEFINITION 2.1 X is:
delta lattice (cf—lattice) if Lis closed under countable intersections.
complement generated if L€ implies L=;§ Lr‘,, Lnex (where prime denotes comple-
ment). e
disjunctive if for xeX and Llex such that x,z’L1 there exists L, €L with x€ L,
and LI/\L2=¢.
normal if for any Ll’LZ €X with L1AL2=¢, there exist L3,L4 €L with Llc Lé,
LZCLA and L:;/\L4 =0.
compact if for any collection fL_J of sets of &L with f\Ljﬂ, there exists a
finite subcollection with empty intersection.
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countably compact if for any countable collection ]L‘lof sets of &L with Ly =P,
there exists a finite subcollection with empty intersection.

Lindel8f if for any collection f{L,of sets of X with N =P, there exists a coun-
table subcollection with empty intersection.

T2-1att1'ce if for x,y€X, x#y, there exist Ll,Lze.‘C such that xe Li, yeLé and
Li/\Lé=[0.

DEFINITION 2.2 We give now some measure terminology which will be used through-
out. M(L) denotes the set of finite valued bounded finitely additive non-trivial
measures on (R (€). Without loss of generality may assume throughout that all mea -
sures are non-negative. A measure A€ M(L) is called:

@-smooth on &£ if for all sequences an} of sets of L with an), A(L)—>0.
@-smooth on (<L) if for all sequences fAn} of sets of (L) with An~L 2,
,k(An)——)O ( i.e. countably additive measures on Q(L)).

L-regular if for any A€Q(L), M(A)=sup f,k(L)/LCA, LeL}.

In addition we denote by MR(.‘C), the set of <& -regular measures of M(oL); Mk!('t)
the set of @ -smooth measures on & of ML) Mc'(.C), the set of @ -smooth mea-
sures on Q@ (£) of M(L); ME(.‘C), the set of L -regular measures of MG'(.‘C).

I(I),IR(I), IG(I), I%(.t) are the subsets of the corresponding M's which con-
sist of the non-trivial zero-one valued measures.

DEFINITION 2.3 For /usM(.t), the support of M is S(/¢)=/\{L€£//C(L)=/<(X)}.
L is replete iff for any ﬂelg(x), S(pe)#0.

DEFINITION 2.4 A filter in X is a subset of £ , 3‘ , satisfying the condi -
tions: ﬂf‘?’; & is closed under finite intersections; if Ae"?‘, BEL and ACB
then B € & .

An ultrafilter in &€ is a maximal filter in X ( relative to the partial order
on the collection of filters in &L given by inclusion).

An £ -filter & is prime if given A,B €L such that AUB € & then either A€¥
or BeF.

There exists a one-to-one correspondence between Jf -filters F and elements of
7((08)= f”, defined on & , monotone and 7 (A/1B)= X (A) 7 (B), A,BEJ.’} defined by
7 (L)=1 iff LeF . There exists a one-to-one correspondence between < -filters ¥
with countable intersection property and .77;(-&). where .7(;(.8)= {76 (L) such
that if T(Ln)=l all n where Lne‘-t then N Lnfﬂ } There exists a one-to-one co-
rrespondence between all elements of IR(.‘C) and all XL -ultrafilters. There exists a
one-to-one correspondence between all elements of Ig(.t) and all & -ultrafilters
with the countable intersection property. The correspondence is given by the follo -
wing rule: with each ZL-ultrafilter F we associate the zero-one valued measure

defined on (L) by
1 if there exists A €F , ACE

M (E)= {0 if there exists A € ¥ , ACE'.

There exists a one-to-one correspondence between all elements of I(&£) and all prime
& -filters, given by the following rule: with each /uI(.‘C) we associate the prime
& -filter given by 3’=|‘A€-‘C/ /«'-(A)=1 I . This correspondence induces a one-to-one
correspondence between prime L -filters with the countable intersection property and
Ig(L).

REMARK. It is not difficult to see in light of the above correspondences that &
is normal iff for each /uﬁl(-t), there exists a unique >‘€IR(.€) such that /usv (L)
(fe. m(l)s Y(L) forall LeL ).
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3. SEMISEPARATION.

DEFINITION 3.1 Let o be a lattice of subsets of X, let /46 [(&L) and EcC X
and define p'(E)=inf § w(L')/ E€L' , L€LY.

THEOREM 3.1 Let &£ be a lattice of subsets of X and let /(61(,‘6). The follo -
wing statements are true:

a) w’ is finitely subadditive;

b)  pe Ip(L) iff pe=pl (E);

c) Let xe IR(.,t) and yeIR(.L") such that <@ Y. £ is normal iff
/‘/=S°’(-t’) for all such 4c and @ . n n

PROOF, a) Since ﬂel(,t) it is clear that /4'(E)=inf) /«(L%)/ECUL%, Liezf
and therefore /4/ is finitely subadditive. , ! i
b) For 4€I (L), w(R)=inf fp(L')/ ACL', LeL =" (n), rE€L. ,
c) Suppose /tla’f /). Then fs/l((.t) and since &€ (L) it follows that e (L.
Then @</ -/4-53"0:1 £ . Suppose oL is normal, let A€ZL and suppose that A (A) =0,
Since €Ip(L), there exists LCA', LE€X with (L)=1. But ANL=p implies
there exist C',D' such that AcC', L&D', C'N\D'=P, C,D€ &L . Then we have AcCC'C
cbcl' and @(C')S@ (D)< & (D). (L')=0. So, @ (C')=0, i.e. @ (A)=0. A was
arbitrary in £ , then /4.’= g' on £ . Conversely, suppose that /«.'=§>' (&) with
p and @ as before. Let KEL(L), /(,)/tzﬂR(JS) with pesu, (L), r=py (L).
But psge IR(.f/) on X’ , so we have f‘/us/l, on &£ and pgusiy on L . By
the assumption, ,«,’:g' and /tzleg/on £ and therefore /l,"/‘,'rg’r,«z’:,gi.e.xnormal.

DEFINITION 3.2 Let &£ be a lattice of subsets of X. The Wallman topology is
obtained by taking all W(L)= { ,ueIR(et)//c(L)ﬂ} , L€l as a base for the closed sets
in IR(.t). IR(.‘C) with the Wallman topology is called the general Wallman space asso-
ciated with X and £ . We assume that XL is disjunctive. Then if A € Q(L), let
W(A)= f/tGIR(Z)//l(A)ﬂ} . The following statements are true:

a) W(AUB)= W(A)UW(B)

b) W(ANB)= W(A)NW(B)

c) W(A') = W(A)'

d) A>B iff W(A)DW(B)

e) QMWL) = wWa(L)). )

It is known that W(&C) is disjunctive and that the topological space (IR(.t),tw(.Z)))
is compact and T1 and if & is disjunctive it is T2 iff £ is normal.

THEOREM 3.2 Let £ < &L, be two lattices of subsets of X. Suppose that £y is
disjunctive and X, is normal and consider the restriction map ¥ :1;(&) — 160
Then:

) WL =N (L) Lyl s L€ Ly s L €L § where Wy (Ly,) and
NZ(LZ) are basic closed sets with respect to the Wallman topologies.

b) &, semiseparates &, .

PROOF. a) Since NZ(LZ)) is closed in wz(-ﬂz), it is compact and since YV is
continuous, \!’(NZ(LZ)) is compact. J&, is normal, so IR(c‘ﬂ,) is compact and T, and
therefore \[/(NZ(LZ)) is closed. Then '~P(N2(L2))=Q wl(Lu), where LMGI, and since
,82 is disjunctive, LZCle for all «.

b) Let Lze.}C2 and Lle.t, with L20L1=¢. Then wZ(LZ)/\NZ(Ll)=Q, which implies
V’(NZ(LZ))I\NI(LIFID. For if /céwl(Ll) and if /(='f'()’) with )’GWZ(LZ) then ))(L2)=l
and )’(L1)=/4(L1)=1, contradiction. Thus \[/(wz(LZ))/\ Nl(L1)=¢. By a) we have then
n §u (L) LSl L€ £,} N wy(L))=p. Since W, (&) is compact it follows

/a
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»
that (,\,w (L) 12C Ly > Ly g EGIM (L))=0. Then L€y, A€ L and
A(']L =9 wh1ch proves that X, semiseparates L2

COROLLARY 3.1 Let L be a lattice of subsets of X. Then the following statements
are equivalent:

a) I(£)=IR(.C)

b) &£ semiseparates (L ()

o) £ =X

d) Tpe)=1,(L)

PROOF. a) =»b): Q(L) is disjunctive. L is normal, since for € I(L)=Io(L)
we have < (L). Consider the restriction map ‘¥': IR(CZ(.C))=I(Q(.‘£))——> L(LF
=I1(s€). By Theorem 3.2 it follows that & semiseparates (). b)==p»c): Let LEL;
then L' € Q(L). Since XL semiseparates @ (L) there exists A€L , L'cA  and
ANL=p, i.e. AcL' . Therefore L'cAcLl' i.e. AsL'€L ,s0 £ = L.

c) =» d) , clearly. d) = a): Let /«.GI(.t) and )’61 £), /‘5” (£L) and
suppose that /’»(A , Y(A ) 1, AeL . But ))GIR(JS/), therefore there exists L 'CA,
Tel with v(L )=1, or ¥(1)=0. Then /u,(L) =0 and since A'CL, </‘—(L) =0
j.e. fo(A )=0, contradiction. It follows that A=Y i.e. I(L)= IR(.Z).

COROLLARY 3.2 Let L c, be two lattices of subsets of X, with <&, normal and
.fz disjunctive. Consider ¢ IR(xz) and its restriction /céI(.‘C,). Then $'=/4/(Z
iff &£, semiseparates £, .

PROOF. Clearly, '</¢ , always. Let L €L, and iuppose > (L )=0. Then LIC.L2
L, X, and ‘)(L )=0. By semiseparation there exists L eot, . ZCLI and T 1NL=0.
Then Llc.Li and LICLZ’ so /(-(L )=0 i.e. g (L )=0 and ¥ -/'-(-B Converser ,
suppose ¥'= /‘ (£). If £ (L )=0 then V(L )=0 therefore v (Ly)=0, Ly €&, , since

=) (.v) So, /l (L})=0 i.e. x ,“ (-8) which by Theorem 3.1 1mpl1es /<€IR(¢C)
It follows by Theorem 3 2 that X, semiseparates &y

DEFINITION 3.3 Let &£ be a lattice of subsets of X and define

A (E)=inf {p()/ EcL, LeL} , ECX

THEOREM 3.3 Let L&, be two lattices of subsets of X and let w€l (L,). Then
/’v =p (x) iff £, semiseparates ofp

PROOF. p '(Ly)=inf 5 L/ L CLI, e—t, s Lzez} By semiseparation, there
exists Llex with Lol c‘.L1 Therefore /4'(L2)</¢ (LZ) Now suppose ,u(L )=0
Then there exists A € £, L,<A and f(R)=0 and since ue€ly (£,), there extsts Bei,,
ACB' and 4« (B')=0. Therefore cha' and fe(B')=0, hence '(L,)=0. So /«--/t "(£,).
Conversely, suppose that /4. /4 (£, ) for all /u:-IR(X) If &, does not semisepara-
tes &2 then there exist Ly€0,, L) €%, such that L,AL;=P but F .0, 7
L DLZ, T e-C } has the fmlte 1ntersect1on property, therefore there exists
fcéIR(-t) such that s ([))=1 for all T;€ %, and LIDLZ and p(Ly)=1. Thus &(L,)=1
but I(L )=0, contradiction. Hence ¢, semiseparates 3

DEFINITION 3.4 Let L be a lattice of subsets of X, Iet Iuel(.t) and ECX and
define p"(E)=inf {Z-/c(L O L eltl.

DEFINITION 3.5 Let ‘2 be a Iatt1ce of subsets of X, let mel( (L) and ECX and
define & (E) 1nf§f/¢(L ), EcUL Lel} .

REMARK  Both /‘" and /a are outer measures on P(X),clearly. If /tel(x) but
/44 (,ﬁ) then 4= 0. If pelg(L) then HSHU(L). Similar remarks for /v

THEOREM 3.4 Let &, €, be two lattices of subsets of X such that -‘L’, semise-
parates &, . Suppose that £, is d and let M€ IR(«f Then /k"‘/t(
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PROOF. Clearly, w'<i'. Leted , d -lattice so that L=§Li, L&Land et
/teIGR’(Jf,). Then /ll.(L')=/<((5:llo Li)')=/¢(QIL%)s§/¢(L1‘.)~since/.c countab]z ac}i:ﬁtive;
therefore /t'=/t~". By Theorem 3.3 it g]lows RERIA(L,) . But since g€k every-
wheri: we get /'ZS/H— "(&,) . Suppose F(Ly)=0 with L,€5%,, but x"(L,)=1.  Then
chéL-j/Ai’ A;€L, and a(A;)=0 all i. %}: the &L -regularity of 4 we have A,CBl
Bie.&, ind /t(B]’.)=0. Therefore chg‘B%, /4,(81!)=0 and 1“"(L2)=0’ contradiction.
Hence /&',=/L"(.fz).

Further related material can be found in [4-6].

4. I-LATTICES

DEFINITION 4.1 A lattice oL is called an I-lattice if every L -filter with the
countable intersection property is contained in an &£ -ultrafilter with the countable
intersection property (i.e. for /7(%(.‘6) there exists /aelg(,(,) such that Ts/«(eC))

THEOREM 4.1 If &£ 1is an I-lattice and replete then X is Lindeldf.

PROOF. Let 75.'/'(;(3). There exists 4€ Ig'(.t) with 775/(. (€). &£ replete im-
plies S(A)=)fl€L/p(L )=1} #0, therefore S(pe)<S(T )#D. But FeR(L) and then
D ALSL/T(L)=1} 4 i.e. L is Lindelof.

THEOREM 4.2 If &£ is a countably compact lattice then £ is an I-lattice.

PROOF". Let iL*Lo:. be a collection of subsets of X such that ﬁ Lt #8. Since
L countably compact, ﬁ;L.(ef}ﬂ) and then fL‘}‘ is a filter bagé which generates
an o -filter with the countable intersection property, 776%(&:). We enlarge it to
? , an of -ultrafilter with the countable intersection property. To F it corres-
ponds uniquely € 1‘;?(;) and Ts/a.(X,).

THEOREM 4.3 If £ 1is disjunctive and Lindeldf then X is an I-lattice.

o PROOF. Let 7eZ (L) and let {lbiea be a family of subsets of X. Then

D AL/T(L)=1} #0 and since k£ is Linde1df, [ fL, /T(L,)=1}=S(T)#. Let x&S(T) and
consider /4.X. Cleaély, Fslux(.t) and /“'xe Ie(.t) and since 2 is disjunctive, ,aeIR(.C)
Therefore . € IR(£).

DEFINITION 4.2 Let L be a disjunctive lattice of subsets of X and let K€ (L)
Define A’ on Qig(L))Hgl@L)) by s’ (Wg(R))=f(R), AEQL) where WglA)={peI®(£L)/
IIL(A)=1} and we,(.t)=§we(A)/Aed(£)}. Clearly, for A,Bec2(L) the properties a)-e)
that we stated in section 3 are still valid. Note that NG(.;) is a disjunctive lattice,
The following theorem follows directly from the definitions:

THEOREM 4.4 If wel (L) then wel13(X) iff 4 'e I¥(Wg(L)). (More generally:
if /ael(.t) then /a'el(we(.t)) and pelp(X) iff p € Tp(WlL))).

THEOREM 4.5 If &£ s disjunctive then &£ is an I-lattice iff (l%'(.t),twe(.t))
is Lindeldf.

PROOF. Necessity: first we show that Ne(.t) is an I-lattice. Let T7e ’/(\é(.t).
There exists ,«elg(,t) with 7€ (). Hence by Theorem 4.4 we have ﬂ%%(b%(x))
and /u_lé IGR'(NG(.‘C)) with 7'{/&'(\&6(‘()). Since &£ is disjunctive, Wg(sf) is replete
and by Theorem 4.1 it follows that Wg(l) is Lindeldf. vg(.‘&)c‘.tws(.f) implies that
tWg(L) is Lindeldf. Sufficiency: twa,(,t) Lindel8f implies that Wg(2£) Lindeldf and
since wa(,t) is disjunctive, by Theorem 4.3 it follows that we(x) is an I-lattice.
Therefore for 7”6?(:.},(%(,3)) there exists /«t/e IR(ws(JC)) such that Fé'/a/(ws(.t’)). To

7' and m' correspond /76%&) and /telg'(&.';) such that F<x (£).

THEOREM 4.6 Let XX, be two lattices of subsets of X such that & fis d and

an I-lattice and &£, is disjunctive. Consider that the restriction ‘¢ :I%(.E)—-)If@fl)

is closed with respect to Wallman topologies. Then .f, semiseparates .‘(2
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PROOF . Let Led, ,L,€%  withl NL,=R. Then in 15' ufg )nw (L))
1 2 L,
and in B(&£):  WORI(L, an‘(L )=p for ,«erGZL ) and if /‘e wG(L then/( -\o(v )
where ve NZ(L ) and /L =1. But then )’(LZ) =1 and (L )=1, contrad1ctlon since

L,NL,=p. Now since ¥ is c]osed ‘Vkp’ {'\NG' (L) 2<:L € L) therefore
QD LM nws' )=P. Hence, since ot’, is an I-lattice and disjunctive (because a‘f,_
is, d1SJunct1ve) by Theorem 4.5 IG(.f) WGZ.Y,) is LlndeIOf Now we'(/"i LHY)N
=/\ WSl 1) (WL )P and then N LI_Q/\L =P, where n L1 S which is J and
f% LH 3L2 Hence L, semiseparates &L -
Here we give conditions which guarantee that ‘¥ is basically closed.
DEFINITION 4.3 &£, is countably bounded &, lattice if for Ane‘of:,_, n=1,2,.....
and AP, there exists B €Xi, n=1,2,.... with A.CB, and B Lp.
THEOREM 4.7 Let X, C ¥, be two lattices of subsets of X such that &, semisepa-
rates &, , -‘fg_ls &) -countably bounded and -\f =t &} . Then the restriction
Yo IG‘(-E ) — I3( S, s basically closed.
PROOF . To show that YilL,)=NuB(L,), LeL, edi . Clearly YL, )enWSiLy),
Locly, €L since Z, t:f, i.e. 1f"or any L e.k,‘z we have L,= /]le s 1«(64'
Now Tet s HY)eN NGLQ but /c¢‘f’w2(L2 Therefore /téIG(J.' ) and since & is
&, countably bounded, e IG'(X) So, /((L =1 all L S, but Y(L,)=0. Since
then )’(L )=1 and )>e 16'(.,‘62), there exists LZCLZ’ sz-fz ,)’(v 1 By semisepara-
tion there exists L. é&f, , T C.L1 and L I’\L =@. But L2<‘.L1 and )’(L )=1 implies
fod (L }=1 and since a]so /L(L =1 all LM , it follows ,k(L /'\LM) =1 which
contrad1cts that Rm =0.
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