CORRIGENDUM ON THE DISCREPANCY OF COLORING FINITE SETS

D. HAJELA

Bellcore
Morristown, New Jersey 07960

There is a reference which has been inadvertantly omitted from the above paper which appeared in Vol. 13, No. 4, (1990), pages 825-827. The omission is corrected as follows:
"6. HAJELA, D., On Polynomials with Low Peak Signal to Power Ratios and Theorems of Kashin and Spencer, submitted to Advances in Applied Mathematics, 1989."

ON SEMI-HOMEOMORPHISMS,

INTERNAT. J. MATH. \& MATH SCI. 13(1990) 129-134

J.P. LEE

Department of Mathematics
State University of New York, College of Old Westbury Old Westbury, NY 11568

Corollary 5 is false because of an incorrect argument used in the proof of Proposition 1. A Mathematical Reviews reviewer pointed out the following counterexample to both of these results. Take \mathbb{R} (the reals) with the Sorgenfrey topology, let Y be \mathbb{R} with the topology given by the base $B=\left\{\left[w_{1}, w_{2}\right): w_{1}, w_{2} \in \mathbb{Q}, w_{1}<w_{2}\right\}$ and let $f: X \rightarrow Y$ be the identity. Such an f is one-to-one, semi-open and continuous but not iresolute

Further, the following is a counterexample to Lemma 9 (and hence Corollary 10). Let $(\mathbb{R}, \mathcal{D})$ and $(\mathbb{R}, \mathcal{T})$ be spaces, where \mathcal{D} is the discrete topology and $\mathcal{T}=\{(a,+\infty): a \in \mathbb{R}\} \cup\{\phi, \mathbb{R}\}$ and let $f: X \rightarrow Y$ be the identity. Clearly, f is not somewhat open.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

