CORRIGENDUM

MACKEY CONVERGENCE AND QUASI-SEQUENTIALLY WEBBED SPACES

THOMAS E. GILSDORF

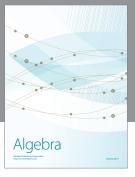
Department of Mathematics University of North Dakota Grand Forks, ND 58202

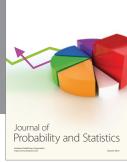
The following were not discovered in time to correct before the publication of the above named paper [Int. Jour. Math. & Math. Sci., 14, no.1, 1991, pp. 17-26]

- 1. Definition 3.3, page 21 is incorrectly stated. It should read: A Hausdorff locally convex space E is <u>locally Baire</u> if for each bounded subset $A \subset E$ there is a bounded disk $B \subset E$ such that $A \subset B$ and E_B is a Baire space.
- 2. The proof of the $(b) \rightarrow (c)$ part of Theorem 3.4, page 23 is in error. The following is the correct proof:

Let $x_n \to 0$ in E. Then $x_n \to 0$ in E_K for some compact disk $K \subset E$. If A denotes the E_K -closure of $convbal(x_n:n \in \mathbb{N})$, and B is the E-closure of $convbal(x_n:n \in \mathbb{N})$, then we have that A is compact in E_K and $id:E_K \to E$ is continuous, making A compact in E. Clearly, $convbal(x_n:n \in \mathbb{N}) \subset A$, so $B \subset A$; hence, B is compact in E, and $B \subset A$. In page 153 of Pérez-Carreras and Bonet (reference [9] in the paper) applies.

The author apologizes for these errors and any confusion they may have caused.





Submit your manuscripts at http://www.hindawi.com

