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ABSTRACT. Type and cotype are computed for Banach spaces generated by some positive sublinear
operators and Banach function spaces. Applications of the results yield that under certain assumptions
Clarkson’s inequalities hold in these spaces.
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1. INTRODUCTION.
Given a Banach space X, we let foranyn EN,1sp <s2<q <®and 1 s5 <o, K¥*(X) and Kig.5(X) be

the smallest constants for which

K X0 znxn (“zrmx| ]

< K“’"’(X)(zl" x| ') (1.1)

for every choice of {x;}}_| CX, where {r,}~_, denotes the sequence of Rademacher functions defined by

r,(t) =sign sin2"nt for 0 <t < 1. Ifthe left (resp. the right) inequality in (1,1) holds, X is of cotype (q,s)

(resp. type (p,s)). If s = 1, we say that X is of cotype q (resp. type p) (see [6]).
The notions of type and cotype have appeared in various problems involving the analysis of vector
valued functions or random variables. One of the great advantages of the classification of Banach spaces

n=1

in terms of type and cotype is the existence of a rather satisfactory geometric characterization of these
notions. For example Maurey and Pisier [8] showed that a Banach space X is of type p for some p > 1
(resp. cotype q for some g < =) iff X does not contain I'’s (resp. /z’s) uniformly.

Note that if X is of type (p,p’) with K®*(X) = 1, 1 < p s 2 (resp. cotype (p, p’) with K, ,,(X) = 1,
2<p <x)and 1/p + 1/p' = 1, then X verifies Clarkson’s inequalities, i.e., for every x,y € X, we have

1 .1 A" "
(312517 +31x0017) " <=l +1517)" 12

1 1 v , i
(resp (3x-sl7 e 3bx o) et 117" 13

Clearly (1.2), (1.3) implies that X is uniformly convex.
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The well-known examples of Banach spaces for which the above inequalities hold are L, -spaces (see

[2]), p-Schatten ideals of compact operators on Hilbert spaces (see [9]), provided 1 < p < .

In [10] Milman showed, using interpolation techniques that if Q C R” is a domain with minimally
smooth boundary, then the inequality (1.2) applies to Sobolev spaces W:(Q) for 1 < p < 2. Further Cobos
[3], using the above observation, proved that the inequalities (1.2) and (1.3) hold in WX(Q) for every domain
QCR"and 1 <p <. In the same way Cobos and Edmunds in [4] showed that some Besov spaces and
Triebel-Sobolev spaces verify Clarkson’s inequalities.

In this paper we compute the type and cotype for spaces of large class of Banach spaces generated
by some positive sublinear operators and Banach function spaces. This class includes for example:
interpolation spaces determined by the real method of interpolation, Besov spaces, Triebel-Sobolev spaces
(see [1],[11],[12]) H” -spaces, an approximation space, L”(j,.X')-spaces and the other (see for example [5]).
We also show that under some conditions Clarkson’s inequalities hold in these spaces.

2. PRELIMINARIES.

Let (Q,u) be a complete o-finite measure space. If X is a Banach space, we denote by
L°(X) = L°(Q, u, X) the F-space [i.e., complete and metrizable topological vector space of all equivalence
classes of all pu-Bochner measurable X-valued functions on Q. If X = R, then we write L* = L°(Q, n).

A Banach space E C L’ is called a Banach function space if | x| <|y|p-a.e.onQ,x EL°andy EE
imply thatx €E and || x|z < | y| -

Recall that a Banach function space E is called p-convex (resp. p-concave), 1 s p < = if there exists

a constant M so that for all x,, ...,x, €EE, we have

|(80) "], 31212

(reSP. (igﬂxill 2) e I (.@;lx"l ’) ’ Ie) '

The smallest possible value of M is denoted by M®XE) (resp. M, (E)).
In what follows let X be an F-space and let S be a positive sublinear operator defined on X taking
values in L® = L°(Q, p); that is for every x, y € X and any scalar A the following hold:
(i) Sx=z0,
(i) S(x)=|NSx,
(iii) Skx+y)sSx+Sy.

Up

For a given Banach function space E C L° and injective operator S: X— L°, we define
D(S)={x EX:Sx EE).

IEE = (L,.| +],,), we write in short D, instead of Dy(S), where | x|, = (£ 11°48)"” for 15 p <.

Throughout the paper, we assume that Dg(S) is a Banach space with the norm defined by
120 yesy = I Sl ¢ -
We say that a pair (E,S) is admissible provided that for any A with p(A) < o, we have
XaSx, =0 in E

for every sequence {x,} C Dg(S) such that x, — 0 in X. Here Y, is a characteristic function of A.
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3. RESULTS.
Let (T,v) and (L2, n) be measure spaces. In the sequel for any x,,...,x, EX and f,, ..., f, EL°(T,v),

we write
$hoxm=-3a0n for €T,

An easy proof of the following lemma may be omitted.
LEMMAJ3.1. Letf,...,f, EL°(T,v). Then the following hold:
() Forallx,,...,x,EX and for any 0 € Q s( S i ®x,,)(m) EL(T,v).
kel
(i) Forallx,,...,x, EDs(S), || ,il L ®x H EL(T,v).

E(

(iii)  If a measure space (T,v) is finite, then for all x,,...,x, EX and f,, ...,f, EL®,

( L s(}_‘,lf. ®x,,)Pdv) N ELY(Qn).

THEOREM 3.1. Assume that (T,v) is a finite measure space. Let E be a Banach function space
andletf,....f, EL?(T,v),1sp <.
(i)  IfE is p-convex, then for all x,,...,x, € X = Dg(S), we have

( ls(él 5 ®x,,)Pdv] ”

(ii) IfE is p-concave, then for all x,,...,x, € X, we have

( is(}ﬁ_:l 5 ®x,,)pdv) "

PROOF. First of all, suppose that f;, k = 1,...,n are step functions. We can certainly assume that

lp

sM“’)(E)(j; l élﬁ ®x, II:dv

E

n 14 Up
[]22 ®kadv) <M, E)

E

fi= i caXa With A; CT measurable, pairwise disjoint and T = U A;. Then for C = M*(E), we have
i=1 ‘ i=l

( [s(3.5 ®x.(t))'dv(r)) ’ IE

" r Yp
ls (338 o)) dv(t)) L

|

- ( i $.5(,5,cum) xA(r)dv(t)))w”E
(3
&

- lw
2 v(A; )”’S E c, .‘xk " (by p - convexity)

p

=c( S via, )H 3 cu,) HP] " -c[ Liﬂ S(é1 cux.;) I;xAi(t)dv(t)]

E,

lp

- c( i ﬂ :21 A ®x,,(t)“:dv(t)]
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Now assume that in the sequence {f,}; _,, f, with k =2,...,n are step functions. Take any sequence
{g;};.,in L*(T,v) of step functions such that g; — f, v-a.e. on T, and g; — f, in L*(T,v). From this, we

easily get that

2= Hu (g,®x1+ 2f,,®x,, I | zf,®x,) )W[L
a p \Wp " P \Up
b -(“g,@)xﬁng, ®x,,|xdv) "(“.%f* ®x,,|xva

Since a; = Cb; by previously proved inequality, we obtain desired inequality. Thus, by iterating the proof

and

of (i) is complete. The proof of (ii) is similar.
Let us define on a F-space X a family of semi-norm | +|,, , by | x|, = Sx(w) for every ® € Q. Now the

main theorem of the paper is immediate.
THEOREM 3.2. Assume that1 <p <o and 1 ss <. Let E be a Banach function space and let

X =Dg(S).
(i) IfEis p-convex, 1 < p <2, and s-concave, and for all x,, ...,x, EX

2

then X is of type (p,s) with K*(X) < C/(p,s) = CM®EM,,(E).

s

n Up
sCl(i;lxil :) p-ae., (3.1)

s
| a
w

(ii)  IfE is p-concave, 2 s p < o, and s-convex, and for all x,, ...,x, EX

n Up .
(i§l|xi':) =G l i1t

then X is of cotype (p,s) with K,, ,) s CAp,s) = C:M,(E M“XE).

COROLLARY 3.1. Ifthe conditions of Theorem 3.2 are satisfied with s = p' and C(p,s)=1
(resp. C{p,s) = 1), then Clarkson’s inequality (1.2) (resp. (1.3)) holds for D(S).

PROPOSITION 3.1. Let (L,,S) be an admissible pair, 1 < p < . Assume that D, C X with con-

Us

u-ae. 3.2)

tinuous inclusion and that D, is a non-closed subspace in X. Then D,, is not type r (resp. cotype r) for any
r > p (resp. for any r < p).
PROOF. The above assumptions imply that for any € > 0, D, contains (1 + £)-isomorphic copy of /,
(see [7]). Since type and cotype is inherited by subspaces, then the proof is finished.
In the theory of type and cotype the type and cotype indices of a Banach space B which are defined
as follows
p(B)=sup{p: B is of type p},

q(B)=inf{q: B is of cotype p}

are important (see [8] for details).
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COROLLARY 3.2. Assume that the assumptions of Proposition 3.1 are satisfied. LetX =D,
(i) Ifl<ps<2andforallx,...x, EX

1

n 14 n
[IE";(’)"; dtsC 3 |x|° u-ae.,
i1 w =1 @

thenp(X)=p.
(i) If2sp<wandforallx,,...x, EX

(.'g!xﬂ z) vp <C f I"g ek

dt n-ae.

thenq(X)=p.

PROOF. Since L, is p-convex and p-concave Banach function space, we have X is of type (p, p) for
1 < p s 2(resp. cotype (p, p) for2 < p < ») by Theorem 3.2. In order to finish the proof it suffices to apply
a result of Kahane (see [6, Theorem 1.e.13]) and Proposition 3.1.
4. EXAMPLES.

We give two general examples injective and positive sublinear operators satisfying the inequalities
given in Theorem 3.2.

Let (€2, ) be a measure space and let X be an F-space. Fix 1 <q < and assume that {T,};_ isa

sequence of injective linear operators, T;: X — L°(Q, n), such that
© lig
Sx(w) = (‘21| Tx(w)| ") <o  p-ae.

Then obviously the operator S: X — L° is injective, positive sublinear. For this operator, we have

PROPOSITION 4.1. (i) If1 <p sq <2, then for all x,,....,x, EX
1

‘[ |.§; 0

1p’

I3 » 1p
dt s(2|xi|’) n-ae.
© i1 Y

(ii) If2<qsp <o, thenforallx,...x, €EX

(;?folg) ”_ [ ﬂéx ey,

PROOF. We have K, ,.(I,)=1 for all 1 <q =2 and by a duality argument K®*(1;) = 1 for all

Lo\
P
dt] n-ae.

2 <q <o (see [10]).
Now assume that 1 < p <q <2. Then by q' < p’, it follows that

[ [ 3 o, dt] " [ { | 20 Idt]

< ( ” 3 {1 ) I:d,) " (S1mmem;)

lp'

liq

(o] (3
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for all x,, ...,x, €EX. The proof of (ii) is similar.

Let X be a Banach space and let X = L°(2,u,X). Define an injective, positive sublinear operator S:

X — L*(Q,1) by

Sx(w) = || x(w)|y, WEK.

Then the Banach space Dg(S) is well-known and is denoted by E(X). Clearly the inequality (3.1)

(resp. (3.2)) is equivalent to the fact that X is of type (p, s) (resp. cotype (p,s)).

10.

11.

12.
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