# RESEARCH NOTES

# A NOTE ON CONSERVATIVE MEASURES ON SEMIGROUPS

#### N.A. TSERPES

Department of Mathematics University of Patra Patra, Greece

(Received June 6, 1990)

ABSTRACT. Consider  $(S,B,\mu)$  the measure space where S is a topological metric semigroup and  $\mu$  a countably additive bounded Borel measure. Call  $\mu$  conservative if all right translations  $t_x\colon s\to sx,\ x\in S$  (which are assumed closed mappings) are conservative with respect  $(S,B,\mu)$  in the ergodic theory sense. It is shown that the semigroup generated by the support of  $\mu$  is a left group. An extension of this result is obtained for  $\sigma$ -finite  $\mu$ .

KEY WORDS AND PHRASES. Topological metric semigroups, left groups, conservative translations of the semigroup, Borel measure, r\*-invariant measures.

1980 AMS SUBJECT CLASSIFICATION CODE. 43A05, 28D05, 22A15.

## 1. INTRODUCTION.

Throughout we shall be dealing with the measure space (S, B<sub>G</sub>,  $\mu$ ) where S is a topological metric semigroup, B<sub>G</sub> its Borel  $\sigma$ -algebra and  $\mu$  a non-negative countably additive Borel measure on B<sub>G</sub>. We shall assume that the right translations  $\mathbf{t_x}$ :  $\mathbf{s} \to \mathbf{sx}$ ,  $\mathbf{x} \in \mathbf{S}$  (which are measurable) are closed mappings. The support F of  $\mu$  is defined by F = { $\mathbf{s} \in \mathbf{S}$ ; every neighborhood of s has positive  $\mu$ - measure}. We assume that  $\mu$  is finite on compacta and F<sup>C</sup> (=the complement of F) is of  $\mu$ - measure zero. For  $\mathbf{x} \in \mathbf{S}$ , B  $\subset$  S, Bx<sup>-1</sup> ={ $\mathbf{s}$ ;  $\mathbf{sx} \in \mathbf{B}$ }. The closure of B will be denoted by  $\overline{\mathbf{B}}$ .

The purpose of this note is to study the effects on S of certain invariant conditions on the  $t_x$ 's of the "measure-preserving" type especially that of conservativeness and r\*-invariance. By abuse of language (interchanging the roles of the  $t_x$ 's and  $\mu$ ) we shall say that  $\mu$  is conservative (or recurrent) if every  $t_x$ ,  $x \in S$ , is conservative with respect to the measure space  $(S,B_g,\mu)$  in the ergodic theory sense, that is, if

$$Bx^{-1} \supset B \implies (implies) \mu(Bx^{-1} - B) = 0$$
 (1.1) for all  $B \in B_{\sigma}, x \in S$ .

Such transformations are familiar in ergodic theory (See [1] and [2]) and are characterized by the property of (infinite) recurrence, i.e.,

acterized by the property of (infinite) recurrence, i.e., 
$$\forall \ B \in B_{\sigma} \ , \ x \in S, \quad \mu \{ \ B \ - \ \bigcap_{n=1}^{\infty} \ \bigcup_{i \ge m}^{\infty} \ Bx^{-i} \ \} = 0 \tag{1.2}$$

Equivalent definitions of conservativeness" would be obtained using closed sets in (1.1) or requiring the <u>non-existence</u> of a closed set K of positive measure such that K,  ${\rm Kx}^{-1}$ ,  ${\rm Kx}^{-2}$ , ....,  ${\rm x}\ \epsilon$  S, is a disjoint sequence. The measure  $\mu$  is called <u>r\*-</u>

196 N.A. TSERPES

### invariant if

For all 
$$B \in B_{\sigma}$$
,  $x \in S$ ,  $\mu(Bx^{-1}) = \mu(B)$  (1.3)

Conditions (1.1) and (1.3), despite their similarity, are really independent. However for bounded  $\mu$ , trivially r\*-invariance implies conservativeness. This fact and the wish to generalize the following result of [3] (Theorem 1, below) lead us to consider the  $\sigma$ -finite case and the effects of conservativeness of  $\mu$  on S.

# 2. THE CASE OF FINITE MEASURE.

THEOREM 1. (of [3]). Suppose in  $(S,B_{\sigma},\mu)$ ,  $\mu$  is r\*-invariant (not necessarily finite) measure and the  $t_{\chi}$ ,  $x \in S$ , are closed mappings. Then F is a left group, i.e. F is left simple and right cancellative.

A simple generalization of this theorem (with a new proof) in the case of bounded  $\mu$ , is the following

THEOREM 2. Suppose in (S, B<sub> $\sigma$ </sub>, $\mu$ )  $\mu$  is bounded conservative. (The t<sub>x</sub>'s are assumed always closed). Let D be the subsemigroup generated by the support F of  $\mu$ , i.e.,  $D = \bigcup_{n=1}^{\infty} F^n$ , and let  $L = \bigcap_{x \in S} Sx$ . Then D  $\subset$  L and both D and L are left groups.

PROOF. Let us denote by  $\mu^{k}$  the  $k^{th}$  convolution power of  $\mu$ . For k=2,

$$\mu^{2}(B) = \mu * \mu(B) = \int \mu(By^{-1}) \mu(dy) = \int \mu(y^{-1}B) \mu(dy)$$
 (2.1)

Suppose now that Bx-1 > B. Since

$$\mu^{2}(Bx^{-1} - B) = \int \mu(y^{-1}(Bx^{-1} - B)) \ \mu(dy) = \int \mu((y^{-1}B)x^{-1} - y^{-1}B)\mu(dy) = 0 \qquad (2.2)$$

we see that all powers  $\mu^k$  are also conservative. Let  $x \in D$  and U any neighborhood of x. Then  $\mu^k(U) > 0$  for some k, since D is the semigroup generated by the powers of the support F of  $\mu$ . By (1.2) applied to  $\mu^k$  we must have  $D \cap Ux^{-j} \neq \emptyset$  for some j and we may assume j > 2. Hence  $U \cap Dx^{j-1}x \neq \emptyset$  and  $U \cap Dx \neq \emptyset$  and a fortiori  $U \cap Sx \neq \emptyset$ . It follows, since x was arbitrary, that  $\overline{Dx} = Dx \supset D$  for all  $x \in D$  and hence Dx = D, so that D is left simple. Also  $\overline{Sx} = Sx \supset D$  for all  $x \in S$  and  $C = \bigcap_{x \in S} Sx$  is left simple since it is the minimal left ideal of S. Incidentally, also  $C = \bigcap_{x \in S} Dx$  is left simple semigroup and  $C \cap C \cap D$ .

Next, we show that there is an idempotent element in D. Let  $a \in D$ . Since D is left simple  $aa^{-1} \neq \emptyset$ . We consider two cases. Case 1: Interior( $aa^{-1}$ ) =  $\emptyset$ . Then it follows that Frontier( $aa^{-1}$ ) is compact by a result of Morita and Hanai (Proc. Jap. Acad.  $\underline{32}$  (1956), p. 10-14) (cf. also [3], p. 318), and being a compact semigroup, it contains an idempotent. Case 2: Suppose Interior( $aa^{-1}$ )  $\neq \emptyset$ . Then for some k,  $\mu^k(aa^{-1}) > 0$ . This implies by (1.2) applied to  $\mu^k$ , that  $\mu^k(aa^{-1} - \overset{\bullet}{U}(aa^{-1})a^{-1})) = 0$ . It follows that there is  $v \in (aa^{-1})a^{-j} \cap aa^{-1}$  for some j, so that  $va^ja = a$  or  $vaa^{j-1}a = a$  or  $a^{j+1} = a$  and hence the powers of a form a finite semigroup which must contain an idempotent element. Therefore, D is a left group, since an alternate characterization of left group is that it be left simple and contain an idempotent element.

## 3. THE CASE OF INFINITE MEASURE.

One may wonder what is an appropriate condition under which an infinite r\*-in-

variant  $\mu$  becomes conservative. One such condition (admittedly not very manageable) is the non-existence of an unbounded (in measure)  $G_{\hat{0}}$  set G such that  $Gx^{-1} \supset G$  for some x and  $\mu(Gx^{-1} - G) > 0$ , that is, for all unbounded  $G_{\hat{0}}$  sets G such that  $Gx^{-1} \supset G$  for some x, we have  $\mu(Gx^{-1} - G) = 0$ . Such a condition plus r\*-invariance imply (1.1).

In the infinite case we have obtained only partial results summarized in the following theorem.

THEOREM 3. Suppose in  $(S,B_{\sigma},\mu)$   $\mu$  is an (infinite) conservative measure and the right translations  $t_x$ ,  $x \in S$ , are closed. Let F denote the support of  $\mu$ . Let  $D = \bigcup_{i=1}^{\infty} F^i$  and  $E = \bigcap_{k=1}^{\infty} \bigcup_{i \geq k} F^{i+1}$ . Then,

- (i)  $F \subset (\bigcap_{x \in F} Ex) \cap (\bigcap_{x \notin S} Sx)$  and  $F \subset E \subset D$ , E being a closed subsemigroup.
- (ii) If  $\mu$  is  $\sigma$ -finite and S is separable, then E=D=a left group.
- (iii) If F = S or F is a subsemigroup, then F is a left group.

REMARK. A condition that makes F a subsemigroup is the non-contractiveness of  $\mu$  i.e., for closed sets B,  $\mu(B) > 0$  implies  $\mu(Bx) > 0$ ,  $x \in F$ .

PROOF. (i): Let k be given. For any neighborhood U of a point  $f \in F$  there is an i > k, depending on U, such that by (1.2)  $Uf^{-1} \cap F \neq \emptyset$  and hence  $U \cap Ff^{1} \neq \emptyset$  and  $U \cap F^{1+1} \neq \emptyset$ . Hence  $F \subset \bigcup_{i \geq k} F^{i+1}$  for every  $k \geq 1$ . Let now U be as above and  $x \in E$ . Using (1.2), since  $Ux^{-1} \cap F \neq \emptyset$  implies  $U \cap Fx^{1-1}x \neq \emptyset$  (we may take i > 2) and  $Fx^{1-1}$  is in E (E being an ideal in D), we have  $F \subset \bigcup_{i \in K} Ex$ .

(ii): The separability of S and  $\sigma$ -finiteness of  $\mu$  imply that the functions  $\mu(Bx^{-1})$  and  $\mu(x^{-1}B)$ ,  $B \in B_{\sigma}$ , are measurable and also the validity of (2.1) and (2.2) (cf. [6] and [7]). Hence, that the convolution powers of  $\mu$  are again conservative. Then, as in Theorem 2, D is a left group. (the conservativeness of  $\mu^k$  is needed for left simplicity and to produce an idempotent element in D, as in Theorem 2). Observe that E being an ideal in D must equal to D since D is now left simple.

(iii): We can prove F to be left simple either by observing that for x in F,  $Fx \subset Fxxx^{-1} \subset Fxx^{-1}$  and hence  $\mu(Fxx^{-1} - Fx) = 0$  by (1.1), so that  $\mu(F - Fx) = 0$  since  $F \subset Fxx^{-1}$  and F - Fx, being open, is empty, or, we may use (1.2) and the argument in Theorem 2 showing that  $F \subset \overline{Fx} = Fx$ . To produce an idempotent we use the argument on the Interior(aa<sup>-1</sup>), a  $\varepsilon$  F, and  $\mu^k$  with k = 1, as in Theorem 2. (Here we don't need the convolution powers  $\mu^k$  for k > 1 to be conservative).

# REFERENCES

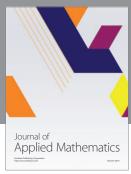
- 1. HALMOS, P.R. Lectures in Ergodic Theory, Chelsea Publishing Co., 1956.
- 2. WRIGHT, F.B. The recurrence Theorem, Amer. Math. Monthly, 68 (1961), 247-248.
- 3. TSERPES, N.A. and MUKHERJEA, A. Mesures de probabilité r\*-invariantes sur un semigroupe metrique, C.R. Acad. Sc. Paris Ser. A, 268 (1969), 318
- BERGLUND, J.F. and HOFMANN, K.H. <u>Compact semitopological semigroups and weakly almost periodic functions</u>, Lecture Notes in Math. No 42, Springer, 1967.
- BOURNE, S. Sur la Note de MM. Tserpes et Mukherjea: Mesures de probabilite r\*invariantes sur un semigroupe metrique, C.R. Acad. Sc. Paris, Ser. A, 269
  (1969), 1143.

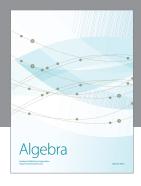
198 N.A. TSERPES

- 6. MUKHERJEA, A. The convolution equation p = p\*q of Choquet-Deny and relatively invariant measures on semigroups, Ann. Inst. Fourier 21 (1971), 87-97.
- 7. MUKHERJEA, A. On the equation  $P(B) = \int P(Bx^{-1})P(dx)$  for infinite P, J.London Math. Soc. 6 (1973), 224-230

















Submit your manuscripts at http://www.hindawi.com



