LINEAR FUNCTIONALS ON ORLICZ SEQUENCE SPACES WITHOUT LOCAL CONVEXITY

MARIAN NOWAK
Institute of Mathematics
A. Mickiewicz University
Matejki 48/49, 60-769 Poznań
Poland

(Received March 8, 1990)

Abstract

The general form of continuous linear functionals on an Orlicz sequence space 1^{\dagger} (nonseparable and non-locally convex in general) is obtained. It is proved that the space h^{ϕ} is an M-ideal in 1^{ϕ}.

KEY WORDS AND PHRASES. Orlicz sequence spaces, Köthe dual, Riesz spaces, Mackey topologies, modular spaces, and M-ideals.
1991 AMS SUBJECT CLASSIFICATION CODE. Primary 46 E 30.

INTRODUCTION. The general form of continuous linear functionals on an Orlicz space L^{ϕ}, defined by a convex Orlicz function ϕ has been found by Ando [2] (for ϕ being an N-function and for a finite measure space) and by Rao [21], Fernandez [7] (for ϕ being a Young function and for a general measure space).

In this paper we describe the dual space $\left(1^{\phi}\right)^{*}$ of an Orlicz sequence space 1^{\dagger} defined by an arbitrary Orlicz function ϕ (not necessarily convex) such that $\phi(u) / u \rightarrow \infty$ as $u \rightarrow \infty$. For this purpose we shall first use the description of the Mackey topology τ_{ϕ} of 1^{ϕ}, obtained by Kalton [8], when ϕ satisfies the Δ_{2}-condition at 0 , and by Drewnowski and Nawrocki [5], in general. The Mackey topology τ_{ϕ} is normable and we consider two natural norms on 1^{\dagger} which generate τ_{ϕ}. Thus we can define two corresponding norms in $\left(1^{\phi}\right)^{*}$. Moreover, we consider 1^{4} from the point of view of the theory of modular spaces (see [15], [16], [17]). We investigate the conjugate modular (in the sense of Nakano [17]) on ($\left.1^{\dagger}\right)^{*}$ and consider two other norms on $\left(1^{\phi}\right)^{*}$ defined in a natural way by the conjugate modular. It is well-known that $\left(1^{\phi}\right)^{*}=\left(1^{\phi}\right)_{n}^{\sim}+\left(1^{\phi}\right)_{s}^{-}$, where $\left(1^{\phi}\right)_{n}^{-}$and $\left(1^{\phi}\right)_{s}^{-}$denote the sets of all order continuous and singular linear functionals on 1^{\dagger} respectively. We first show that the Köthe dual $\left(1^{\dagger}\right)^{x}$ of 1^{ϕ} coincides with the Orlicz sequence space $1^{\phi^{*}}$, where ϕ^{*} denotes the complementary function of φ in the sense of Young. Thus we obtain the corresponding characterization of $\left(1^{\phi}\right)_{n}^{\sim}$. Next, we prove that the conjugate modular and all four norms defined on $\left(1^{\phi}\right)^{*}$ coincide on $\left(1^{\phi}\right)_{s}^{-}$. Following the idea of [2] we construct a Riesz isometric isomorphism of $\left(1^{\phi}\right)_{s}^{-}$ onto some Riesz subspace $B_{\phi}(N)$ (dependent on ϕ) of the Banach lattice $b a(N)$ of all real-valued bounded finitely additive set functions on N. We prove that there exists an isometric isomorphism of the Banach space $\left(\left(1^{\dagger}\right)^{*},\|\cdot\|_{\phi}^{*}\right)$ (for the definition of the norm $\|\cdot\|_{\phi}^{*}$ see section 2) onto the Banach space $1^{\phi^{*}} \times B_{\phi}(N)$ given by the mapping $f \rightarrow(y, v)$ such that $f(x)=\sum_{i=1}^{\infty} x(i) y(i)+\int x d v$ for all $x \in 1^{\dagger}$ and $\|f\|_{\phi}^{*}=\|y\|_{\phi^{*}}+|v|(N)$. From this it follows that h^{ϕ} (the ideal of elements of absolutely continuous F-norm on 1^{\dagger}) is an M-ideal of 1^{\dagger} (see [3, definition 2.1]). As an application, we obtain that every continuous linear function on h^{ϕ} has the unique norm preserving extension to 1^{ϕ}.

1. Preliminaries. For terminology concerning locally solid Riesz spaces we refer to [1] and [14]. For a Riesz space (E, \geq) let $E^{+}=\{u \in E: u \geq 0\}$ (the positive cone of E). By N we will denote the set of all natural numbers. Denote by ω the space of all real-valued sequences. For the sequence $x, x(i)$ means the
i-th coordinate of x, and we shall denote by $x^{(n)}$ the n-th section of x (that is $x^{(n)}(i)=x(i)$ for $i \leq n, x^{(n)}(i)=0$ for $i>n)$. For a subset A of N we will denote by x_{A} the sequence such that $x_{A}(i)=x(i)$ for $i \in A$ and $x_{A}(i)=0$ for $i \notin A$. If f is a linear functional on a subspace X of ω, we will denote by f_{A} the functional defined as: $f_{A}(x)=f\left(x_{A}\right)$ for $x \in X$. It is known that ω is a super Dedekind complete Riesz space under the ordering $x \leq y$ whenever $x(i) \leq y(i)$ for $i \in N$.

Now we recall some terminology concerning Orlicz sequence spaces (see [11], [12], [22], and [25]).
By an Orlicz function ϕ we mean a function $\phi:[0, \infty) \rightarrow[0, \infty)$ which is non-decreasing, continuous for $u \geq 0$ and $\phi(u)=0$ iff $u=0$. Throughout this paper we shall assume that φ satisfies the following condition: $\phi(u) / u \rightarrow \infty$ as $u \rightarrow \infty$. Every Orlicz function ϕ determines the functional $\rho_{\phi}: \omega \rightarrow[0, \infty]$ defined by the formula:

$$
\rho_{\phi}(x)=\sum_{i=1}^{\infty} \phi(|x(i)|)
$$

Then $1^{\phi}=\left\{x \in \omega: \rho_{\phi}(\lambda x)<\infty\right.$ for some $\left.\lambda>0\right\}$ is called an Orlicz sequence space defined by ϕ. The space 1^{\dagger} is an ideal of ω and the functional ρ_{ϕ} restricted to 1^{ϕ} is an orthogonal additive modular, i.e., ρ_{ϕ} satisfies the following conditions:
(1) $\quad \rho_{\phi}(x)=0$ iff $x=0$.
(2) $\quad \rho_{\phi}\left(x_{1}\right) \leq \rho_{\phi}\left(x_{2}\right)$ if $\left|x_{1}\right| \leq\left|x_{2}\right|$.
(3) $\rho_{\phi}(\lambda x) \rightarrow 0$ if $\lambda \rightarrow 0$.
(4) $\quad \rho_{\phi}\left(x_{1}+x_{2}\right)=\rho_{\phi}\left(x_{1}\right)+\rho_{\phi}\left(x_{2}\right)$ if $\left|x_{1}\right| \wedge\left|x_{2}\right|=0$.

These conditions imply that $\rho_{\phi}\left(x_{1} \vee x_{2}\right) \leq \rho_{\phi}\left(x_{1}\right)+\rho_{\phi}\left(x_{2}\right)$ for $x_{1}, x_{2} \geq 0$. Moreover, ρ_{ϕ} satisfies the following axiom of completeness (see [15]):
(C) If $x_{n} \geq 0$ for $n=1,2, \ldots$ and $\sum_{n=1}^{\infty} \rho_{\phi}\left(x_{n}\right)<\infty$, then there exists $y \in 1^{\dagger}$ such that $y=\sup x_{n}$ and $\rho_{\phi}(y) \leq \sum_{n=1}^{\infty} \rho_{\phi}\left(x_{n}\right)$.

If ϕ is a convex Orlicz function, then the modular ρ_{ϕ} is convex, i.e.,

$$
\rho_{\phi}\left(a x_{1}+b x_{2}\right) \leq a \rho_{\downarrow}\left(x_{1}\right)+b \rho_{\downarrow}\left(x_{2}\right) \text { for } a, b \geq 0 \text { with } a+b=1 .
$$

In 1^{ϕ} the complete Riesz F-norm $\|\cdot\|_{\phi}$ can be defined by

$$
|x|_{\phi}=\inf \left\{\lambda>0: \rho_{\phi}(x / \lambda) \leq \lambda\right\}
$$

We shall denote by τ_{ϕ} the topology of the F-norm $|\cdot|_{\phi}$. Let $h^{\phi}=\left\{x \in 1^{\dagger}: \rho_{\phi}(\lambda x)<\infty\right.$ for all $\left.\lambda>0\right\}$. Then h^{\star} is the ideal of elements of absolutely continuous F-norm $|\cdot|_{\phi}$ on 1^{\star}.

We say that ϕ satisfies the Δ_{2}-condition at 0 , whenever $\limsup _{u \rightarrow 0} \phi(2 u) / \phi(u)<\infty$. It is known that $1^{\phi}=h^{\phi}$ (i.e. 1^{ϕ} is separable) iff ϕ satisfies the Δ_{2}-condition at 0 .

We say that two Orlicz functions ϕ and ψ are equivalent at 0 , in symbols $\phi \sim \psi$, if there exist positive numbers a, b, c, d and $u_{0}>0$ such that $a \phi(b u) \leq \psi(u) \leq c \phi(d u)$ for $0 \leq u \leq u_{0}$. It is well-known that if $\phi \sim \psi$ then $1^{\phi}=1^{\psi}$ and $\tau_{\phi}=\tau_{\psi}$. Moreover, the space $\left(1^{\phi}, \tau_{\phi}\right)$ is locally convex iff there exists a convex Orlicz function ψ such that $\phi \sim \psi$ (see [25], Theorem 3.1.5]. Separable Orlicz sequence spaces without local convexity have been investigated in detail by Kalton [8]. For examples of non-separable and non-locally convex Orlicz sequence spaces see [5].

We denote by p_{ϕ} the Minkowski functional of the absolutely convex absorbing subset $k^{\dagger}=\left\{x \in \omega: \rho_{\phi}(x)<\infty\right\}$ of 1^{\dagger}. Thus

$$
p_{\phi}(x)=\inf \left\{\lambda>0: \rho_{\phi}(x / \lambda)<\infty\right\}
$$

for all $x \in 1^{\phi}, p_{\phi}(x) \leq|x|_{\phi}$ for $x \in 1^{\phi}$, and $h^{\phi}=\operatorname{ker} p_{\phi}$.
2. Norms on the dual space $\left(1^{\dagger}\right)^{*}$ of 1^{\dagger}. In this section we define in two different ways some natural norms on $\left(1^{\phi}\right)^{*}$. For this purpose we shall first use the description of the Mackey topology of $\left(1^{\phi}, \tau_{\phi}\right)$ given in [5], and next, we apply the Nakano's theory of conjugate modulars [17].

Let us put

$$
\phi^{*}(v)=\sup \{u v-\phi(u): u \geq 0\} \text { for } v \geq 0
$$

Then ϕ^{*} will be called the function complementary to ϕ in the sense of Young. It is seen that ϕ^{*} is a convex function, taking only finite values, and $\phi^{*}(0)=0$. This means that ϕ^{*} is a Young function (see [12], [13], [26]). The additional properties of ϕ^{*} are included in the following

LEMMA 2.1. (a) If $\liminf _{u \rightarrow 0} \phi(u) / u=0$, then ϕ^{*} vanishes only at 0 and $\lim _{v \rightarrow 0} \phi^{*}(v) / v=0, \lim _{v \rightarrow \infty} \phi^{*}(v) / v=\infty$ (i.e. ϕ^{*} is an N-function in the sense of [11]).
(b) If $\liminf _{u \rightarrow 0} \phi(u) / u>0$, then ϕ^{*} vanishes near zero and $\lim _{v \rightarrow \infty} \phi^{*}(v) / v=\infty$ (i.e. $1^{\dot{\phi}}=1^{\infty}$).

PROOF. (a) We can easily verify that $\phi^{*}(v)>0$ for $v>0$. In the same way as in [4, §2] we can show that $\lim _{v \rightarrow 0} \phi^{*}(v) / v=0$ and $\lim _{v \rightarrow \infty} \phi^{*}(v) / v=\infty$.
(b) We shall show that there exists $v_{0}>0$ such that $\phi^{\circ}(v)=0$ for $0 \leq v \leq v_{0}$, and $\phi^{\circ}(v)>0$ for $v>v_{0}$. indeed, since $\liminf _{u \rightarrow 0} \phi(u) / u>0$ there exist numbers $\mathrm{v}^{\prime}>0$ and $u^{\prime}>0$ such that $u \mathrm{v}^{\prime} \leq \phi(u)$ for $0 \leq u \leq u^{\prime}$, and since $\lim _{u \rightarrow \infty} \phi(u) / u=\infty$ (by our assumption) there exists a number $u^{\prime \prime}>0$ with $u^{\prime \prime}>u^{\prime}$ such that $u \leq \phi(u)$ for $u \geq u^{\prime \prime}$. Taking $v^{\prime \prime}>0$ such that $1 / v^{\prime \prime}=\sup \left\{u / \phi(u): u^{\prime} \leq u \leq u^{\prime \prime}\right\}$, we have $u v^{\prime \prime} \leq \phi(u)$ for $u^{\prime} \leq u \leq u^{\prime \prime}$. Then for $v_{1}=\min \left(1, v^{\prime}, v^{\prime \prime}\right)$ we get $u v_{1} \leq u v^{\prime} \leq \phi(u)$ for $u \geq u^{\prime \prime}, u v_{1} \leq u v^{\prime \prime} \leq \phi(u)$ for $u^{\prime} \leq u \leq u^{\prime \prime}$, and $u v_{1} \leq u \leq \phi(u)$ for $u \geq u^{\prime \prime}$. Hence $u v_{1}-\phi(u) \leq 0$ for $u \geq 0$, so that $\phi^{*}\left(v_{1}\right)=0$. On the other hand, there exists a number $v_{2}>0$ such that $\phi^{*}\left(v_{2}\right)>0$. Since ϕ^{*} is convex, there exists a number $v_{0}>0$ such that $\phi^{*}(v)=0$ for $0 \leq \mathrm{v} \leq \mathrm{v}_{0}$, and $\phi^{*}(\mathrm{v})>0$ for $\mathrm{v}>\mathrm{v}_{0}$. Moreover, as in [4, §2] we can show that $\lim _{\mathrm{v} \rightarrow \infty} \phi^{*}(\mathrm{v}) / \mathrm{v}=\infty$.

For an Orlicz function ϕ we shall denote by $\hat{\phi}$ the convex minorant of ϕ in a neighborhood of 0 , i.e., $\hat{\phi}$ is the largest Orlicz function such that $\hat{\phi}(u) \leq \phi(u)$ for $u \geq 0$, and $\hat{\phi}$ is convex on the interval [0,1] (see [8, p. 255]).

Moreover, let us put

$$
\bar{\phi}(u)=\left(\phi^{*}\right)^{*}(u) \text { for } u \geq 0
$$

It is seen that $\bar{\phi}$ is a convex Orlicz function such that $\lim _{u \rightarrow \infty} \bar{\phi}(u) / u=\infty$. The relation between $\hat{\phi}$ and $\bar{\phi}$ is described by

LEMMA 2.2. We have $\hat{\phi} \sim \bar{\phi}$ and $\bar{\phi}(u) \leq \phi(u)$ for $u \geq 0$.
PROOF. First, we shall show that $\bar{\phi}(u) \leq \phi(u)$ for $u \geq 0$. Indeed, since $\lim _{v \rightarrow \infty} \phi^{*}(v) / v=\infty$, for every $u>0$ there exists $v_{u}>0$ such that $\bar{\phi}(u)+\phi^{*}\left(v_{u}\right)=u v_{u}$. But $u v_{u} \leq \phi(u)+\phi^{*}\left(v_{u}\right)$; hence $\bar{\phi}(u) \leq \phi(u)$ for $u \geq 0$. In [18, Lemma 2.1] it is proved that $\hat{\phi} \sim \bar{\phi}$ whenever $\liminf _{u \rightarrow 0} \phi(u) / u=0$. Now assume that $\underset{u \rightarrow 0}{\liminf } \phi(u) / u>0$. We can check that $\hat{\phi} \sim \chi_{1}$, where $\chi_{1}(u)=u$ for $u \geq 0$ (see [18]). It suffices to show that $\bar{\phi} \sim \chi_{1}$. In view of Lemma 2.1 there exists a number $v_{0}>0$ such that $\phi^{*}(v)=0$ for $0 \leq v \leq v_{0}$, and $\phi^{*}(v) \geq 0$ for $v>v_{0}$. Moreover, since $\lim _{v \rightarrow \infty} \phi^{*}(v) / v=\infty$, for every $u>0$ there exists $v_{u}>v_{0}$ such that $u v-\phi^{*}(v)<0$ for $v>v_{u}$. Hence, for every $u>0, \bar{\phi}(u)=\max \left(u v_{0}, \sup \left\{u v-\phi^{*}(v): v_{0} \leq v \leq v_{u}\right\}\right)$. But $\sup \left\{u v-\phi^{*}(v): v_{0} \leq v \leq v_{u}\right\}=u v^{\prime}-\phi^{*}\left(v^{\prime}\right)$ for some v^{\prime} with $v_{0} \leq v^{\prime} \leq v_{u}$. Assuming that $v_{0}<v^{\prime}$, we obtain that $\bar{\phi}(u)=u v_{0}$ for $0 \leq u \leq u_{0}=\phi^{*}\left(v^{\prime}\right) /\left(v^{\prime}-v_{0}\right)$, and thus $\bar{\phi} \sim \chi_{1}$.

For a topological vector space (E, ξ) we shall denote by $(E, \xi)^{*}$ its topological dual. We shall denote by $\left(1^{\phi}\right)^{*}$ the dual space of $\left(1^{\phi}, \tau_{\phi}\right)$.

Let us recall that the Mackey topology of (E, ξ) is the finest locally convex topology τ which produces the same continuous linear functionals as the original topology ξ. If (E, ξ) is an F-space then τ is the finest locally convex topology on E which is weaker than ξ (see [24]).

Kalton [8] has showed that the Mackey topology τ_{ϕ} of a separable Orlicz sequence space ${ }^{\dagger}$ coincides with the topology $\tau_{\phi 1_{1}}$ induced from 1^{ϕ}. For an arbitrary 1^{\star}, the Mackey topology τ_{ϕ} has been described by Drewnowski and Nawrocki [5].

Denote by τ_{ϕ} the Mackey topology of $\left(1^{\star}, \tau_{\phi}\right)$, by $\tau_{h^{\phi}}$ the Mackey topology of $\left(h^{\phi}, \tau_{\phi} 1^{\dagger}\right)$, and by π_{ϕ} the topology defined by the Riesz seminorm p_{ϕ}.

Combining [5, Theorems 5.1 and 5.3] with Lemma 2.2 we get the following important descriptions of $\tau_{h^{4}}$ and τ_{ϕ}.

THEOREM 2.3. The following equalities hold:

$$
\tau_{h^{+}}=\tau_{\phi \mid h^{+}}, \quad \tau_{\phi}=\left(\tau_{\phi \mid 1^{*}}\right) v \pi_{\phi} .
$$

It is well-known (see [11], [12]) that the F-norm topology $\tau_{\bar{\phi}}$ on $1^{\bar{\phi}}$ can be generated by two Riesz norms:

$$
\begin{aligned}
\|x\|_{\phi} & =\inf _{\lambda>0}\left\{\frac{1}{\lambda}\left(\rho_{\phi}(\lambda x)+1\right)\right\} \\
& =\sup \left\{\left|\sum_{i=1}^{\infty} x(i) z(i)\right|: z \in 1^{\star}, \rho_{\phi}(z) \leq 1\right\}
\end{aligned}
$$

and

$$
\|\mid x\|_{\phi}=\inf \left\{\lambda>0: \rho_{\phi}(x / \lambda) \leq 1\right\} .
$$

Moreover, $\left\|\|x\|_{\bar{\phi}} \leq\right\| x\left\|_{\bar{\phi}} \leq 2\right\| x \|_{\bar{\phi}}$ for all $x \in 1^{\bar{\phi}}$ and $\|x\|_{\bar{\phi}} \leq 1$ iff $\rho_{\bar{\phi}}(x) \leq 1$.
Therefore, in view of Theorem 2.3 the Mackey topology τ_{ϕ} can be generated by two Riesz norms:

$$
p_{\phi} \vee\|\cdot\|_{\bar{\phi}} \text { and } p_{\phi} \vee\|\cdot\|_{\bar{\Phi}}
$$

which will be of importance in our discussion. Thus two corresponding Riesz norms on $\left(1^{\phi}\right)^{*}$ can be given by

$$
\begin{aligned}
& \|f\|_{\phi}^{*}=\sup \left\{|f(x)|: x \in 1^{\phi}, \quad p_{\phi}(x) \leq 1 \quad \text { and } \quad\|x\|_{\phi} \leq 1\right\} \\
& \|f\|_{\phi}^{*}=\sup \left\{|f(x)|: x \in 1^{\phi}, \quad p_{\phi}(x) \leq 1 \quad \text { and } \quad\|x\|_{\Phi} \leq 1\right\} .
\end{aligned}
$$

Thus $\left(1^{\phi}\right)^{*}$ is a Banach lattice under each of the norms $\|\cdot\|_{\phi}^{*}$ and $\|\|\cdot\|\|_{\phi}^{*}$. Moreover, since $\rho_{\phi}(x) \leq 1$ implies $p_{\phi}(x) \leq 1$ and $\rho_{\bar{\phi}}(x) \leq 1$, we can put (see [19]):

$$
\|f\|_{\rho_{\phi}}^{*}=\sup \left\{|f(x)|: x \in 1^{\dagger}, \quad \rho_{\phi}(x) \leq 1\right\}
$$

We shall denote by $\left(1^{\phi}\right)^{\sim}$ the collection of all order bounded linear functionals on 1^{ϕ}. It is well-known that $\left(1^{\phi}\right)^{-}=\left(1^{\phi}\right)^{*}$ (see [1, Theorem 16.9]). An order bounded linear functional f on 1^{ϕ} is said to be order continuous (resp. singular) if $x_{\alpha} \xrightarrow{0} 0$ in 1^{ϕ} implies $f\left(x_{\alpha}\right) \rightarrow 0$ for a net $\left(x_{\alpha}\right)$ in $1^{\phi}\left(\right.$ resp. $f(x)=0$ for all $\left.x \in h^{\phi}\right)$ (see [9, Ch. X]). The set of all order continuous (resp. singular) functionals on 1^{\dagger} will be denoted by $\left(1^{\phi}\right)_{n}^{\sim}$ $\left(\operatorname{resp} .\left(1^{\phi}\right)_{s}^{\sim}\right)$.

The next theorem gives a characterization of the space $\left(1^{4}\right)^{*}$.
THEOREM 2.4. (a) For a linear functional f on $1^{\text {t }}$ the following statements are equivalent:
(1) f is order bounded.
(2) f is τ_{ϕ}-continuous.
(3) There exist unique $f_{n} \in\left(1^{\phi}\right)_{n}^{-}$and $f_{s} \in\left(1^{\phi}\right)_{s}^{-}$such that

$$
f(x)=f_{n}(x)+f_{s}(x) \text { for } x \in 1^{\star}
$$

(b) $\left(1^{\phi}\right)_{s}^{-}=\left(\left(1^{\phi}\right)_{n}^{-}\right)^{d}\left(=\right.$ the disjoint complement of $\left(1^{\phi}\right)_{n}^{-}$in $\left.\left(1^{\phi}\right)^{*}\right)$, and moreover, $\left(1^{\phi}\right)_{n}^{-}$and $\left(1^{\phi}\right)_{s}^{-}$are Banach lattices under each of the norms $\|\cdot\|_{\dot{*}}^{*},\|\cdot\| \|_{申}^{*}$.

PROOF. (a) Since $\left(1^{\star}, p_{\phi} \vee\|\cdot\|_{\bar{\phi}}\right)^{*}=\left(1^{\star}\right)^{*}=\left(1^{\phi}\right)^{-}$, by [9, Ch. VI, §1, Theorem 5], we obtain that $\left(1^{\phi}\right)_{n}^{-}$ separates the points of 1^{\star}, and to get our result it suffices to use Theorem 6 of $[9, \mathrm{Ch} . \mathrm{X}, \S 3]$.
(b) Since $\left(1^{\phi}\right)_{n}^{-}$is a band of $\left(1^{\phi}\right)^{-}\left(\right.$see $\left[1\right.$, Theorem 3.7]) $\left(1^{\phi}\right)_{n}^{-}$is a $\|\cdot\|_{\phi}^{*}$-closed (resp. $| | \mid \cdot\| \|_{\phi}^{*}$-closed) subspace of $\left(1^{\phi}\right)^{*}$ (see [1, Theorem 5.6]). Thus $\left(1^{\phi}\right)_{n}^{\sim}$ is a Banach lattice, because $\left(1^{\phi}\right)^{*}$ is a Banach lattice. Moreover, since $\left(1^{\phi}\right)_{s}^{\sim}=\left(\left(1^{\phi}\right)_{n}^{-}\right)^{d},\left(1^{\phi}\right)_{s}^{\sim}$ is a band of $\left(1^{\phi}\right)^{\sim}\left(\right.$ see $\left[1\right.$, p. 27]), and by the above argument $\left(1^{\phi}\right)_{s}^{-}$ is a Banach lattice.

In view of [17] the conjugate $\bar{\rho}_{\phi}$ of the modular ρ_{ϕ} can be defined on the algebraic dual $\overline{1}^{\dagger}$ of 1^{\dagger} as follows:

$$
\bar{\rho}_{\phi}(f)=\sup \left\{|f(x)|-\rho_{\phi}(x): x \in 1^{\dagger}\right\}
$$

Note that if $f \geq 0$, then

$$
\bar{\rho}_{\phi}(f)=\sup \left\{f(x)-\rho_{\phi}(x): 0 \leq x \in \omega, \rho_{\phi}(x)<\infty\right\}
$$

Indeed, since $|f(x)| \leq f(|x|)$ (see [1, p. 21]) and $\rho_{\phi}(x)=\rho_{\phi}(|x|)$ we have

$$
\begin{aligned}
\bar{\rho}_{\phi}(f) & \left.\leq \sup f(|x|)-\rho_{\phi}(|x|): \rho_{\phi}(|x|)<\infty\right\} \\
& \leq \sup \left\{f(x)-\rho_{\phi}(x): 0 \leq x \in \omega, \rho_{\phi}(x)<\infty\right\} .
\end{aligned}
$$

We shall need the following definition.
A linear functional f on 1^{ϕ} is said to be bounded for ρ_{ω} (see [16], [17]) if there exists $\gamma>0$ such that

$$
|f(x)| \leq \gamma\left(\rho_{\phi}(x)+1\right) \quad \text { for } \quad x \in 1^{\downarrow} .
$$

The collection of all bounded for ρ_{ϕ} linear functionals on 1^{ϕ} will be denoted by $\overline{1^{\phi}}$.
The basic properties of $\bar{\rho}_{\phi}$ are included in the following
THEOREM 2.5. The conjugate $\bar{\rho}_{\phi}$ of the modular ρ_{ϕ} is a convex orthogonal additive modular on $\overline{1^{\phi}}$. Moreover, the following equality holds: $\left(1^{\phi}\right)^{*}=\overline{1^{\phi}}$.

Proof. Using [17, §4] and arguing as in the proof of [16, Theorem 38.2] we obtain that $\bar{\rho}_{申}$ is a convex orthogonal additive modular on $\overline{1^{\phi}}$. To end the proof it suffices to show that $\left(1^{\phi}\right)^{*}=\overline{1^{\phi}}$. Indeed, let $f \in\left(1^{\phi}\right)^{*}$ and $\rho_{\phi}(x)<\infty$. Then $p_{\phi}(x) \leq 1$ and there exists $\gamma>0$ such that $|f(x)| \leq \gamma\left(\max \left(p_{\phi}(x),\|x\|_{\bar{\phi}}\right)\right) \leq \gamma\left(\rho_{\phi}(x)+1\right)$ $\leq \gamma\left(\rho_{\phi}(x)+1\right)$, because $\bar{\phi}(u) \leq \phi(u)$ for $u \geq 0$. Thus $f \in \overline{1^{\phi}}$; hence $\left(1^{\phi}\right)^{*} \subset \overline{1^{\phi}}$. Next, let $f \in \overline{1^{\phi}}$ and let $|x|_{\phi}<1$. Then $\rho_{\phi}(x) \leq 1$, and hence $|f(x)| \leq 2 \gamma$ for some $\gamma>0$. This means that $f \in\left(1^{\phi}\right)^{*}$, and thus $\overline{1^{\phi}} \subset\left(1^{\phi}\right)^{*}$. The proof is completed.

Thus by means of $\bar{\rho}_{\phi}$ two modular norms can be defined on $\left(1^{\phi}\right)^{*}$ in a usual way (see [16], [17]):

$$
\|f\|_{\bar{\rho}_{\phi}}=\inf _{\lambda>0}\left\{\frac{1}{\lambda}\left(\bar{\rho}_{\phi}(\lambda f)+1\right)\right\} \quad \text { (the first modular norm) }
$$

$$
\|f\|_{\bar{\rho}_{4}}=\inf \left\{\lambda>0: \bar{\rho}_{4}(f \lambda) \leq 1\right\} \quad \text { (the second modular norm). }
$$

3. Order Continuous Linear Functionals on 1^{\dagger}. We shall start this section with a description of the Köthe dual $\left(1^{\dagger}\right)^{x}$ of 1^{ϕ} that will be useful in obtaining a corresponding characterization of order continuous linear functional on 1^{\dagger} (see [20, Proposition 1.9]).

Let us recall that the Köthe dual S^{x} of a sequence space S is the sequence space defined by (see [10, §30.1]):

$$
S^{x}=\left\{y \in \omega: \sum_{i=1}^{\infty}|x(i) y(i)|<\infty \quad \text { for all } \quad x \in S\right\}
$$

THEOREM 3.1. The following equalities hold:

$$
\left(1^{\phi}\right)^{x}=\left(h^{\phi}\right)^{x}=\left(h^{\phi}\right)^{x}=1^{\phi}
$$

In particular, if $\liminf _{u \rightarrow 0} \phi(u) / u>0$, then $\left(1^{\phi}\right)^{*}=1^{\infty}$.

PROOF. First, we shall show that $\left(1^{\phi}\right)^{x}=\left(h^{\phi}\right)^{x}=\left(h^{\phi}\right)^{x}$. Since $\left(1^{\phi}\right)^{x} \subset\left(h^{\phi}\right)^{x}$ and $\left(h^{\phi}\right)^{x} \subset\left(h^{\phi}\right)^{x}$, it suffices to show that $\left(h^{\phi}\right)^{x} \subset\left(1^{\phi}\right)^{x}$ and $\left(h^{\phi}\right)^{x} \subset\left(h^{\phi}\right)^{x}$. Indeed, let $y \in\left(h^{\phi}\right)^{x}$, i.e., $\sum_{i=1}^{\infty}|z(i) y(i)|<\infty$ for all $z \in h^{\phi}$. Putting

$$
g_{y}(z)=\sum_{i=1}^{\infty} z(i) y(i) \quad \text { for } \quad z \in h^{\downarrow}
$$

by [20, Proposition 1.9] and Theorem 2.3 we get

$$
g_{y} \in\left(h^{\phi}\right)_{n}^{-}=\left(h^{\phi}\right)^{-}=\left(h^{\star}, \tau_{\phi \mid h^{\star}}\right)^{*}=\left(h^{\phi}, \tau_{\phi \mid h^{\star}}\right)^{\star}
$$

Therefore, we can put

$$
\left\|g_{y}\right\|_{i}=\sup \left\{\left|\sum_{i=1}^{\infty} z(i) y(i)\right|: z \in h^{\phi}, \quad\|z\|_{\phi} \leq 1\right\}
$$

Let now $x \in 1^{\phi}\left(\right.$ resp. $\left.x \in h^{\bar{\phi}}\right), x \neq 0$. We shall show that $\sum_{i=1}^{\infty}|x(i) y(i)|<\infty$. Since $x \in 1^{\bar{\phi}}$ and $x^{(n)} \in h^{\phi}$ we get

$$
\begin{aligned}
& \frac{1}{\|x\|_{\phi}} \sum_{i=1}^{\infty}|x(i) y(i)|=\frac{1}{\| \| x \|_{\phi}} \sup _{n} \sum_{i=1}^{\infty}\left|x^{(n)}(i)\right| \cdot \operatorname{sign} y(i) \cdot y(i) \\
& \quad \leq \sup \left\{\left|\sum_{i=1}^{\infty} z(i) y(i)\right|: z \in h^{\phi}, \quad\|z\|_{\phi} \leq 1\right\}=\left\|g_{y}\right\|_{\bar{\phi}}<\infty .
\end{aligned}
$$

Hence $y \in\left(1^{\phi}\right)^{x}$ (resp. $\left.y \in\left(h^{\phi}\right)^{x}\right)$, so that $\left(1^{\phi}\right)^{x}=\left(h^{\phi}\right)^{x}=\left(h^{\phi}\right)^{x}$.
We have $\left(h^{\bar{\phi}}\right)_{n}^{-}=\left(h^{\bar{\phi}}\right)^{-}=\left(h^{\bar{\phi}}, \tau_{\bar{\phi} h^{\bar{\delta}}}\right)^{*}$. It is well-known that by the mapping $\left(y \rightarrow g_{y}\right)$ the space $\left(h^{\bar{\phi}}\right)^{x}$ can be identified with $\left(h^{\bar{\phi}}\right)_{n}^{-}$(see [20, Proposition 1.9]), and the space $1^{\bar{\phi}}$ with $\left(h^{\bar{\phi}}, \tau_{\bar{\phi} / h^{\bar{\sigma}}}\right)$ (see [12, Ch. II, §3, Theorem 2]). Thus $\left(h^{\bar{\phi}}\right)^{x}=1^{\bar{\phi}^{*}}$, and since $\bar{\phi}^{\bullet}=\phi^{\boldsymbol{\omega \prime *}}=\phi^{*}$, the proof is complete.

REMARK. The equality $\left(1^{\phi}\right)^{x}=1^{\star}$ has been obtained by the author in [18] in a different way, using the so-called modular topology on 1^{\dagger}.

REMARK. Assume now that ϕ is an Orlicz function, not necessarily satisfying the condition: $\phi(u) / u \rightarrow \infty$ as $u \rightarrow \infty$. Let ψ be any Orlicz function such that $\psi(u)=\phi(u)$ for $0 \leq u \leq 1$, and $\psi(u) / u \rightarrow \infty$ as $u \rightarrow \infty$. Then in view of Theorem 3.1 we get $\left(1^{\phi}\right)^{x}=\left(1^{\psi}\right)^{x}=1^{\psi}$. Thus, by Lemma 3.1 we get $\left(1^{p}\right)^{x}=1^{\infty}$ for $0<p \leq 1$.

We are now able to give a characterization of order continuous linear functionals on $1^{\$}$.
THEOREM 3.2. Let f be a linear functional on 1^{\dagger}.
(a) The following statements are equivalent:
（1）f is order continuous．
（2）There exists a unique $y \in 1^{\dagger}$ such

$$
f(x)=f_{y}(x)=\sum_{i=1}^{\infty} x(i) y(i) \quad \text { for all } x \in 1^{\downarrow}
$$

（b）If f is order continuous，then the following equalities hold：

$$
\begin{aligned}
& \bar{\rho}_{\phi}(f)=\rho_{\phi}(y), \\
& \|f\|_{\dot{*}}^{*}=\|f\|_{\bar{\rho}_{\phi}}=\|y\|_{\phi}, \\
& \|f\|_{\phi}^{*}=\|f\|_{\bar{p}_{\phi}}=\|y\|_{\dot{\bullet}} .
\end{aligned}
$$

（c）Moreover，the map $1^{\star *} \supset y \rightarrow f_{y} \in\left(1^{\dagger}\right)_{n}^{-}$is a Riesz isomorphism．
PROOF．（a）It follows from［20，Proposition 1．9］and Theorem 3．1．
（b）By（a）we have $f(x)=\sum_{i=1}^{\infty} x(i) y(i)$ for some $y \in 1^{+}$and all $x \in 1^{\dagger}$ ．
First，we shall show that $\bar{\rho}_{\phi}(f)=\rho_{\phi} \cdot(y)$ ．From the definition of $\dot{\phi}^{*}$ we easily obtain that $\bar{\rho}_{\phi}(f) \leq \rho_{\phi} \cdot(y)$ ． To prove that $\bar{\rho}_{\phi}(f) \geq \rho_{\downarrow}(y)$ let us note that there exists $0 \leq z \in \omega$ such that

$$
\phi(z(i))+\phi \cdot(|y(i)|)=|z(i) y(i)| \quad \text { for } \quad i=1,2, \ldots
$$

Putting $x(i)=(\operatorname{sign} y(i)) \cdot z(i)$ for $i=1,2, \ldots$ ，we get

$$
\begin{aligned}
\rho_{\phi} \cdot(y) & =\sum_{i=1}^{\infty} \phi^{\bullet}(|y(i)|) \\
& =\sup _{n}\left\{\sum_{i=1}^{n}|z(i) y(i)|-\sum_{i=1}^{n} \phi(z(i))\right\} \\
& \leq \sup _{n}\left\{\left|\sum_{i=1}^{\infty} x^{(n)}(i) y(i)\right|-\sum_{i=1}^{\infty} \phi\left(\left|x^{(n)}(i)\right|\right)\right\} \leq \bar{\rho}_{\phi}(f) .
\end{aligned}
$$

In turn，we shall show that $\|f\|_{\dot{\phi}}^{*}=\|y\|_{申}$. We have $\|y\|_{\dot{\circ}}=\sup \left\{\left|\sum_{i=1}^{\infty} z(i) y(i)\right|: x \in 1^{\bar{\phi}}, \quad \rho_{\phi}(z) \leq 1\right\}$ ，and hence $\|f\|_{\phi}^{*} \leq\|y\|_{\bullet_{\bullet}}$ ．On the other hand，let $z \in 1^{\bar{\dagger}}$ with $\rho_{\phi}(z) \leq 1$ ．Putting $x(i)=(\operatorname{sign} y(i)) \cdot|z(i)|$ $(i=1,2, \ldots)$ ，we have $p_{\phi}\left(x^{(n)}\right)=0$ and $\rho_{\phi}\left(x^{(n)}\right) \leq \rho_{\phi}(z) \leq 1$ ．Thus

$$
\begin{aligned}
\left|\sum_{i=1}^{\infty} z(i) y(i)\right| & \leq \sup _{n} \sum_{i=1}^{\infty}\left|z^{(n)}(i) y(i)\right| \\
& =\sup _{n}\left|\sum_{i=1}^{\infty} x^{(n)}(i) y(i)\right| \leq\|f\|_{i}^{*} .
\end{aligned}
$$

Thus $\|y\|_{\phi} \leq\|f\|_{\phi}^{*}$ and hence $\|f\|_{\phi}^{*}=\|y\|_{\dot{\phi}}$.
Moreover，since $\bar{\rho}_{\phi}(\lambda f)=\rho_{\phi}(\lambda y)$ for $\lambda>0$ ，we get $\|f\|_{\bar{\rho}_{申}}=\|y\|_{申}$.
Next，we shall show that $\mid\|f\|_{\phi}^{*} \leq 1\|y\|_{\phi}$ ．To prove that $\left|\left||f|\left\|_{\phi}^{*} \leq\left|\left||y| \|_{\phi}\right.\right.\right.\right.\right.$ ，let us assume that $x \in 1^{\phi}, p_{\phi}(x) \leq 1$ and $\|x\|_{\bar{\phi}} \leq 1$ ．Then $x \in 1^{\dagger}$ ，and by the Hölder＇s inequality（see $[11, \S 9]$ ）we get
 us note that（see［11，p．135］）：

$$
\|\mid y\|_{\phi}=\sup \left\{\left|\sum_{i=1}^{\infty} z(i) y(i)\right|: z \in 1^{\bar{\phi}},\|z\|_{\bar{\phi}} \leq 1\right\}
$$

Let now $z \in 1^{\bar{\phi}}$ and $\|z\|_{\bar{\phi}} \leq 1$. Putting $x(i)=(\operatorname{sign} y(i)) \cdot|z(i)|(I=1,2, \ldots)$ we have $p_{\phi}\left(x^{(n)}\right)=0$, $\|x(n)\|_{\bar{\phi}} \leq\|z\|_{\bar{\phi}} \leq 1$, and as above we get $\left\|\|y\|_{\dot{\bullet}} \leq \mid\right\| f \|_{\phi}^{*}$.

Finally, since $\bar{\rho}_{\phi}(f / \lambda)=\rho_{\phi}(y / \lambda)$ for $\lambda>0$, we get $\left|\|f\|_{\rho_{\phi}}=\left\|\left||y| \|_{\phi^{\circ}}\right.\right.\right.$.
(c) See $[9$, Ch. VI, §1, Theorem 1] and [14, Theorem 18.5].

REMARK. The general form of ϕ-continuous (continuous with respect to the modular ρ_{ϕ}) linear functionals on an Orlicz space $L^{\dagger}(a, b)$ defined by an Orlicz function satisfying conditions $\phi(u) / u \rightarrow 0$ as $u \rightarrow 0$ and $\phi(u) / u \rightarrow \infty$ as $u \rightarrow \infty$, has been found by W. Orlicz [19].
4. Singular Linear Functionals on 1^{\dagger}. In this section we assume that ϕ does not satisfy the Δ_{2}-condition at 0 , because otherwise $\left(1^{\phi}\right)_{s}^{-}=\{0\}$.

The following lemma describes positive singular linear functionals on 1 .
LEMMA 4.1. Let f be a positive singular linear functional on 1^{\star}.
(a) For any $\varepsilon>0$ there exists $0 \leq y \in \omega$ with $\rho_{\phi}(y)<\varepsilon$ such that $\|f\|_{\phi}^{*} \leq f(y)$.
(b) The following equalities hold:

$$
\begin{aligned}
\rho_{\uparrow}(f) & =\|f\|_{\rho_{\phi}}^{-}-\|f\|_{\phi}^{\cdot}-\|f\|_{\phi}^{\bullet} \\
& =\sup \left\{f(x): 0 \leq x \in \omega, \quad \rho_{\phi}(x)<\infty\right\} .
\end{aligned}
$$

(c) There exists $0 \leq y \in \omega$ with $\rho_{\downarrow}(y)<\infty$ such that

$$
\left\|f_{A}\right\|_{\star}^{*}=f\left(y_{A}\right) \text { for any subset } A \text { of } N
$$

and

$$
p_{\phi}\left(y_{A}\right)=1 \text { for any subset } A \text { of } N \text { with }\left\|f_{A}\right\|_{\phi}^{\bullet} \neq 0 .
$$

PROOF. (a) Let $\varepsilon>0$ be given. Since (see [26, Lemma 102.1])

$$
\|f\|_{\phi}^{*}=\sup \left\{f(x): 0 \leq x \in 1^{\dagger}, \quad p_{\phi}(x) \leq 1, \quad \rho_{\phi}(x) \leq 1\right\}
$$

for every $k \in N$ there exists $0 \leq z_{k} \in 1^{\phi}$ such that $p_{\phi}\left(z_{k}\right)<1$ and $\|f\|_{\phi}^{*} \leq f\left(z_{k}\right)+\frac{1}{k}$. Then $\rho_{\phi}\left(z_{k}\right)<\infty$ and there exists a strictly increasing sequence of natural numbers $\left(n_{k}\right)$ such that

$$
\rho_{\phi}\left(z_{k}-z_{k}^{\left(n_{k}\right)}\right)=\sum_{i=\pi_{k}}^{\infty} \phi\left(z_{k}(i)\right)<\frac{\varepsilon}{2^{k}} .
$$

Let $x_{k}=z_{k}-z_{k}^{\left(m_{k}\right)}$ for $k=1,2, \ldots$. Then in view of the axion (C) of completeness of the modular ρ_{ϕ} there exists $0 \leq y \in \omega$ such that $x_{k} \leq y$, for all $k \in N$, and $\rho_{\phi}(y) \leq \sum_{k=1}^{\infty} \rho_{\downarrow}\left(x_{k}\right)<\varepsilon$. But $z_{k}^{\left(\sigma_{k}\right)} \in h^{\phi}$ for all $k \in N$, so that

$$
\begin{aligned}
\|f\|_{\phi}^{*} & \leq f\left(z_{k}=z_{k}^{\left(n_{k}\right)}\right)+f\left(z_{k}^{\left(n_{k}\right)}\right)+\frac{1}{k} \\
& =f\left(x_{k}\right)+\frac{1}{k} \leq f(y)+\frac{1}{k}
\end{aligned}
$$

Since $\varepsilon>0$ and k are arbitrary, we conclude that $\|f\|_{\phi}^{*} \leq f(y)$.
(b) We have

$$
\|f\|_{\phi}^{*} \leq\|f\|_{\phi}^{*} \leq \sup \left\{f(x): 0 \leq x \in 1^{\dagger}, \quad p_{\phi}(x) \leq 1, \quad \rho_{-}(x)<\infty\right\} .
$$

To prove that $\sup \left\{f(x): 0 \leq x \in 1^{\dagger}, \quad p_{\phi}(x) \leq 1, \quad \rho_{\uparrow}(x)<\infty \leq\|f\|_{\phi}^{*}\right.$ assume that $0 \leq x \in 1^{\dagger}$ and
$p_{\phi}(x) \leq 1, \quad \rho_{\phi}(x)<\infty$. Given an $\eta>0$, there exists $n \in N$ such that $\rho_{\bar{\phi}}\left(x-x^{(n)}\right)<\eta$. Then

$$
\left\|x-x^{(n)}\right\|_{\bar{\phi}} \leq 1+\rho_{\phi}\left(x-x^{(n)}\right) \leq 1+\eta
$$

and

$$
\begin{aligned}
f(x) & =f\left(x-x^{(n)}\right)+f\left(x^{(n)}\right)=f\left(x-x^{(n)}\right) \\
& \leq(1+\eta)\|f\|_{\phi}^{*} .
\end{aligned}
$$

Hence $f(x) \leq\| \| f \|_{\phi}^{\bullet}$, and thus we obtain

$$
\||f|\|=\|f\|_{\phi}^{*}=\sup \left\{f(x): x \in 1^{\phi}, \quad p_{\phi}(x) \leq 1, \quad \rho_{\phi}(x)<\infty\right\} .
$$

Moreover, by (a) there exists $0 \leq y \in \omega$, with $\rho_{\downarrow}(y) \leq 1$, such that $\|f\|_{\phi}^{*} \leq f(y)$. Hence

$$
\begin{aligned}
\|f\|_{\rho_{\phi}}^{*} & =\sup \left\{f(x): 0 \leq x \in \omega, \quad \rho_{\phi}(x) \leq 1\right\} \\
& \leq \sup \left\{f(x): 0 \leq x \in \omega, \quad \rho_{\phi}(x)<\infty\right\} \\
& \leq \sup \left\{f(x): x \in 1^{\phi}, \quad p_{\phi}(x) \leq 1, \quad \rho_{\phi}(x)<\infty\right\} \\
& =\|f\|_{\phi}^{*} \leq f(y) \leq \sup \left\{f(x): 0 \leq x \in \omega, \quad \rho_{\phi}(x) \leq 1\right\}
\end{aligned}
$$

Thus we proved that

$$
\|f\|_{\rho_{\phi}}^{*}=\| \| f\left\|_{\phi}^{*}=\right\| f \|_{\dot{*}}^{*}=\sup \left\{f(x): 0 \leq x \in \omega, \rho_{\phi}(x)<\infty\right\} .
$$

Finally, we shall show that $\bar{\rho}_{\phi}(f)=\|f\|_{\dot{*}}^{*}$. Indeed, by (a), for every $n \in N$, there exists $0 \leq y_{n} \in \omega$, with $\rho_{\phi}\left(y_{n}\right) \leq \frac{1}{n}$, and such that $\|f\|_{\dot{*}} \leq f\left(y_{n}\right)$. Hence

$$
\begin{aligned}
\bar{\rho}_{\phi}(f) & =\sup \left\{f(x)-\rho_{\phi}(x): 0 \leq x \in \omega, \quad \rho_{\phi}(x)<\infty\right\} \\
& \geq f\left(y_{n}\right)-\rho_{\phi}\left(y_{n}\right) \geq\|f\|_{\phi}^{*}-\frac{1}{n}
\end{aligned}
$$

Hence $\bar{\rho}_{\phi}(f) \geq\|f\|_{\phi}^{*}$, and since

$$
\bar{\rho}_{\phi}(f) \leq \sup \left\{f(x): 0 \leq x \in \omega, \quad \rho_{\phi}(x)<\infty\right\}=\|f\|^{*}
$$

we get $\bar{\rho}_{\phi}(f)=\|f\|_{\dot{*}}^{*}$ Thus the proof of (b) is completed.
(c) Let A be a subset of N, and let $0 \leq x \in \omega$ with $\rho_{\phi}(x)<\infty$ be given. Arguing as in (a) we obtain that there exists $0 \leq z_{k} \in \omega$ with $\rho_{\phi}\left(z_{k}\right)<\infty(k=1,2, \ldots)$ such that $\|f\|_{i}^{*} \leq f\left(z_{k}\right)+\frac{1}{k}$. Since $\|f\|_{\phi}^{*}=\sup \left\{f(z): 0 \leq z \in \omega, \rho_{\phi}(z)<\infty\right\}$ (see (b)), we have

$$
f\left(x \vee z_{k}\right) \leq f\left(z_{k}\right)+\frac{1}{k}
$$

for all $k \in N$, because $\rho_{\phi}\left(x \vee z_{k}\right) \leq \rho_{\phi}(x)+\rho_{\ell}\left(z_{k}\right)<\infty$. But $\left(x \vee z_{k}-z_{k}\right)_{A} \leq x \vee z_{k}-z_{k}$, so we get

$$
f\left(x_{A}\right) \leq f\left(\left(x \vee z_{k}\right)_{A}\right) \leq f\left(\left(z_{k}\right)_{A}\right)+\frac{1}{k} \quad(k=1,2, \ldots)
$$

Choose an increasing sequence of natural numbers $\left(m_{k}\right)$ such that $\rho_{\phi}\left(z_{k}-z^{\left(m_{k}\right)}\right)<\frac{1}{z^{k}}$, and let $x_{k}=z_{k}-z_{k}^{\left(m_{k}\right)}$. Then in view of the axiom (C) of completeness of ρ_{ϕ}, there exists $0 \leq y \in \omega$ such that $x_{k} \leq y$ for all $k \in N$, and $\rho_{\phi}(y) \leq 1$. Hence

$$
\begin{aligned}
f\left(x_{A}\right) & \leq f\left(\left(z_{k}-z_{k}^{\left(m_{k}\right)}\right)_{A}\right)+f\left(\left(z_{k}^{\left(m_{k}\right)}\right)_{A}\right)+\frac{1}{k} \\
& =f\left(\left(x_{k}\right)_{A}\right)+\frac{1}{k} \leq f\left(y_{A}\right)+\frac{1}{k}
\end{aligned}
$$

Thus we obtain that $\left\|f_{A}\right\|_{\dot{\phi}}^{*}=f\left(y_{A}\right)$, because by (b),

$$
\left\|f_{A}\right\|_{\ddagger}^{*}=\sup \left\{f\left(x_{A}\right): 0 \leq x \in \omega, \quad \rho_{4}(x)<\infty\right\}
$$

Assume now that $\left\|f_{A}\right\|_{\phi}^{\circ} \neq 0$. Given $\eta>0$ we have $\rho_{\phi}\left(y_{A} /\left(p_{\phi}\left(y_{A}\right)+\eta\right)\right)<\infty$, and hence, by (b), $\left\|f_{A}\right\|_{\phi}^{\circ} \geq f\left(y_{A}\left(p_{\phi}\left(y_{A}\right)+\eta\right)\right)$. Thus $\left\|f_{A}\right\|_{\dagger}^{\circ}-f\left(y_{A}\right) \leq\left(p_{\phi}\left(y_{A}\right)+\eta\right)\left\|f_{A}\right\|_{\phi}^{\circ}$, so $p_{\phi}\left(y_{A}\right)-1$, because $p_{\phi}\left(y_{A}\right) \leq p_{\phi}(y) \leq 1$. Thus the proof of (c) is completed.

COROLLARY 4.2. The space $\left(\left(1^{\downarrow}\right)_{s}^{\sim},\| \|_{\phi}^{\circ}\right)$ is an abstract L-space.
 [2] we can show that $\left\|f_{1}+f_{2}\right\|_{\phi}^{*}=\left\|f_{1}\right\|_{\phi}^{*}+\left\|f_{2}\right\|_{\phi}^{*}$ for any $f_{1}, f_{2} \in\left(\left(1^{\phi}\right)_{s}^{-}\right)^{+}$, and this means that $\left(1^{\phi}\right)_{s}^{-}$is an abstract L-space (see [23, Ch. II, §9]).
$\mathrm{By} \mathrm{ba}(\mathrm{N})$ we denote the family of all bounded real valued finitely additive set functions on N . It is known that $b a(N)$ is a vector lattice with the usual ordering: $v_{1} \geq v_{2}$ iff $v_{1}(A) \geq v_{2}(A)$ for all $A \subset N$. Then $v=v^{+}-v^{-}$and $|v|=v^{+}+v^{-}$, where v^{+}and v^{-}denote the positive and the negative part of $v \in b a(N)$. Moreover $b a(N)$ is a Banach space under the norm $\|v\|=|v|(N)$ (see [6, Ch. III, 1.4, 1.7]).

For given $f \in\left(\left(1^{\dagger}\right)_{s}^{-}\right)^{+}$let us put $v_{\lambda}(A)-\left\|f_{A}\right\|_{\phi}^{*}$ for any subset A of N. Then by Corollary 4.2, $v_{f} \in(b a(N))^{+}$and $\left\|v_{f}\right\|=v_{f}(N)=\|f\|_{\text {。 }}$.

The following definition is justified by Lemma 4.1.
A $v \in b a(N)$ is said to be in class $B_{\phi}(N)$ if there exists $0 \leq y \in \omega$, with $\rho_{\phi}(y)<\infty$, such that $p_{\phi}\left(y_{A}\right)=1$ for any subset A of N with $|v|(A) \neq 0$.

One can show that $B_{\&}(\mathbb{N})$ is a Riesz subspace of $b a(N)$. In view of Lemma 4.1 we have the following
LEMMA 4.3. If $f \in\left(\left(1^{\dagger}\right)_{s}^{-}{ }^{+}\right.$, then $v_{f} \in\left(B_{\phi}(\mathrm{N})\right)^{+}$.
Thus we can define a mapping $T:\left(\left(1^{\phi}\right)_{s}^{-}\right)^{+} \rightarrow\left(B_{\&}(\mathrm{~N})\right)^{+}$given by

$$
T(f)=v_{f} \text { for any } f \in\left(\left(1^{\star}\right)_{s}\right)^{*}
$$

In view of Corollary 4.2 the mapping T is additive.
For any $v \in(b a(N))^{+}$we define a positive functional I_{v} on $\left(1^{\dagger}\right)^{+}$by

$$
I_{v}(x)=\inf \left\{\sum_{k=1}^{n} p_{\psi}\left(x_{A_{k}}\right) v\left(A_{k}\right)\right\}
$$

where the infimum is taken over all finite disjoint partitions $\left(A_{k}\right)_{1}^{1}$ of \mathbf{N}.
By the same argument as in the proof of Lemma 5 of [2] we can prove that the functional I_{v} is additive on $\left(1^{\dagger}\right)^{\dagger}$. Thus I_{v} has a unique positive extension to a linear functional on 1^{\dagger} (see [1, Lemma 3.1]). This extension (denoted again by I_{v}) is given by $I_{\sqrt{\prime}}(x)=I_{\sqrt{ }}\left(x^{+}\right)-I_{\sqrt{\prime}}\left(x^{-}\right)$for all $x \in 1^{\dagger}$.

LEMMA 4.4. If $v \in(b a(N))^{+}$, then $I_{v} \in\left(\left(1^{+}\right)_{s}^{-}\right)^{+}$and $\left\|I_{v}\right\|_{\phi}^{*} \leq v(N)$.
PROOF. Since I_{v} is positive on I^{ϕ}, I_{v} is order bounded. It is seen that $I_{v}(x)=0$ for all $x \in h^{\phi}$, so $I_{v} \in\left(\left(1^{\phi}\right)_{s}^{*}\right)^{+}$. Moreover, $\left|I_{v}(x)\right|_{v}\left(x^{+}\right)+I_{v}\left(x^{-}\right)=I_{v}(|x|) \leq p_{\phi}(x) v(N)$ for all $x \in 1^{\phi}$, so $\left\|I_{v}\right\|_{\phi}^{*} \leq v(N)$.

Thus we can define a mapping $G:\left(B_{\&}(\mathbb{N})\right)^{+} \rightarrow\left(\left(1^{\dagger}\right)_{s}^{-}\right)^{+}$by

$$
G(v)=I_{v} \quad \text { for any } \quad v \in\left(B_{\triangleleft}(\mathrm{N})\right)^{+} .
$$

THEOREM 4.5. The following statements hold:
(1) $\quad(G \circ T)(f)=f$ for any $f \in\left(\left(1^{+}\right)_{s}^{-}\right)^{+}$, i.e.,

$$
f(x)=I_{v}(x) \text { for all } x \in 1^{\psi}
$$

(2) $\quad(T \circ G)(v)=v$ for any $\quad v \in(B(N))^{+}$, i.e.,

$$
v(A)=\left\|\left(I_{v}\right)_{\lambda}\right\|_{\phi}^{*} \text { for any subset } A \text { of } N
$$

PROOF. (1) Using Corollary 4.2 and Lemma 4.4, it suffices to repeat the arguments of the proof of Theorem 2 of [2].
(2) We first prove the case $A=\mathrm{N}$. Since $v \in\left(B_{\phi}(N)\right)^{+}$, there exists $0 \leq y \in \omega$ such that $\rho_{\phi}(y)<\infty$ and $p_{\phi}\left(y_{E}\right)=1$ for any subset E of N with $v(E)>0$. Then for any finite disjoint partition $\left(E_{k}\right)_{1}^{\prime \prime}$ of N we have $\sum_{k=1}^{n} p_{\phi}\left(y_{E_{k}}\right) v\left(E_{k}\right)=v(\mathrm{~N})$, so $I_{v}(y)=v(\mathrm{~N})$. According to Lemma 4.1, we have $\left\|I_{v}\right\|_{\downarrow} \geq I_{v}(y)=v(\mathrm{~N})$. Moreover, we have $I_{v}(x) \leq p_{\phi}(x) v(N)$ for all $0 \leq x \in 1^{\dagger}$. Hence $\left\|I_{v}\right\|_{\phi}^{*} \leq v(N)$, so $\left\|I_{v}\right\|_{\phi}^{*}=v(N)$. Assume now that A is a fixed subset of N, and let $v_{1}(B)=v(A \cap B)$ for any $B \subset N$. One can easily show that $I_{v_{1}}=\left(I_{v_{1}}\right)_{A}$. Hence, by the above, we get $\|\left(I_{v^{\prime}}\left\|_{\phi}^{*}=\right\| I_{v_{1}} \|_{\phi}^{*}=v_{1}(\mathrm{~N})=v(\Lambda)\right.$, and the proof is completed.

By Theorem 4.5 the mapping G is additive, because T is additive. Thus T and G have unique positive extensions to linear mappings $\tilde{T}:\left(1^{\phi}\right)_{s}^{-} \rightarrow B_{\phi}(\mathrm{N})$ and $\tilde{G}: B_{\&}(\mathrm{~N}) \rightarrow\left(1^{\phi}\right)_{s}^{-}($see $[1$, Lemma 3.1]) given by

$$
\tilde{T}(f)=v_{r^{\prime}}-v_{r} \text { and } \tilde{G}(v)=I_{v^{+}}-I_{v}
$$

Let us put: $v_{f}=v_{r}-v_{f}$ and $I_{v}=I_{v^{*}}-I_{v^{*}}$. For any $v \in B_{\&}(\mathrm{~N})$ we shall write

$$
\int x d v=I_{v}(x) \text { for all } x \in 1^{\phi} .
$$

THEOREM 4.6. (see [2, Theorem 4]). The mapping $\tilde{T}:\left(1^{\dagger}\right)^{-} \rightarrow B_{\&}(\mathrm{~N})$ is a Riesz isomorphism.
PROOF. In view of Theorem 4.5, we get $(\bar{G} \circ \tilde{T})(f)=f$, for any $f \in\left(1^{\dagger}\right)_{,}^{\bar{\prime}}$, and $(\tilde{T} \circ \bar{G})(v)=v$, for any $v \in B_{\&}(\mathbf{N})$. Thus \check{T} is a Riesz isomorphism, because \tilde{T} is positive (see [14, Theorem 18.5]).

The final result of this section gives a characterization of singular linear functionals on 1^{ϕ}.
THEOREM 4.7. Let f be a linear functional on 1^{\dagger}.
(a) The following statements are equivalent:
(1) f is singular.
(2) There exists a unique $v \in B_{\downarrow}(N)$ such that

$$
f(x)=\int x d v \text { for all } x \varepsilon 1^{\dagger}
$$

(b) If f is singular, then the following equalities hold:

$$
\bar{\rho}_{\phi}(f)=\|f\|_{\rho_{4}}^{*}=\|f\|_{\phi}^{*}-\|f\|_{4}^{*}-\|f\|_{\bar{\rho}_{4}}-\|f\|_{\rho_{\varphi}}-|v|(N) .
$$

PROOF. (a) See the proof of Theorem 4.6.
(b) According to Theorem 4.6, we get $v_{\mid A}(N)=\left|v_{\lambda}\right|(N)$. Thus, in view of Lemma 4.1, we get

$$
\bar{\rho}_{\phi}(f)=\bar{\rho}_{\phi}(|f|)=\||f|\|_{p_{\phi}}^{*}=\||f|\|_{\phi}^{*}=\| \||f| \|_{\phi}^{*}=\left|v_{f}\right|(N)
$$

Moreover, since $\bar{\rho}_{\phi}(\lambda f)=\bar{\rho}_{\phi}(\lambda|f|)=\lambda \bar{\rho}_{\phi}(f)$ for $\lambda>0$ (see Lemma 4.1), we obtain that $\|f\|_{\bar{\rho}_{\phi}}=\bar{\rho}_{\phi}(f)$ and $\left\|\left|\mid f \|_{\rho_{\phi}}=\bar{\rho}_{\phi}(f)\right.\right.$. Since the norms which occur in our theorem are Riesz norms the proof is complete.

Since $\left(\left(1^{\phi}\right)_{s}, \|_{\|}^{*}\right)$ is an abstract L-space (see Corollary 4.2), by Theorems 4.6 and 4.7, we obtain that $B_{\phi}(\mathrm{N})$ is also an abstract L-space.
5. The General Form of Continuous Linear Functionals on 1^{\downarrow}. We are now in position to give a desired characterization of the dual space $\left(1^{\dagger}\right)^{*}$.

THEOREM 5.1. Let f be a linear functional on 1^{\dagger}.
(a) The following statements are equivalent:
(1) f is τ_{ϕ}-continuous.
(2) f is order bounded.
(3) There exist unique $y \in 1^{\iota^{*}}$ and $v \in B_{\phi}(N)$ such that

$$
f(x)=\sum_{i=1}^{\infty} x(i) y(i)+\int x d v \text { for all } x \in 1^{\dagger}
$$

(b) If f is τ_{\downarrow}-continuous, then the following equalities hold:

$$
\begin{gathered}
\bar{\rho}_{\phi}(f)=\rho_{\phi}(y)+|v|(\mathrm{N}), \\
\|f\|_{\phi}^{*}=\|f\|_{\bar{\rho}_{\phi}}=\|y\|_{+}+|v|(\mathrm{N})
\end{gathered}
$$

(c) The space h^{\dagger} is an M-ideal of $\left(1^{\dagger}, p_{\phi} v\|\cdot\| \|_{\phi}\right)$.

PROOF. (a) It follows from Theorem 2.4, Theorem 3.2 and Theorem 4.7.
(b) By Theorem 2.4, we have $f=f_{n}+f_{s}$, and it is known that $|f|_{n}=\left|f_{n}\right|,|f|_{s}=\left|f_{s}\right|$, and $\left|f_{n}\right| \wedge\left|f_{s}\right|=0$. Since the conjugate modular $\bar{\rho}_{\phi}$ is orthogonal additive on $\left(1^{\dagger}\right)^{*}$, by Theorem 3.2 and Theorem 4.7, we get $\bar{\rho}_{\phi}(f)=\bar{\rho}_{\phi}\left(f_{n}\right)+\bar{\rho}_{\phi}\left(f_{s}\right)=\rho_{\phi} \cdot(y)+|v|(N)$.

We shall now show that $\|f\|_{\dot{*}}^{*}=\|y\|_{\phi^{*}}+|v|(N)$. Indeed, let $\varepsilon>0$ be given. Then there exists $0 \leq x \in 1^{\dagger}$ with $p_{\phi}(x)<1, \rho_{\bar{\phi}}(x)<1$, such that

$$
\left\|f_{n}\right\|_{\phi}^{*}=\|\left|f \ln _{\infty}^{*} \leq\right| f \ln (x)+\varepsilon .
$$

Moreover, in view of Lemma 4.1 there exists $0 \leq y \in \omega$ with $\rho_{申}(y) \leq 1-\rho_{\bar{\gamma}}(x)$ such that

$$
\left\|f_{s}\right\|_{\phi}^{*}=\left\||f|_{s}\right\|_{+}^{*} \leq|f|_{s}(y)
$$

Let $z=x \vee y$. Then $\rho_{\bar{\phi}}(z) \leq \rho_{\bar{\phi}}(x)+\rho_{\bar{\phi}}(y) \leq 1$. Moreover, since $p_{\phi}(x)<1$, we have $\rho_{\phi}(x)<\infty$. Hence $\rho_{\phi}(z)<\infty$, so $p_{\phi}(z) \leq 1$. Thus

$$
\begin{aligned}
\left\|f_{n}\right\|_{+}^{0}+\left\|f_{s}\right\|_{\phi}^{\bullet} & \leq|f|_{n}(x)+|f|_{f}(y)+\varepsilon \\
& \leq|f|_{n}(z)+|f|_{\phi}(z)+\varepsilon \\
& =|f|(z)+\varepsilon \leq\|f\|_{+}^{0}+\varepsilon
\end{aligned}
$$

Hence $\left\|f_{n}\right\|_{\phi}^{*}+\left\|f_{s}\right\|_{\phi}^{*}=\|f\|_{\phi}^{*}$, and, according to Theorem 3.2 and Theorem 4.7, we obtain $\|f\|_{\phi}^{*}=\|y\|_{\iota^{*}}+|\nu|(N)$. Finally, since $\bar{\rho}_{\phi}\left(\lambda f_{n}\right)=\rho_{\phi^{*}}(\lambda y)$ and $\bar{\rho}_{\phi}\left(\lambda f_{s}\right)=\lambda|\nu|(N)$ for $\lambda>0$, we easily obtain that $\|f\|_{\bar{\rho}_{\phi}}=\|y\|_{\phi^{*}}+|v|(N)$.
(c) It is well known that $\left(h^{\phi}\right)^{0}=\left(1^{\phi}\right)_{s}^{\sim}\left(\right.$ see $\left[26\right.$, Theorem 88.10]), where $\left(h^{\phi}\right)^{0}$ denotes the annihilator of h^{ϕ} in $\left(1^{\phi}\right)^{*}$. Therefore, from (b) it follows that $\left(h^{\phi}\right)^{0}$ is an L-summand of $\left(\left(1^{\phi}\right)^{*},\|\cdot\|_{\phi}^{*}\right)$ (see [3, Definition 1.1]). According to [3, Definition 2.1] it means that h^{ϕ} is an M-ideal of ($1^{\phi}, p_{\phi} \vee \mid\|\cdot\| \|_{\bar{\phi}}$.

REMARK. For a convex Orlicz function ϕ the equality $\|f\|_{\phi}^{*}=\|f\|_{\overline{p_{\phi}}}$ has been proved by W. A. Luxemburg and A. C. Zaanen [12, Theorem 5].

As an application of Theorem 5.1 we obtain that continuous linear functionals on h^{ϕ} have the unique norm preserving extension to 1^{ϕ}.

COROLLARY 5.3. (see [21, Proposition 3]). Let g be a $\tau_{\phi \mid h^{4}}$-continuous linear functional on h^{ϕ}. Then there exists a unique τ_{ϕ}-continuous linear functional f on 1^{ϕ} such that $f(x)=g(x)$ for all $x \varepsilon h^{\phi}$, and $\|g\|_{h^{*}}^{*}=\|f\|_{\phi}^{*}$, where

$$
\|g\|_{h^{\star}}^{*}=\sup \left\{|g(x)|: x \in h^{\phi},\|x\|_{\bar{\Phi}} \leq 1\right\}
$$

PROOF. Since $\left(h^{\phi}, \tau_{\phi \mid h^{\dagger}}\right)^{*}=\left(h^{\phi}\right)^{-}=\left(h^{\phi}\right)_{n}^{\sim}($ see [1, Theorem 16.9]), according to [20, Proposition 1.9] and Theorem 3.1 there exists a unique $y \in 1^{* *}$ such that $g(x)=\sum_{i=1}^{\infty} x(i) y(i)$ for all $x \in h^{\phi}$. Let us put

$$
f(x)=\sum_{i=1}^{\infty} x(i) y(i) \text { for all } x \in 1^{\phi}
$$

Then $f(x)=g(x)$ for $x \in h^{\phi}$, and, according to Theorem 3.2, f is order continuous and $\|f\|_{\phi}^{*}=\|y\|_{\phi^{*}}$. Now we shall show that $\|g\|_{h^{\star}}^{*}=\|f\|_{\dot{\phi}}^{*}$. Indeed, we have $\|g\|_{h^{*}}^{*} \leq\|f\|_{\phi}^{*}$. Let $x \in 1^{\phi}$ with $p_{\phi}(x) \leq 1, \mid\|x\|_{\bar{\sigma}^{\prime}} \leq 1$. Then

$$
\begin{aligned}
\left|\sum_{i=1}^{\infty} x(i) y(i)\right| & \leq \sup _{n} \sum_{i=1}^{n}|x(i) y(i)| \\
& =\sup _{n} \sum_{i=1}^{\infty}\left|x^{(n)}(i)\right| \cdot \operatorname{sign} y(i) \cdot y(i) \leq\|g\|_{h^{*}}^{*}
\end{aligned}
$$

Hence $\|f\|_{\dot{*}}^{*} \leq\|g\|_{h^{*}}^{*}$, and we are done.
Now assume that \bar{f} is another such extension of g, and let $F=\bar{f}-f$. Then F is singular on 1^{ϕ} and $\bar{f}=f+F$. Hence, by Theorem 2.4, we have $f=\bar{f}_{n}$ and $F=\bar{f}_{s}$. Therefore, in view of Theorem 5.1, we have $\|\bar{f}\|_{\phi}^{*}=\|f\|_{\phi}^{*}+\|F\|_{\phi}^{*}=\|y\|_{\phi^{*}}+\|F\|_{\phi}^{*}$. Since $\|\bar{f}\|_{\phi}^{*}=\|g\|_{h^{+}}^{*}=\|y\|_{\phi^{*}}$, we obtain that $F=0$, so $\bar{f}=f$. Thus the proof is completed.

REFERENCES

[1] ALIPRANTIS, C. D. and BURKINSHAW, O. Locally Solid Riesz Spaces, Academic Press, New York (1978).
[2] ANDO, T. Linear Functionals on Orlicz Spaces, Niew Arch. Wisk, 8 (1960), 1-16.
[3] BEHRENDS, E. M-Strukture and the Banach-Stone Theorem, Springer-Verlag, Lecture Notes in Math. 736, Berlin, Heidelberg, New York, 1979.
[4] BIRNBAUM, Z. and ORLICZ, W. Über die verallgemeinerung des begriffes der zueinander potenzen, Studia Math. $\underline{3}$ (1931), 1-67.
[5] DREWNOWSKI, L. and NAWROCKI, M. On the Mackey Topology of Orlicz Sequence Spaces, Arch. Math. 37 (1981), 256-266.
[6] DUNFORD, N. and SCHWARTZ, J. T. Linear Operators, Part I: General Theory, Interscience, New York, 1958.
[7] FERNANDEZ, R. Characterization of the Dual of an Orlicz Space, Comment. Math. (to appear).
[8] KALTON, N. J. Orlicz Sequence Spaces Without Local Convexity, Math. Proc. Camb, Phil. Soc. 81 (1977), 253-277.
[9] KANTOROVICH, L. V. and AKILOV, G. P. Functional Analysis, Moscow, 1984 (Russian).
[10] KÖTHE, G. Topological Vector Spaces I, Springer, Berlin, Heidelberg, New York, 1983.
[11] KRASNOSELSKII, M. and RUTICHII, YA. B. Convex Functions and Orlicz Spaces, P. Nordhoff Ltd, Groningen, 1961.
[12] LUXEMBURG, W. A. Banach Function Spaces, Delft, 1955.
[13] LUXEMBURG, W. A. and ZAANEN, A. C. Conjugate Spaces of Orlicz Spaces, Indagat. Math. 59 (1956), 217-228.
[14] LUXEMBURG, W. A. and ZAANEN, A. C. Riesz Spaces I, North-Holland Publ. Comp., Amsterdam-London, 1971.
[15] MATUSZEWSKA, W. and ORLICZ, W. A Note on Modular Spaces. IX., ibidem, 16 (1968), 801-808.
[16] NAKANO, H. Modular Semi-ordered Spaces, Maruzen Co. Ltd., Tokyo, 1950.
[17] NAKANO, H. On Generalized Modular Spaces, Studia Math, 31 (1968), 439-449.
[18] NOWAK, M. The Köthe Dual of Orlicz Spaces Without Local Convexity, Mathematica Japonica (to appear).
[19] ORLICZ, W. On Integral Representability of Linear Functions Over the Space of ϕ-Integrable Functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 567-569.
[20] PERESSINI, A. and SHERBERT, D. R. Order Properties of Liner Mappings of Sequence Spaces, Math. Annalen, 165 (1966), 318-332.
[21] RAO, M. M. Linear Functionals on Orlicz Spaces: General Theory, Pacific J. Math. 25 (1968), 553-585.
[22] ROLEWICZ, S. Metric Linear Spaces, Polish Scientific Publishers, Warszawa, D. Reidel Publ. Comp., 1984.
[23] SCHWARZ, H. U. Banach Lattices and Operators, Tuebner-Texte zur Mathematik 71, Leipzig, 1984.
[24] SHAPIRO, J. H. Extension of Linear Functionals on F-spaces, Duke Math. J. 37 (1970), 639-645.
[25] TURPIN, PH. Convexities dans les Espaces Vectoriels Topologiques Generaux, Dissertationes Math. 131 (1976).
[26] ZAANEN, A. C. Riesz Spaces II, North-Holland Publ. Comp., Amsterdam, New York, 1983.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

