ON POLYNOMIAL EPr MATRICES

AR. MEENAKSHI and N. ANANDAM
Department of Mathematics, Annamalai University, Annamalainagar - 608002 , Tamil Nadu, INDIA.
(Received May 8, 1989)

Abstract

This paper gives a characterization of $E P_{r}$ - λ-matrices. Necessary and sufficient conditions are determined for (i) the Moore-Penrose inverse of an EP $\mathbf{r}^{-\lambda-}$ matrix to be an $E P_{r}-\lambda$-matrix and (ii) Moore-Penrose inverse of the product of $E P_{r}-\lambda$-matrices to be an $E P_{r}-\lambda$-matrix. Further, a condition for the generalized inverse of the product of λ-matrices to be a λ-matrix is determined.

KEY WORDS AND PHRASES: $E P_{r^{-}}-\lambda$-matrices, generalized inverse of a matrix. AMS SUBJECT CLASSIFICATION CODES: 15A57, 15A09.

1. INTRODUCTION

Let FTX X be the set of all mxn matrices whose elements are polynomials in λ over an arbitrary field F with an involutary automorphism $\alpha: a \leftrightarrow \overline{\mathbf{a}}$ for a εF.
 $A^{*}(\lambda)=\left(\bar{a}_{j i}(\lambda)\right)$. Let $F \overline{X X Y}$ be the set of all mxn matrices whose elements are rational functions of the form $f(\lambda) / g(\lambda)$ where $f(\lambda), g(\lambda) \neq 0$ are polynomials in λ. For simplicity, let us denote $A(\lambda)$ by A itself.

The rank of $A \varepsilon F\left[\sum_{\lambda}\right]$ is defined to be the order of its largest minor that is not equal to the zero polynomial ([2]p.259). A\&FPXY is said to be an unimodular λ-matrix (or) invertible in $F[\lambda]$ if the determinant of $A(\lambda)$, that is, $\operatorname{det} A(\lambda)$ is a nonzero constant. A\&F[XX is said to be a regular λ-matrix if and only if it is of rank n ([2]p.259), that is, if and only if the kernel of A contains only the zero element. $A \in F T X\left\{\right.$ is said to be $E P_{r}$ over the field $\cdot F(\lambda)$ if $r k(A)=r$ and $R(A)=R\left(A^{*}\right)$ where $R(A)$ and $r k(A)$ denote the range space of A and rank of A respectively [4]. We have \{unimodular λ-matrices \} $₹$ \{regular λ-matrices $\}$
$€\{E P-\lambda$-matrices $\}$.
Throughout this paper, let $\left.A \varepsilon F_{r}^{n \times R}\right]$. Let 1 be identity element of F. The Moore-Penrose inverse of A, denoted by A^{+}is the unique solution of the following set of equations:
$A X A=A$ (1.1); $X A X=X$ (1.2); ($A X)^{*}=A X(1.3) ;(X A)=X A(1.4)$
 exists, A is $E P_{r}$ over $F(\lambda) \Leftrightarrow A A^{+}=A^{+} A$. For $A \varepsilon F P X^{\prime}{ }^{\prime}$, a generalized inverse (or) $\{1\}$ inverse is defined as a solution of the polynomial matrix equation (1.1) and a reflexive generalized inverse ior) $\{1,2\}$ inverse is defined as a solution of the equations (1.1) and (1.2) and they belong to F (XX). The purpose of this paper is to give a characterization of an $E P_{r^{-}} \lambda$-matrix. Some results on $E P_{\mathbf{r}^{-}}$- λ-marices having the same range space are obtained. As an application necessary and sufficient conditions are derived for $(A B)^{+}$to be an $E P_{r}-\lambda$-matrix whenever A and B are $E P_{r^{-}}-\lambda$-matrices.
2. CHARACTERIZATION OF AN EP $r^{-\lambda-M A T R I X ~}$

THEOREM 1. A\& $F_{r}^{n}[\lambda]$ is ${ }^{\mathrm{EP}} \mathrm{r}_{\mathrm{r}}$ over the field $\mathrm{F}(\lambda)$ if and only if there exist an nun unimodular λ-matrix P and a $r \times r$ regular λ-matrix E such that PAP $^{*}=\left[\begin{array}{ll}E & 0 \\ 0 & 0\end{array}\right]$

PROOF. By the Smith's canonical form, $A=1\left[\begin{array}{ll}D & 0 \\ 0 & 0\end{array}\right] Q$ where P and Q are uni modular- λ-matrices of order n and D is a exr regular diagonal λ-matrix. Any $\{1\}$ inverse of A is given by $A^{(1)}=Q^{-1}\left|\begin{array}{ll}D^{-1} & R_{2} \\ R_{3} & R_{4}\end{array}\right| \begin{array}{lll}-1 & \text { where } R_{2}, R_{3} \text {, and } R_{4}\end{array}$ are arbitrary conformable matrices over $F(\lambda)$. A is $E P_{r}$ over the field $F(\lambda)$

$$
\begin{aligned}
& \Rightarrow R(A)=R\left(A^{*}\right) \\
& \Rightarrow \quad A=A A^{*}(1) A^{*}
\end{aligned}
$$

(By Theorem 17[3])
$\Rightarrow\left[\begin{array}{ll}\mathrm{D} & 0 \\ 0 & 0\end{array} \mathrm{QP}^{{ }^{-1}}=\left[\begin{array}{lll}\mathrm{D} & 0 \\ 0 & 0 & \mathrm{QP}^{*^{-1}} \\ 0 & \mathrm{D}^{*^{-1}} & \mathrm{R}_{3}^{*} \\ \mathrm{R}_{2}^{*} & \mathrm{R}_{4}^{*}\end{array}\left|\begin{array}{ll}\mathrm{Q}^{*-1} \mathrm{Q}^{*}\end{array}\right| \begin{array}{ll}\mathrm{D}^{*} & 0 \\ 0 & 0\end{array}\right.\right.$
Partitioning conformably, let, $\mathrm{QP}^{{ }^{*}-1}=\left\lvert\, \begin{array}{cc}\mathrm{T}_{1} & \mathrm{~T}_{2}{ }^{\top} \\ \mathrm{T}_{3} & \mathrm{~T}_{4}\end{array}\right.$

$$
\begin{aligned}
& \left.\left|\begin{array}{lll}
\mathrm{D} & 0 \\
0 & 0 & \mathrm{~T}_{1} \\
\mathrm{~T}_{3} & \mathrm{~T}_{2} \\
\mathrm{~T}_{4}
\end{array}\right|=\left|\begin{array}{ll}
\mathrm{D} & 0 \\
0 & 0
\end{array}\right|\left|\begin{array}{cc}
\mathrm{T}_{1} & \mathrm{~T}_{2} \\
\mathrm{~T}_{3} & \mathrm{~T}_{4}
\end{array}\right|\left|\begin{array}{cc}
\mathrm{D}^{*-1} & \mathrm{R}_{3}^{*} \\
\mathrm{R}_{2}^{*} & \mathrm{R}_{4}^{*}
\end{array}\right| \begin{array}{ll}
\mathrm{D}^{*} & 0 \\
0 & 0
\end{array} \right\rvert\, \\
& \left\lvert\, \begin{array}{ll:}
D T_{1} & D T_{2} \\
0 & 0
\end{array}=\left[\left.\begin{array}{cc}
D T_{1}+D T_{2} R_{2}^{*} D^{*} & 0 \\
0 & 0
\end{array} \right\rvert\,\right.\right. \\
& \Rightarrow \quad T_{2}=0 \quad \text { (since } D \text { is regular). }
\end{aligned}
$$

Therefore $Q P^{*-1}=\left|\begin{array}{ll}T_{1} & 0 \\ T_{3} & T_{4}\end{array}\right|$
Hence $\quad A \quad P\left|\begin{array}{ll}D & 0 \\ 0 & 0\end{array}\right|\left|\begin{array}{ll}T_{1} & 0 \\ T_{3} & T_{4}\end{array}\right| P^{*}=P\left[\begin{array}{ll}D T_{1} & 0 \\ 0 & 0\end{array}\right] \mathbf{P}^{*}=P\left[\begin{array}{ll}E & 0 \\ 0 & 0\end{array}\right] \quad P^{*}$
where $E=D T_{1}$ is a $r \times r$ regular λ-matrix.
Conversely, let $P A P^{*}=\left|\begin{array}{ll}E & 0 \\ 0 & 0\end{array}\right| \quad$ where E is a r x regular λ-matrix.
Since E is regular, E is $E P_{r}$ over $F(\lambda)$.

$$
\begin{aligned}
& \Rightarrow R(E)=R\left(E^{*}\right) \\
& \Rightarrow R\left(P A P^{*}\right)=R\left(P A^{*} P^{*}\right) \\
& \Rightarrow R(A) \quad R\left(A^{*}\right) \\
& \Rightarrow R \text { is } E P_{r} \text { over } F(\lambda) . \quad \text { Hence the theorem. }
\end{aligned}
$$

If $A \varepsilon F_{r}^{n}[\lambda]$ and is $E P$ over the field $F(\lambda)$ then we can find $n x n$ regular rational λ-matrices H and K such that $A^{*}=H A=A K$ [4]. In general the above H and K need not be unimodular λ-matrices. For example, consider $A=\left|\begin{array}{ll}1 & \lambda \\ 0 & \lambda^{2}\end{array}\right|$. A is
$E P$, being a regular λ-matrix. If $A^{*}=H A$ then $H=A^{*} A^{-1}$; If $A^{*}=A K$ then $K=A^{-1} A^{*}$. Here $H=\left[\left.\begin{array}{ll}1 & -1 / \lambda \\ \lambda & 0\end{array} \right\rvert\,\right.$ and $\left.K=\begin{array}{ll}1 / \lambda & -\lambda \\ 1\end{array} \right\rvert\,$ are not λ-matrices.

The following theorem gives a necessary condition for H and K to be unimodular λ-matrices.

THEOREM 2. If A is an $n x n E P_{r}-\lambda$-matrix and A has a λ-matrix $\{1\}$ inverse then there exist $n \times n$ unimodular λ-matrices H and K such that $A^{*}=H A=A K$.

PROOF. Let A be an nxn EP r_{r} - λ-matrix. By Theorem 1, there exists an $n x n$ unimodular λ-matrix P such that $\mathrm{PAP}^{*}=\left|\begin{array}{ll}E & 0 \\ 0 & 0\end{array}\right|$ where E is a $r \times x$ regular λ-matrix. Since A has a λ-matrix $\{1\}$ inverse, E^{-1} is also a λ-matrix.

Now

Therefore

$$
\begin{aligned}
\mathrm{A} & =\mathrm{P}^{-1}\left|\begin{array}{ll}
\mathrm{E} & 0 \\
0 & 0
\end{array}\right| \mathrm{P}^{-1 *} \\
\mathrm{~A}^{*} & =\mathrm{P}^{-1}\left[\left.\begin{array}{ll}
\mathrm{E}^{*} & 0 \\
0 & 0
\end{array} \right\rvert\, \mathrm{P}^{-1^{*}}\right.
\end{aligned}
$$

$$
=P^{-1}\left|\begin{array}{cc}
E^{*} E^{-1} & 0 \\
0 & I
\end{array}\right| \quad \mathrm{PP}^{-1}\left|\begin{array}{cc}
\mathrm{E} & 0 \\
0 & 0
\end{array}\right| \mathrm{P}^{-1^{*}}
$$

$$
=H A \text { where } H=P^{-1}\left[\begin{array}{cc}
E^{*} E^{-1} & 0 \\
0 & I
\end{array}\right] P \text { is an } n \times n \text { unimodular }
$$

λ-matrix. Similarly we can write $A^{*}=A K$ where
$K=P^{*}\left[\begin{array}{cc}E^{-1} E^{*} & 0 \\ 0 & I\end{array}\right] \mathrm{P}^{-1^{*}}$ is an nxn uni modular λ-matrix.
Therefore $A^{*}=H A=A K$.
REMARK 1. The converse of Theorem 2 need not ho true. For example, consider $A=\left[\begin{array}{rr}\lambda & 0 \\ 0 & 0\end{array}\right]$. Since $A^{*}=A, H=K=I_{2} . \quad A$ is an $E P_{1}-\lambda$-matrix. However A has no λ-matrix $\{1\}$ inverse.
3. MOORE-PENROSE INVERSE OF AN EP $r^{-\lambda-M A T R I X ~}$

The following theorem gives a set of necesssry and sufficient conditions for the existence of the λ-matrix Moore-Penrose inverse of a given λ-matrix.

THEOREM 3. For $A \in F_{r}^{n \times \lambda}[\lambda]$, the following statements are equi valent.
i) A is $E P_{r}, \operatorname{rk}(A)=\operatorname{rk}\left(A^{2}\right)^{r}$ and $A^{*} A$ has a λ-matrix $\{1\}$ inverse.
ii) There exists an unimodular λ-matrix U with $A=U\left[\begin{array}{ll}D & 0 \\ 0 & 0\end{array}\right] U^{*}$
where D is a rxr unimodular λ-matrix and $U^{*} U$ is a diagonal block matrix.
iii) $A=G L G^{*}$ where L and $G^{*} G$ are $r x r$ unimodular λ-matrices and G is a λ-matrix. iv) A^{+}is a λ-matrix and $E P_{r}$.
v) There exists a symmetric idempotent λ-matrix $E,\left(E^{2}=E=E^{*}\right)$ such that $A E=E A$ and $R(A)=R(E)$.
 $r k(A)=r k\left(A^{2}\right), A^{+}$exists, by Theorem 2.3 of [5]. By Theorem 4 in [6], $A^{*} A$ has a λ-matrix $\{1\}$ inverse implies that there exists an unimodular λ-matrix P with $P P^{*}=\left|\begin{array}{ll}P_{1} & 0 \\ 0 & P_{4}\end{array}\right|$ where P_{1} is a symmetric $r \times r$ unimodular λ-matrix such that
$P A=\left|\begin{array}{l}W^{\top} \\ 0\end{array}\right|$ where w is a rxn, λ-matrix of rank r. Hence by Theorem 2 in [6],
 $A=A A^{+} A=A\left(A A^{+}\right) . \quad$ Therefore $A=P^{-1}\left[\left.\begin{array}{l}W \\ 0\end{array}\left|\quad P^{-1}\right| \begin{array}{ll}P_{1} & 0 \\ 0 & 0\end{array} \right\rvert\, P^{*^{-1}}\right.$

$$
=\quad \mathrm{P}^{-1}\left|\begin{array}{l}
\mathrm{W} \\
0
\end{array}\right|\left[\begin{array}{llll}
\mathrm{H} & 0 & \mathrm{P}^{*^{-1}} \quad \text { where }
\end{array}\right.
$$

H consists of the first r columns of P^{*}, thus H is a nxr, λ-matrix of rank r.
Now $A=P^{-1}\left|\begin{array}{ll}D & 0 \\ 0 & 0\end{array}\right| \mathrm{P}^{-1^{*}}=\mathrm{U}\left[\begin{array}{ll}\mathrm{D} & 0 \\ 0 & 0\end{array}\right] \mathrm{U}^{*} \quad$ where $\mathrm{U}=\mathrm{P}^{-1}$ and $\mathrm{D}=\mathrm{WH}$ is a $r x r$ regular λ-matrix. Since $A A_{2} A_{1}$ a λ-matrix $\{1\}$ inverse and P is an unimodular λ-matrix, \quad PAA $^{*} \mathrm{P}^{*}=\left[\begin{array}{cc}\mathrm{D}^{*} \mathrm{P}_{1}^{-1} \mathrm{D} & 0 \\ 0 & 0\end{array}\right]^{2}$ has a $\quad \lambda$-matrix
$\{1\}$ inverse. Therefore by Theorem 1 in [6], $D^{*} P_{1}^{-1} D$ is an unimodular λ-matrix which implies D is an unimodular λ-matrix. Hence $A=U\left|\begin{array}{ll}D & 0 \\ 0 & 0\end{array}\right| U^{*}$ where D is a rxr unimodular λ-matrix and $U^{*} U$ is a diagonal block λ-matrix. Thus (ii) holds.
(ii) \Rightarrow (iii)
$\begin{array}{ll}\Rightarrow \text { (iii) } \\ \text { Let us partition } U \text { as } U\end{array}=\left|\begin{array}{ll}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right|$ where U_{1} is a rxr λ-matrix. Then

$$
\left.A=\left|\begin{array}{ll}
\mathrm{U}_{1} & \mathrm{U}_{2} \\
\mathrm{U}_{3} & \mathrm{U}_{4}
\end{array}\right|\left[\begin{array}{ll}
\mathrm{D} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathrm{U}_{1}^{*} & \mathrm{U}_{3}^{*} \\
\mathrm{U}_{2}^{*} & \mathrm{U}_{4}^{*}
\end{array}\right]=\left\lvert\, \begin{array}{l}
\mathrm{U}_{1} \\
\mathrm{U}_{3}
\end{array}\right.\right] \quad \mathrm{D}\left\lceil\mathrm{U}_{1}^{*} \mathrm{U}_{3}^{*} \mid=\mathrm{GLG}^{*}\right.
$$

where $L=D$ and $G=\left[\begin{array}{c}U_{1} \\ U_{3}\end{array}\right]$ are λ-matrices.
Since $U^{*} U$ is a diagonal block λ-matrix, $G^{*} G=U_{1}^{*} U_{1}+U_{3}^{*} U_{3}$ and L are rxr unimodular λ-matrices. Thus (iii) holds.
(iii) \Rightarrow (iv)

Since $A=G L G^{*}, L$ and $G^{*} G$ are unimodular λ-matrices. One can verify that $A^{+}=G\left(G^{*} G\right)^{-1} L^{-1}\left(G^{*} G\right)^{-1} G^{*}$.
Now $A A^{+}=G L G^{*} G\left(G^{*} G\right)^{-1} L^{-1}\left(G^{*} G\right)^{-1} G^{*}=G\left(G^{*} G\right)^{-1} G^{*}=A^{+} A$ implies that A^{+}is $E P_{r}$. Since L and $G^{*} G$ are unimodular, L^{-1} and $\left(G^{*} G\right)^{-1}$ are λ-matrices, and G is a λ-matrix. Therefore A^{+}is a λ-matrix. Thus (iv) holds.
(iv) \Rightarrow (v)

Proof is analogous to that of (ii) \Rightarrow (iii) of Theorem 2.3 [5]. (v) \Rightarrow (i)

Since E is a symmetric idempotent λ-matrix with $R(A)=R(E)$ and $A E=E A$, by Theorem 2.3 in [5] we have A is $E P_{r}$ and $\operatorname{rk}(A)=\operatorname{rk}\left(A^{2}\right) \Rightarrow A^{+}$exists. Since $E^{+}=E$ and $R(A)=R(E) \Rightarrow A A^{+}=E E^{+}=E$. Now $A E=E A=\left(A A^{+}\right) A=A$. Let e_{j} and a_{j} denote the $j t h$ columns of E and A respectively. Then $A E=A \Rightarrow A e_{j}=a_{j}$, since e_{j} is $a \lambda$-matrix, the equation $A x=a_{j}$ where a_{j} is a λ-matrix, has a λ-matrix solution. Hence by Theorem 1 in [6] it follows that A has a λ-matrix $\{1\}$ inverse. Further $A A^{+}=E$ is also a λ-matrix. Hence by Theorem 4 in [6] we see that A has a λ-matrix $\{1\}$ inverse. Thus (i) holds. Hence the theorem.

REMARK 2. The condition (i) in Theorem 3 cannot be weakened which can be seen by the following examples. $\operatorname{rk}(A)=\operatorname{rk}\left(A^{2}\right)=1 . \quad A^{*} A=\left[\begin{array}{ll}2 \lambda^{2} & 2 \lambda^{2} \\ 2 \lambda^{2} & 2 \lambda^{2}\end{array}\right]$ has no λ-matrix $\{1\}$ inverse (since the invariant polynomial of $A^{*} A$ is λ^{2} which is not the identity of F). For this $A, A^{+}=\frac{1}{4 \lambda}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is not a λ-matrix. Thus the theorem fails.

EXAMPLE 2. Consider the matrix $A=\left|\begin{array}{ll}\lambda & 2 \lambda \\ 2 \lambda & 4 \lambda\end{array}\right|$ over $G F(5)$. A is $\quad E_{1}$. Since $\left.A^{2}=\left|\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right|, r k(A) \neq \quad r k\left(A^{2}\right), \quad A^{*} A^{2 \lambda}=4 \lambda \left\lvert\, \begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right.\right]$ has a λ-matrix
$\{1\}$ inverse (since any conformable λ-matrix is a λ-matrix $\{1\}$ inverse). For this A, A^{+}does not exist. Thus the theorem fails.

REMARKS 3. From Theorem 3, it is clear that if E is a symmetric idempotent λ-matrix, and A is a λ-matrix such that $R(E)=R(A)$ then A is $E P$ $\Leftrightarrow \quad A E=E A \Leftrightarrow A^{+}$is a λ-matrix and $E P$.

We can show that the set of all $E P_{r}-\lambda$-matrices with common range space as that of given symmetric idempotent λ-matrix forms a group, analogous to that of the Theorem 2.1 in [5].

COROLLARY 1. Let $\mathrm{E}=\mathrm{E}^{*}=\mathrm{E}^{2} \varepsilon \mathrm{Fl}$ 䛥. Then
$H(E)=\left\{A \varepsilon F P\right.$ XX : A is $E P_{r}$ over $F(\lambda)$ and $\left.R(A)=R(E)\right\}$ is s maximal subgroup of

PROOF. This can be proved similar to that of Theorem 2.1 of [5] by applying Theorem 3.

4. APPLICATION

In general, if A and B are λ-matrices, having λ-matrix $\{1\}$ inverses, it is not
$\begin{array}{r}\text { necesssary that } A B \text { has a } \lambda \text {-matrix } \\ \text { EXAMPLE 3. Consider } A\end{array}=\left[\begin{array}{ll}1\} \\ \lambda & \lambda^{2}\end{array}\right] \quad$ inverse. \quad and $B=\left[\begin{array}{ll}1 & 0 \\ 2 \lambda & 0\end{array}\right] . \quad$ Here $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is one of the λ-matrix $\{1\}$ inverse for both A and B. But $A B=\left[\begin{array}{ll}1+2 \lambda^{2} & 0 \\ \lambda+2 \lambda^{3} & 0\end{array}\right]$. Since the invariant polynomial of $A B$ is $1+2 \lambda^{2} \neq 1$, $A B$ has no λ-matrix $\{1\}$ inverse.

The following theorem leads to the existence of λ-matrix $\{1\}$ inverse of the product $A B$.

THEOREM 4. Let $\left.A, B \in \operatorname{Fl}{ }^{\text {P }}\right\}$. If $A^{2}=A$ and B has λ-matrix $\{1\}$ inverse and $R(A) \subseteq R(B)$ then $A B$ has a λ-matrix $\{1\}$ inverse.

PROOF. Suppose $A B x=b$, where b is $a \quad \lambda$-matrix, is a consistent system. Then $b \in R(A B) \subseteq R(A) \subseteq R(B)$ and therefore $B z_{0}=b$. Since B has a λ-matrix $\{1\}$ inverse, by Theorem 1 in [6] we get z_{o} is a λ-matrix. Since A is idempotent, so in particular A is a\{1\} inverse of A and $b \in R(A)$, we have $A b=b$. Now $A B z_{0}=A b=b$. Thus $A B x=b$ has a-matrix solution. Hence by Theorem 1 in [6], $A B$ has a λ-matrix $\{1\}$ inverse. Hence the theorem.

The converse of Theorem 4 need not be true which can be seen by the following example.
 $A^{2}=A$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is a λ-matrix \{1\} inverse for both $A B$ and B. However
$R(A) \neq R(B)$. Hence the converse is not true.
Next we shall discuss the necessary and sufficient condition for the Moore-Penrose inverse of the product of $E P_{r^{-}}^{-\lambda \text {-matrices to be an } E P_{r}-\lambda \text {-matrix. }}$
 $\{1\}$ inverse, $r k(A)=r k\left(A^{2}\right)$ and $R(A)=R(B)$ if and only if $A B$ is $E P_{r}$ and $(A B)^{+}=B^{+} A^{+}$is a λ-matrix.

PROOF. Since. A and B are $E P_{r}$ with $R(A)=R(B)$ and $r k(A)=r k\left(A^{2}\right)$, by a Theorem of Katz [1], $A B$ is $E P_{r}$. Since A is a $E P_{r}-\lambda$-matrix, $\operatorname{rk}(A)=\operatorname{rk}\left(A^{2}\right)$ and $A^{*} A$ has a λ-matrix $\{1\}$ inverse, by Theorem 3 , A^{+}is a λ-matrix and there exists a symmetric idempotent λ-matrix E such that $R(A)=R(E)$. Hence $A A^{+}=A A^{+}=E$. Since A and B are $E P_{r}$ and $R(A)=R(B)$, we have $A A^{+}=B B^{+}=E=A^{+} A=B^{+} B$. Therefore $B E=E B$ and $R(B)=R(E)$. Again from Theorem 3, for the $E P_{r}-\lambda$-matrix B, we see that B^{+}is a λ-matrix. Since A and B are $E P_{r}$ with $R(A)=R(B)$, we can verify that $(A B)^{+}=B^{+} A^{+}$. Since B^{+}and A^{+}are λ-matrices, it follows that $(A B)^{+}$is a λ-matrix.

Conversely, if $(A B)^{+}$is a λ-matrix and $A B$ is $E P_{r}$ then $(A B)^{+}$is an $E P_{r}^{-\lambda \text {-matrix. }}$ Therefore by Theorem 3, there exists a symmetric idempotent λ-matrix E such that $R(A B)=R(E)$ and $(A B)(A B)^{+}=E=(A B)^{+}(A B)$. Since $\operatorname{rk}(A B)=r k(A)=r$ and $R(A B) \subseteq R(A)$, we get $R(A)=R(E)$. Since A is $E P_{r}$,
 a λ-matrix $\{1\}$ inverse and $\operatorname{rk}(A)=r k\left(A^{2}\right)^{r}$. Since $A B$ and B are $E P_{r}$, $R(E)=R(A B)=R\left((A B)^{*}\right) \subseteq R\left(B^{*}\right)=R(B)$ and $\quad \operatorname{rk}(A B)=r(B) \quad$ implies $R(B)=R(E)$. Therefore $R(A)=R(B)$. Hence the theorem.

REMARK 4. The condition that both A and B are $E P_{r}-\lambda$-matrices, is essential in Theorem 5, is illustrated as follows:

ACKNOWLEDGEMENT. The authors wish to thank the referee for suggestions which greatly improved the proofs of many theorems.

REFERENCES

1. KATZ, I.J. Theorems on Products of $\mathrm{EP}_{\mathbf{r}}$ Matrices II, Lin. Alg. Appl. 10 (1975), 37-40.
2. LANCASTER, P. and TISMENETSKY, M. Theory of Matrices, 2nd ed., Academic Press, 1985.
3. MARSAGLIA, G. and STYAN, G.P.H Equalities and inequalities for ranks of matrices, Lin. and Multi. Alg. $\underline{2}$ (1974), 269-292.
4. MARTIN PEARL, On Normal and EP r_{r} Matrices, Mich. Math. J. $\underline{6}$ (1959), 1-5.
5. MEENAKSHI, AR. On EP Matrices with Entries from an Arbitrary Field, Lin. and Multi. Alg. \underline{r} (1980), 159-164.
6. MEENAKSHI, AR. and ANANDAM,N. Polynomial Generalized Inverses of Polynomial Matrices, (submitted).
7. PEARL, M.H. Generalized Inverses of Matrices with Entries Taken from an Arbitrary Field, Lin. Alg. Appl. 1 (1968), 571-587.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

