Γ -GROUP CONGRUENCES ON REGULAR Γ -SEMIGROUPS

A. SETH

Department of Pure Mathematics, University of Calcutta 35, Ballygunge Circular Road, Calcutta - 700 019. India.

(Received April 23, 1990 and in revised form September 16, 1990)

ABSTRACT. In this paper a Γ -group congruence on a regular Γ -semigroup is defined, some equivalent expressions for any Γ -group congruence on a regular Γ -semigroup and those for the least Γ -group congruence in particular are given.

KEY WORDS AND PHRASES. Regular Γ -semigroup, α -idempotent, Right (left) Γ -ideal,

KEY WORDS AND PHRASES. Regular Γ -semigroup, α -idempotent, Right (left) Γ -ideal Right (left) simple Γ -semigroup, Γ -group, Congruence, Normal family.

1980 AMS SUBJECT CLASSIFICATION CODE. 20M.

1. INTRODUCTION.

Let S and Γ be two nonempty sets, S is called a Γ -semigroup if for all a,b,c \in S, $\alpha,\beta\in\Gamma$ (i) a α b \in S and (ii) (a α b) β c = a α (b β c) hold. S is called regular Γ -semigroup if for any a \in S there exist a' \in S, $\alpha,\beta\in\Gamma$ such that a = a α a' β a. We say a' is (α,β)-inverse of a if a = a α a' β a and a' = a' β a α a' hold and in this case we write a' \in V $_{\alpha}^{\beta}$ (a). An element e of S is called α -idempotent if e α e = e holds in S. A right (left) Γ -ideal of a Γ -semigroup S is a nonempty subset I of S such that I Γ S \subseteq I (S Γ I \subseteq I). A Γ -semigroup S is said to be left (right) simple if it has no proper left (right) Γ -ideal. For some fixed $\alpha\in\Gamma$ if we define aob = a α b for all a,b \in S then S becomes a semigroup. We denote this semigroup by S $_{\alpha}$. Throughout our discussion we shall use the notations and results of Sen and Saha [1-2]. For the sake of completeness let us recall the following results of Sen and Saha [1].

THEOREM 1.1. S_{α} is a group if and only if S is both left simple and right simple Γ -semigroup. (Theorem 2.1 of [1]).

COROLLARY 1.2. Let S be a Γ -semigroup. If S_{α} is a group for some $\alpha \in \Gamma$ then S_{α} is a group for all $\alpha \in \Gamma$. (Corollary 2.2 of [1]).

A Γ -semigroup S is called a Γ -group if S_{α} is a group for some (hence for all) $\alpha \in \Gamma$. THEOREM 1.3. A regular Γ -semigroup S will be a Γ -group if and only if for all $\alpha, \beta \in \Gamma$, eaf = fixe = f and e\beta = f fxe = e for any two idempotents e = e\alpha = and f = f\beta f of S. (Theorem 3.3 of [1]).

2. Γ-GROUP CONGRUENCES IN A REGULAR Γ-SEMIGROUP.

An equivalence relation ρ on a Γ -semigroup S is called a congruence if $(a,b) \in \rho$ implies $(c\alpha a,c\alpha b) \in \rho$ and $(a\alpha c,b\alpha c) \in \rho$ for all $a,b,c \in S$, $\alpha \in \Gamma$. A congruence ρ in a regular Γ -semigroup S is called Γ -group congruence if S/ρ is a Γ -group (In S/ρ we define $(a\rho)\alpha(b\rho)=(a\alpha b)\rho$). Henceforth we shall assume S to be a regular Γ -semigroup and E_{α} to be its set of α -idempotents.

A family $\{K_{\alpha}: \alpha \in \Gamma\}$ of subsets of S is said to be a normal family if

- (i) $E_{\alpha} \subseteq K_{\alpha}$ for all $\alpha \in \Gamma$;
- (ii) for each $a \in K_{\alpha}$ and $b \in K_{\beta}$, $a\alpha b \in K_{\beta}$ and $a\beta b \in K_{\alpha}$;
- (iii) for each $a' \in V_{\alpha}^{\beta}(a)$ and $c \in K_{\gamma}$, $a\alpha c \gamma a'$ and $a\gamma c \alpha a' \in K_{\beta}$.

104 A. SETH

Now let $e \in E_{\alpha}$ and $f \in E_{\beta}$ and $\mu \in \Gamma$. Let $x \in V_{\theta}^{\phi}(e\mu f)$. Then $f\theta x \phi e \in E_{\mu}$. Thus $E_{\mu} \neq \phi$ for all $\mu \in \Gamma$, consequently $K_{\mu} \neq \phi$ for all $\mu \in \Gamma$. We further note that in an orthodox Γ -semigroup S of Sen and Saha [2] $\{E_{\alpha} : \alpha \in \Gamma\}$ is a normal family of S.

Let N be the collection of all normal families K_i of $S(i \in \Lambda)$ where $K_i = \{K_{i\alpha} : \alpha \in \Gamma\}$. Let $U_{\alpha} = \bigcap_{i \in \Lambda} K_{i\alpha}$ and $U = \{U_{\alpha} : \alpha \in \Gamma\}$. Then obviously $E_{\alpha} \subseteq U_{\alpha}$. Also if $a \in U_{\alpha}$, $b \in U_{\beta}$, then $a \in K_{i\alpha}$ for all $i \in \Lambda$, $b \in K_{i\beta}$ for all $i \in \Lambda$. Thus $a\alpha b \in K_{i\beta}$ and $a\beta b \in K_{i\alpha}$ for all $i \in \Lambda$ implying $a\alpha b \in U_{\beta}$ and $a\beta b \in U_{\alpha}$. Similarly we can show that if $a' \in V_{\alpha}^{\beta}(a)$ and $c \in U_{\alpha}$ then $a\alpha c\gamma a'$, $a\gamma c\alpha a' \in U_{\beta}$. Thus U is a normal family of subsets of S and U is the least member in N if we define a partial order in N by $K_i \leq K_j$ iff $K_{i\alpha} \subseteq K_{j\alpha}$ for all $\alpha \in \Gamma$. We also observe that when S is orthodox Γ -semigroup, $U = \{E_{\alpha} : \alpha \in \Gamma\}$.

THEOREM 2.1. Let S be a regular Γ -semigroup. Then for each $K = \{K_{\alpha} : \alpha \in \Gamma\} \in \mathbb{N}$, $\rho_{K} = \{(a,b) \in S \times S : a\alpha = f\beta b \text{ for some } \alpha,\beta \in \Gamma \text{ and } e \in K_{\alpha}, f \in K_{\beta}\}$ is a Γ -group congruence in S.

PROOF. Let $a \in S$ and $a' \in V_{\alpha}^{\beta}(a)$. Then $a\alpha(a'\beta a) = (a\alpha a')\beta a$ implies $(a,a) \in \rho_{\kappa}$. Next let (a,b) $\in \rho_K$. Then there exist e $\in K_{\alpha}$, f $\in K_{\beta}$ for some $\alpha,\beta \in \Gamma$ such that ace = f\beta b. Let a' $\in V_{\gamma}^{\delta}(a)$ and b' $\in V_{\theta}^{\phi}(b)$ such that b\theta((b'\phi f\beta b)\gamma(a'\delta a)) = $((b\theta b')\phi(a\alpha e\gamma a'))\delta a$. But $b'\phi f\beta b\in K_{\theta}$, $a'\delta a\in K_{\gamma}$ and so $(b'\phi f\beta b)\gamma(a'\delta a)\in K_{\theta}$, and $b\theta b' \in K_{\underline{b}}$, $a\alpha e \gamma a' \in K_{\underline{b}}$ and so $(b\theta b') \phi(a\alpha e \gamma a') \in K_{\underline{b}}$. Consequently, $(b,a) \in P_{\underline{b}}$. Now let $(a,b) \in \rho_{K}$, $(b,c) \in \rho_{K}$. Then there exist $\alpha,\beta,\gamma,\delta \in \Gamma$, $e \in K_{\alpha}$, $f \in K_{\beta}$, $g \in K_{\gamma}$, $h \in K_{\delta}$ such that ace = $f\beta b$ and $b\gamma g = h\delta c$. But $ac(e\gamma g) = (ace)\gamma g = (f\beta b)\gamma g = f\beta(b\gamma g)$ = $f\beta(h\delta c)$ = $(f\beta h)\delta c$ where $e\gamma g \in K_{\alpha}$ and $f\beta h \in K_{\delta}$. Thus $(a,c) \in \rho_{K}$ and consequently ρ_{K} is an equivalence relation. Let $(a,b) \in \rho_{K}$, $\theta \in \Gamma$, $c \in S$. Then $a \circ e = f \beta b$ for some $\alpha, \beta \in \Gamma$ and some $e \in K_{\alpha}$, $f \in K_{\beta}$. Let $c' \in V_{\gamma}^{\delta}(c)$, $y \in V_{\gamma_1}^{\delta_1}(b\theta_c)$, $x \in V_{\gamma_2}^{\delta_2}(a\theta_c)$. $\text{Now } (a\theta c)\gamma(c'\delta((c\gamma_2x\delta_2a)\alpha e)\theta c)\gamma_1 \ (y\delta_1(b\theta c)) = (a\theta c\gamma_2x)\delta_2f\beta(b\theta c\gamma_1y)\delta_1(b\theta c). \ \text{But}$ $c\gamma_{2}x\delta_{2}a \in E_{\theta} \subseteq K_{\theta}$, so $(c\gamma_{2}x\delta_{2}a)\alpha e \in K_{\theta}$, $c'\delta((c\gamma_{2}x\delta_{2}a)\alpha e)\theta c \in K_{\phi}$. Again $y\delta_1(b\theta c) \in E_{\gamma} \subseteq K_{\gamma}$ and consequently $(c'\delta((c\gamma_2x\delta_2a)\alpha e)\theta c)\gamma_1(y\delta_1b\theta c) \in K_{\gamma}$. By a similar argument we can show that $(a\theta c \gamma_2 x) \delta_2 f \beta(b\theta c \gamma_1 y) \in K_{\delta}$. Thus $(a\theta c, b\theta c) \in \rho_K$. Also it is immediate from the foregoing by duality that $(c^{\theta a}, c^{\theta b}) \in \rho_{K}$. Thus ρ_{K} is a congruence on S. Also as S is regular, S/ρ_{K} is a regular Γ -semigroup. Let $e \in E_{\alpha}$, $f \in E_{\beta}$. Then eaf, fae $\in K_{\beta}$, e\(\beta f\), $f \in K_{\alpha}$. Now $(e \alpha f) \(\beta f = (e \alpha f) \beta f \) shows that$ $(e\alpha f, f) \in \rho_{V}$ and $(f\alpha e)\beta f = (f\alpha e)\beta f$ implies that $(f\alpha e, f) \in \rho_{V}$. Thus $(e\rho_{V})\alpha (f\rho_{V}) = f\rho_{V}$ and $(f\rho_K)\alpha(e\rho_K) = f\rho_K$. Similarly we can show $(e\rho_K)\beta(f\rho_K) = e\rho_K$ and $(f\rho_K)\beta(e\rho_K) = e\rho_K$. So it follows from Theorem 1.3 that S/ρ_{χ} is a Γ -group. Thus ρ_{χ} is a Γ -group congru-

For any normal family $K = \{K_{\alpha} : \alpha \in \Gamma\}$ of S, the closure KW of K is the family defined by $KW = \{(KW)_{\gamma} : \gamma \in \Gamma\}$ where $(KW)_{\gamma} = \{x \in S : e\alpha x \in K_{\gamma} \text{ for some } \alpha \in \Gamma \text{ and } e \in K_{\alpha}\}$. We call K closed if K = KW.

THEOREM 2.2. For each $K \in \mathbb{N}$, $\rho_K = \{(a,b) \in S * S : a \gamma b' \in (\dots, \delta \text{ for some } b' \in V_\gamma^0(b)\}$. PROOF. Let $(a,b) \in \rho_K$. Then $f \beta a = b \alpha e$ for some $\alpha,\beta \in \Gamma$ and $e \in K_\alpha$, $f \in K_\beta$. Then $f \beta(a \gamma b') = b \alpha e \gamma b' \in K_\delta$ for some $b' \in V_\gamma^\delta(b)$. Consequently $a \gamma b' \in (KW)_\delta$. Conversely, let $a \gamma b' \in (KW)_\delta$ for some $b' \in V_\gamma^\delta(b)$. Then $e \alpha a \gamma b' \in K_\delta$ for some $\alpha \in \Gamma$ and $e \in K_\alpha$. Therefore $e \alpha a \gamma b' = f$ where $f \in K_\delta$. So $(b \theta(a' \varphi e \alpha a) \gamma b') \delta a = b \theta(a' \varphi f \delta a)$, for some $a' \in V_\theta^\varphi(a)$ where $b \theta(a' \varphi e \alpha a) \gamma b' \in K_\delta$ and $a' \varphi f \delta a \in K_\theta$. Consequently $(a,b) \in \rho_K$.

For any congruence ρ on S, let ker $\rho = \{(\ker \rho)_{\alpha} : \alpha \in \Gamma\}$ where $(\ker \rho)_{\alpha} = \{x \in S : \exp x \text{ for some } e \in E_{\alpha}\}$.

LEMMA 2.3. For any K \in N, ker ρ_{K} = KW.

PROOF. To prove ker o_{K} = KW, we are to show that (ker ρ_{K}) $_{\alpha}$ = (KW) $_{\alpha}$ for all $\alpha \in \Gamma$. For this let $x \in (\ker \rho_K)_{\alpha}$ for some $\alpha \in \Gamma$. Then $e\rho_K x$ for some $e \in E_{\alpha}$ that is $\mathrm{egf} = \mathrm{g}_{\mathsf{Y}} \mathrm{x} \text{ for some } \mathrm{g}_{\mathsf{Y}} \mathsf{Y} \in \Gamma, \ \mathrm{e} \in \mathrm{E}_{\alpha}, \ \mathrm{f} \in \mathrm{K}_{\beta}, \ \mathrm{g} \in \mathrm{K}_{\gamma}. \ \mathrm{So} \ \mathrm{g}_{\mathsf{Y}} \mathsf{X} \in \mathrm{K}_{\alpha} \ \mathrm{as} \ \mathrm{egf} \in \mathrm{K}_{\alpha}. \ \mathrm{Thus}$ $x \in (KW)_{\alpha}$. Next let $x \in (KW)_{\alpha}$. Then $g\gamma x \in K_{\alpha}$ for some $\gamma \in \Gamma$ and $g \in K_{\gamma}$. Now for some $e \in E_{\alpha} = e_{\alpha}(g_{\gamma}x) = (e_{\alpha}g)_{\gamma}x$ where $g_{\gamma}x \in K_{\alpha}$ and $e_{\alpha}g \in K_{\gamma}$. Thus $e_{\rho_{K}}x$. Consequently $x \in (\ker \rho_K)_{\alpha}$. So $(\ker \rho_K)_{\alpha} = (KW)_{\alpha}$ for all $\alpha \in \Gamma$. Let $K \in \mathbb{N}$ and suppose $a\gamma b' \in (KW)_{\delta}$ for some $b' \in V_{\gamma}^{0}(b)$. Then $e^{\alpha}a\gamma b' \in K_{\delta}$ for some $\alpha \in \Gamma$ and $e \in K_{\alpha}$. Then for any $a' \in V_{\theta}^{\phi}(a)$, $a'\phi(e^{\alpha}a'b')\delta a \in K_{\theta}$ and $(a'\phi e^{\alpha}a'b'\delta a)\theta a'\phi b$ = $(a'\phi e \alpha a) \gamma b' \delta (a \theta a') \phi b \in K_{\theta}$. Thus $a'\phi b \in (KW)_{\theta}$. Conversely, suppose $a'\phi b \in (KW)_{\theta}$ for some $a' \in V_{\theta}^{\phi}(a)$. Then $f\beta(a'\phi b) \in K_{\theta}$ for some $\beta \in \Gamma$ and $f \in K_{\beta}$ and $a\theta(f\beta a'\phi b)\theta a' \in K_{\phi}$. Therefore for some $b' \in V_{\gamma}^{\delta}(b)$, $(a\theta f \beta a' \phi b \theta a') \phi (a \gamma b') = (a \theta f \beta a') \phi b \theta (a' \phi a) \gamma b' \in K_{\delta}$. Therefore $a\gamma b' \in (KW)_{\delta}$. Thus $a\gamma b' \in (KW)_{\delta}$ for some (all) $b' \in V_{\gamma}^{\delta}(b)$ iff $a' \oplus b \in (KW)_{\theta}$ for some (all) a' $\in V_{\theta}^{\Phi}(a)$. Interchanging roles of a and b we see that $b^{\theta}a' \in (KW)_{\Phi}$ for some (all) a' $\in V_{\theta}^{\delta}(a)$ iff b' $\delta a \in (KW)_{\gamma}$ for some (all) b' $\in V_{\gamma}^{\delta}(b)$. Moreover, the symmetric property of ρ_{K} shows that $a\gamma b' \in (KW)_{\delta}$ for some (all) $b' \in V_{\gamma}^{\delta}(b)$ iff $b\theta a' \in (KW)_{h}$ for some (all) $a' \in V_{\theta}^{0}(a)$. Thus we have the following.

LEMMA 2.4. For each $K \in \mathbb{N}$, app iff one of the following equivalent conditions hold.

- (i) $a\gamma b' \in (KW)_{\delta}$ for some (all) $b' \in V_{\gamma}^{\delta}(b)$.
- (ii) b' $\delta a \in (KW)_{\gamma}$ for some (all) b' $\in V_{\gamma}^{\delta}(b)$.
- (iii) $a' \phi b \in (KW)_{\theta}'$ for some (all) $a' \in V_{\theta}^{\phi}(a)$.
- (iv) $b\theta a' \in (KW)_{\phi}$ for some (all) $a' \in V_{\theta}^{\phi}(a)$.

Let \overline{N} denote the collection of all closed families in N, then $\overline{N}\subseteq N$.

THEOREM 2.5. The mapping $K \to \rho_{\overline{K}} = \{(a,b) \in S \times S : a \gamma b' \in K_{\delta} \text{ for some } b' \in V_{\gamma}^{\delta}(b)\}$ is a one to one order preserving mapping of \overline{N} onto the set of Γ -group congruences on S.

PROOF. Let ρ be a $\Gamma\text{-group}$ congruence on S. Let us denote ker ρ

by K and (ker ρ) $_{\alpha}$ by K $_{\alpha}$. Then K $_{\alpha}$ = {x \in S : x ρ e when e \in E $_{\alpha}$ }. Then E $_{\alpha}$ \subseteq K $_{\alpha}$. Let $a \in K_{\alpha}$, $b \in K_{\beta}$ then ape and bpf where $e \in E_{\alpha}$ and $f \in E_{\beta}$. Now $(a\alpha b)\rho = (a\rho)\alpha(b\rho)$ = $(e\rho)\alpha(f\rho)$ = $f\rho$. Thus adopf, where $f \in E_{\beta}$. Thus ado $\in K_{\beta}$. Similarly abo $\in K_{\alpha}$. Next let $a' \in V_{\alpha}^{\beta}(a)$ and $c \in K_{\gamma}$. Then cog where $g \in E_{\gamma}$. Then $(a\alpha c\gamma a')\rho = (a\rho)\alpha(c\rho)\gamma(a'\rho)$ = $(a\rho)\alpha((g\rho)\gamma(a'\rho))$ = $(a\rho)\alpha(a'\rho)$ = $(a\alpha a')\rho$. Thus $a\alpha c\gamma a'\rho a\alpha a'$ where $a\alpha a' \in E_{\beta}$. Hence aαςγα' \in K_{g} . Similarly aγcαa' \in K_{g} . Therefore K is a normal family of subsets of S. Next $(KW)_{\gamma} = \{x \in S : eax \in K_{\gamma} \text{ where } e \in K_{\alpha} \text{ for some } \alpha \in \Gamma\}$. Then $K_{\gamma} \subseteq (KW)_{\gamma}$. To show $(KW)_{\gamma} \subseteq K_{\gamma}$, let $x \in (KW)_{\gamma}$. Then $e\alpha x \in K_{\gamma}$ for some $\alpha \in \Gamma$ and $e \in K_{\alpha}$. Consequently $(eax)\rho = g\rho$ where $g \in \mathbb{E}_{\gamma}$ or, $(e\rho)\alpha(x\rho) = g\rho$ or, $x\rho = g\rho$ or, $x \in \mathbb{K}_{\gamma}$. Thus $(\mathbb{K}\mathbb{W})_{\gamma} \subseteq \mathbb{K}_{\gamma}$. Therefore K = KW and so K = ker $\rho \in \overline{N}$. Thus if ρ is a Γ -group congruence, then $\ker \rho = K \in \overline{\mathbb{N}}. \text{ We shall now prove that } \rho_{K} = \rho. \text{ If (a,b)} \in \rho_{K} \text{ , then aYb'} \in \mathbb{K}_{\delta} \text{ for }$ some $b' \in V_{\gamma}^{\delta}(b)$. Thus $a \gamma b' \rho h$ for some $h \in E_{\delta}$ and $a \rho = (a \rho) \gamma((b' \delta b) \rho) = (h \rho) \delta(b \rho) = b \rho$. Thus $\rho_{\kappa} \subseteq \rho$. Conversely, if $(a,b) \in \rho$ and $b' \in V_{\gamma}^{0}(b)$, then $a\gamma b' \ni b\gamma b' \in \mathbb{F}_{0}$ and $a \in (a,b) \in \rho_{\kappa}$. Therefore $\rho = \rho_K$. Thus from above and by lemma 2.3 for any K $\in \overline{N}$, K $\rightarrow \rho_K$ is a oneto-one mapping from \overline{N} onto the set of all Γ -group congruences on S. Also it is easy to see that $K \to \rho_K$ is an order preserving mapping.

Let τ be a Γ -group congruence on S, by the proof of Theorem 2.5 τ = ρ_{K} , where K = ker τ \in \overline{N} . Thus each Γ -group congruence is of the form ρ_{K} for some $K \in \overline{N} \subseteq N$.

106 A. SETH

Thus by lemma 2.3 we have,

THEOREM 2.6. The least Γ -group congruence σ on S is given by $\sigma = \rho_U$ and $\ker \sigma = UW$. THEOREM 2.7. For any Γ -group congruence ρ_K with K in N, on a regular Γ -semigroup, the following are equivalent.

- (i) $a\rho_{\nu}b$.
- (ii) $a\mu x \gamma b' \in K_{\delta}$ for some $x \in K_{ij}$ ($\mu \in \Gamma$) and some (all) $b' \in V_{\gamma}^{\delta}(b)$.
- (iii) $a' \phi x \mu b \in K_{\theta}$ for some $x \in K_{\mu}$ ($\mu \in \Gamma$) and some (all) $a' \in V_{\theta}^{\phi'}(a)$.
- (iv) b $\mu x \theta a' \in K_{\underline{\theta}}$ for some $x \in K_{\underline{\mu}}$ ($\mu \in \Gamma$) and some (all) $a' \in V_{\underline{\theta}}^{\varphi}(a)$.
- (v) $b'\delta x \mu a \in K_{\mu}$ for some $x \in K_{\mu}$ ($\mu \in \Gamma$) and some (all) $b' \in V_{\nu}^{\delta}(b)$.
- (vi) ace = $f\beta b$ for some $\alpha, \beta \in \Gamma$ and some $e \in K_{\alpha}$, $f \in K_{\beta}$.
- (vii) eaa = b β f for some $\alpha, \beta \in \Gamma$ and some $e \in K_{\alpha}$, $f \in K_{\beta}$.
- (viii) $K_{\beta}\beta a\alpha K_{\alpha} \cap K_{\beta}\beta b\alpha K_{\alpha} \neq \phi$ for some $\alpha,\beta \in \Gamma$.

PROOF. (ii) => (iii) Suppose auxyb' $\in K_{\delta}$ for some $x \in K_{\mu}$ and $b' \in V_{\gamma}^{\delta}(b)$. Then for any $a' \in V_{\theta}^{\phi}(a)$, $a' \phi(a\mu x \gamma b') \delta b = (a' \phi a) \mu(x \gamma (b' \delta b)) \in K_{\theta}$ as $a' \phi a \in K_{\theta}$ and $x \gamma b' \delta b \in K_{\mu}$. (iii) => (vi) Let $a' \phi x \mu b \in K_{\theta}$ for $a' \in V_{\theta}^{\phi}(a)$ and $x \in K_{\mu}$.

Then $a\theta(a'\phi x \mu b) = (a\theta a'\phi x)\mu b$ which is (vi) as $a'\phi x \mu b \in K_{\theta}$ and $a\theta a'\phi x \in K_{\mu}$. (vi) => (viii) Let $a\alpha e = f\beta b$ for some $\alpha,\beta \in \Gamma$ and $e \in K_{\alpha}$, $f \in K_{\beta}$. Then we have $f\beta a\alpha e \alpha e = f\beta f\beta b\alpha e$ implying $K_{\beta}\beta a\alpha K_{\alpha} \cap K_{\beta}\beta b\alpha K_{\alpha} \neq \phi$.

Thus (ii), (iii), (vi) and (viii) are equivalent.

Interchanging the roles of a and b we see that (iv), (v), (vii) and (viii) are equivalent. Also (i) and (vi) are equivalent by Theorem 2.1. Thus all the conditions (i) - (viii) are equivalent.

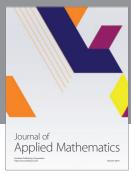
COROLLARY 2.8. Let σ denote the least Γ -group congruence on a regular Γ -semi-group S. Then the following are equivalent.

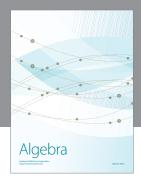
- (i) a0b.
- (ii) $a\mu x \gamma b' \in U_{\delta}$ for some $x \in U_{\mu}(\mu \in \Gamma)$ and some (all) $b' \in V_{\gamma}^{\delta}(b)$.
- (iii) $a' \phi x \mu b \in U_{\theta}$ for some $x \in U_{\mu}(\mu \in \Gamma)$ and some (all) $a' \in V_{\theta}^{\phi}(a)$.
- (iv) bux $\theta a' \in U_{b}$ for some $x \in U_{U}(\mu \in \Gamma)$ and some (all) $a' \in V_{\theta}^{\phi}(a)$.
- (v) $b'\delta x \mu a \in U_{\gamma}^{\psi}$ for some $x \in U_{\mu}(\mu \in \Gamma)$ and some (all) $b' \in V_{\gamma}^{\delta}(b)$.
- (vi) age = f\beta b for some $\alpha, \beta \in \Gamma$ and $e \in U_{\alpha}$, $f \in U_{\beta}$.
- (vii) $e_{\alpha}a = b\beta f$ for some $\alpha,\beta \in \Gamma$ and $e \in U_{\alpha}$, $f \in U_{\beta}$.
- (viii) $U_{\beta}\beta\alpha\alpha U_{\alpha} \cap U_{\beta}\beta b\alpha U_{\alpha} \neq \phi$ for some $\alpha,\beta \in \Gamma$.

ACKNOWLEDGEMENT. I express my earnest gratitude to Dr. M.K. Sen, Department of Pure Mathematics, University of Calcutta, for his guidance and valuable suggestions. I also thank C.S.I.R. for financial assistance during the preparation of this paper. I am also grateful to the learned referee for his valuable suggestions for the improvement of this paper.

REFERENCES

- SEN, M.K. and SAHA, N.K., On Γ-semigroup-I. <u>Bull.Cal. Math. Soc.</u>, <u>78</u> (1986), 180-186.
- SEN, M.K. and SAHA, N.K., Orthodox Γ-semigroup. <u>Internat. J. Math. & Math. Sci.</u>, to appear.





Submit your manuscripts at http://www.hindawi.com

