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ABSTRACT. We show that there are varieties of somewhat different loop soliton lattices when we

specify an integration path in No Integrability Aesthetic Field Theory. These are illustrated using
two dimensional computer maps. We have previously studied several such systems using the new

approach to non-integrable systems developed in previous papers. [1-3]. The results of these earlier

)apers indicated that the solitons were rearranged by the new integration scheme in an erratic

looking manner. However, we were restricted to regions close to the origin in these studies. With

additional computer time made available and the use of tapes to store large amounts of information

we have studied the above loop soliton systems and have been able to map considerable larger
regions of the x,y plane. Symmetries for locations of the planar maxima and minima have been

uncovered within a particular quadrant, although the symmetry found is not as great as the lattice.

The type symmetry found is not maintained when more than one quadrant is involved. We also

study a system that can be looked at as a perturbation of a loop lattice system. A brief discussion

of the background material appears in the appendix.
1. INTRODUCTION.

We have proposed a new integration scheme to handle non-integrable equations [1-3] and have

applied this method to the Aesthetic Field Equations [4-6]. In this approach there is but a single
change function at each point. The role of the field equations is to determine change between a

point and its neighbors (neighboring points lie on lines parallel to the coordinate axes). From data

at a single point we can in this approach calculate the field throughout three dimensional space.

Then, this information enables us to calculate the field on succeeding hypersuffaces. It is not

necessary to make us of past history in such a calculation.

We have argued that non-integrable systems can be considered more natural than integrable
systems as one can look at integrability as unduly restrictive [4]. Also, different integration paths
traverse different environments, so it can be considered unnatural to expect that different

integration paths give identical results.

We shall, in this paper, consider soliton solutions to the Aesthetic Field Equations [4]. We
have obtained the following solutions when we specify an integration path:

1) Point lattice soliton systems in three dimensional space-time (soliton solutions are

characterized in our work by the magnitude of the maxima (minima) not changing in time).
2) Closed string (loop) lattice solitons in four dimensional space-time.
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The questions arise of how the additional degree of freedom associated with the new

integration scheme affects the soliton solutions. The additional degree of freedom takes the form of

a linear superposition principle at each point. The superposition principle collapses into a single
contribution when the integrability equations are satisfied.

We have previously [1-3] studied the two types of soliton systems above using the new

integration scheme. However, we were constrained to regions close to the origin due to limitations

in computer time and to numerical errors distorting the results. Nevertheless, we were able to draw

some definite conclusions even with coarse grids.
For the point soliton system we found that solitons could not be followed in time for as long as

we wish due to solitons appearing and disappearing.
For the loop soliton systems we found that not all solitons have similar structure. We found

evidence for a loop structure. We also found evidence for string solutions which did not dose in

the region studied. In one instance the computer run took one hundred hours of CPU time on the

North Dakota IBM 3090.

We found that the soliton magnitude obtained when we specified an integration path was

preserved by the new integration scheme.

Additional computer time has been made available enabling us to study considerably larger
region of space in this paper. The work here has been made possible by storing large amounts of

information on tapes. The present more detailed investigation is restricted to z 0, z0 0 maps as

a three dimensional detailed calculation still involves more computer time than we presently have
available.

The soliton property enables us to have a handle on the error problem. Deviations from the

soliton magnitude implies errors are a factor. In this case we can redo the calculation with a

smaller grid size if the errors are greater than an allowed tolerance.

In this paper we have made use of the grid size .00234375 which is a factor 12 smaller than our

most coarse grids used in References 2 and 3 where we already were able to draw definite results
when we stayed dose to the origin.

In the study we find several types of loop lattice, when we specify a path within the Aesthetic

Field Theory, having different properties.

II. Point Soliton Lattice System
is taken to beWe continue our study of the data in Reference 2. Here, rj/=

1) r2 1.o I12 -1.0

r]l =-1.0 121 1.0

with the other I’./ 0.

To get away from such simple values we integrate along z, then y, then z, then y, then z and then
z going 700 points for each segment with grid size .003. The resulting I’j/ we then used as origin
point data. This system is intrinsically of a three space-time dimensional character. The z axis is

referred to as the time axis.

This system was studied previously in Reference 2. Note Figure 8 of this reference which

occurs when we specify an integration path and Figure 9 of this reference which results when we

apply the new approach to no integrability. The component mapped is r3. We see that Figure 9

suggests a more disorderly system than the lattice of Figure 8 although we do see the following
symmetry: When z-+-z and positive number go into negative numbers we see a similar system of
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contour lines (except in the immediate region close to z 0).
Within any particular quadrant no obvious symmetry was apparent.

An important result obtained in Reference 2 was that the soliton magnitude .49 was

maintained by the integration scheme. The solitons could then be said to be rearranged from the

lattice position. Evidence is also presented in Reference 2 that trajectories of solitons cannot be

followed in time for as long as we wish due to solitons appearing and disappearing. This has led us

to remark nonintegrable systems may ultimately account for quantum type behavior. This

emphasizes that an understanding of exactly what sorts of effects can be attributed to the new

integration scheme, when applied to a lattice system, would be of value.

We may ask---does the rearrangement of the solitons by the new integration scheme lead to

what resembles an erratic distribution of solitons? Or does a mapping of a large region of space

reveal a symmetric pattern for the solitons?

The results of our present study of the system associated with (1) is given in Figure 1. The

+ quadrant is mapped with .0023437,5 grid. We mapped 8,076 points along z and 2,687 along y.

We note maxima (minima) having values of 4- .49 and 4- .23. No deviations from these maxima

(minima) numbers was obtained in the region mapped indicating that numerical errors are not a

problem for the grid size used. We find that the location of maxima (minima) do not at all

imulate a random system. Thus, it is easy to be deceived by the small region mapped in

Reference 2.

Consider any maxima (minima) in the + quadrant. If we proceed 40 units in z and then 40

units in -y (each units 48 x .00234375), we then coma across a maximum (minimum) of the same

magnitude.
In the 45 degrees diagonal direction we come across four different structures (as indicated by

the contour lines in Figure 1) then our results suggest that this structure repeats.
If we look at a maximum (minimum) in, say, the quadrant and then go over forty units

in -V and forty units in z thereby entering the +- quadrant we do not find any maximum

(minimum). Thus, the symmetry is not respected when more than one quadrant is involved.

Maxima and minima to the right of the z -y line are located in a regular way as we increase

For example, we have a maximum of .237 at z 17, /=-4 21-. This maximum is repeated atz.

z 73, /= -4 and z 128, /= -4. Thus, we see a repeat of the maxima when / z 5fi 4-1.

The results of Section V suggest that we have a repeat of maxima (minima) as a function of /for
maxima (minima) to the left of the z =-, line. However, Figure 1 is not deep enough in /to
confirm this here.

Consider the maximum .237 at z 17, /= -4 . We proceed along the 45 degree direction

measured downward from the + z axis). We then cut along contour lines as shown by Figure 1.

If we go to the right 5fi units in z to another similar maximum and then proceed along the 45

degree hne the contour lines that are cut have a different character. The location of successive

maxima (minima) to the right of the z =-/line can be predicted according to a pattern but the

contour lines in the vicinity of a particular maximum (minimum) can be different than the contour

lines around another maximum (minimum). An example of this effect is the minimum -.498 at

z 19, /=-10. If we go to z 75, /=-10 we see another minimum of magnitude -.498.

However, the -.400 contour lines surrounding the two minima are not similar.

The conclusion we reach in this Section is that the new approach to no integrability leads to a

marked symmetry pattern within a quadrant. However, the symmetry is not as great as the
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lattice. We have different structures on one side of the x =-y line as compared to the other side.

Contour lines surrounding the maxima can depend on its location. Also we have what ca be called

a quadrant effect. The symmetric pattern of repeating maxima (minima) Mter proceeding forty

units in x and minus forty units in y is not vMid when proceeding across a coordinate axis.

III. A Loop Lattice Soliton System
We now use data (1) in conjunction with a four dimensional e given in Equation (3). This

data is the same as used in Reference 1. We also later studied this system in reference 7 and 8.

When we specify an integration path we obtain a map given by Figure 2 of Reference 7. The

map is for r]l. In three spatial dimensions we see a loop lattice (Figures 1 and 2 of Reference 8).
This data differs from that of Section II in that it describes a four dimensionM space-time

system.

In Reference 1 we studied this system using the new integration scheme (note Figure 2 there).
The region studied was not large enough to uncover symmetries within a qua:lrant. Thus, Figure 2

of Reference 1 might well suggest something of an erratic pattern for the soliton maxima (minima)
of magnitude .64,

The soliton magnitude of .64 was also present when we specify n integration path.
We did not observe the symmetry between quay[rants when z---z nd positive numbers go

into,negative numbers as we observed in Section II. However, we note that maxima having the

value of .64 occurred only in the + and + quadrants and minima of magnitude .64 only
occurred in the + + and quadrants.

Other magnitudes besides .64 occurred for maxima (minima) within the map.

This system was again studied with the finer grid used in Section II and over a larger region of

space. The results are given in Figure 2 for + quadrant. The map is for rl. The larger region
enables us to unmask a symmetric pattern reminiscent of Figure 1. Starting with a planar
maadmum (minimum) we then proceed 36 units in z and 36 units in -y. We then come across

nother planar maximum (minimum) of the same magnitude.
This data was slightly more sensitive to error thaz the data of Figure 1 as -4- .64 appears as +

.62 farther from the origin.

The contour lines had a different shape in Figure 2 as compared with Figure 1, but otherwise

the symmetry pattern uncovered within a quadrant resembled one another in the two instances.

The next question is whether there exists other soliton loop lattices of different character (as
compared with Figure 2 of Reference 7). Do other such soliton loop lattices have similar

symmetries as seen in this section when we apply the new integration scheme?

IV. A Third Set of Data
Consider the following I7

-@=

rt=

-ro =
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is then obtained using the following

88 -.42 -.32 .22

(3)
.5 .9 -.425 .3

.2 -.55 .89 .6

44 -.16 .39 1.01

Use is made of

(4) ri,

This data was not studied previously. When we specify a path by first integrating z0, then z, then

y and then z, we get the map of Figure 3 when z -1.5. Three dimensional studies again indicate

a loop soliton lattice with maxima (minima) having the magnitude of .95.

Comparing Figure 3 with Figure 2 of Reference 7 we note the following: The closed contour

lines of Reference 7 point to the right and then to the left as we varied y. The pattern is repeated.
Qn the other hand, the closed loops of Figure 3 all point towards the right. Thus, this loop lattice

has a somewhat different character.

The results applying the new integration scheme is given in Figure 4.

In Figure 4 we study the + quadrant for F]I. We find planar minima having the sohton

magnitude of .95. The + quadrant has regions of positive numbers surrounded by a sea of

negative numbers with maxima having magnitude of .77. There is also a maxima of magnitude of

.30 close to the z 0 axis.

The basic symmetry which appeared in the previous sections is present here as well.

Proceeding from a maximum (minimum) 24 units in the z direction and 24 units in the -y

direction leads to a similar maximum (minimum). This type of symmetry we shall see is present
for all the loop sohton lattices that we have studied.

In the quadrant the contour lines are different looking. Here outside the region close to

z 0 we see planar minima of magnitude .82. In this case the negative numbers are surrounded

by a sea of positive numbers. The maxima have magnitude .95 which is the soliton magnitude.
In the + quadrant we note different types of structures to the left of the z =-y line as

compared to the fight of this line. This effect is pronounced here although it is also present for the

other sohton loop lattices we study (including the system of Section III although it was not as

pronounced in Figure 2).
V. A Fourth Set of Data

Consider the following

(s) r r], r =-r =-r =-, 1.0

r10 r r, =-@ =-rl0 =-r, 1.0

r10 I’01 r =-Fl =-r0 =-r 1.0

r]0 r r=-r =-r0 =-rg 1.0
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the other F# are zero. This set of data has not been studied previously.
We specify a path in the manner discussed previously and map F0. The result is given in

Figure 5. This set of data leads to a soliton loop lattice but with two types of maxima (minima)
having the magnitudes 1.36 and .50. In our previous sets of data there was but one magnitude for
the maxima (minima) when we specify a path. We refer to the lattice of Figure 5 as a -1-A, 4-B

type lattice.

In Figure 5 we show 4- .10 contour lines.

In Figure 6 we apply the new integration scheme to this data. In this case we have studied the

+ quadrant with a greater depth in y.

The results indicated that we have the same magnitude for the maxima (minima) as when we

specify a path, namely 1.36 and ./50, although the data is more sensitive to error (the deviations

from these numbers are s much as .06).
We note that within the + quadrant we have maxima and minima of magnitude 1.36. This

feature was not present for the previous systems. In addition, within the + quadr&ut we also

see maxima and minima of magnitude .50.

There is no obvious symmetry between the different quadrants.

Starting with a maximum (minimum) and going 20 units in z and 20 units in -V we arrive at

another maximum (minimum) of the same type as long as we stay in the same quadrant. Thus,
the basic symmetry which we have seen previously is present for this more complicated system.

To the right of the z =-y line we see maxima (minima) repeated with regular spacing as we

vary z, while to the left of the z -y line we see maxima (minima) repeated with regular spacings
as we vary y. This effect was suspected in Section II but we did not have enough depth in y to

confirm the effect there.

Consider the minimum of magnitude 1.33 at z 24, y---21. This is slightly to the right of
the z =-y line. This minimum is repeated as we proceed 33 units in z with y unchanged.
However, the .10 contour line slightly to the fight of the maximum has a different character as we

displace z. Thus, the symmetry in z is for the location of planar mdma (minima) and not for the
contour lines in the vicinity. This feature is present as well for the different soliton loop lattices.

We find planar maxima (minima) other than the 1.36 and .50 magnitudes, but in the
and + + quadrants. For example, a planar maxima of magnitude .33 shows up using a .0046875

grid close to z 0 in the quadrant and is repeated as we alter y.
VI. A Fifth Set of Data

Consider the following 1.
1.0

-r 2 =-rl 0 =-r 02
We then use the e given in (3) to obtain our origin point data. This data was not considered in
any previous work.

We specify a path as before and then map Fl in Figure 7. This system is another example of
a + A, 4-B soliton loop lattice with magnitudes of maxima (minima) having the values 1.50 and
.86. This set differs from the set of Section V as the different magnitudes lie below one another and
not alongwise as well as in Figure 5.

The results of the new integration scheme is presented in Figure 8. We still see the 1.50 and
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.86 magnitudes for maxima (minima) along with other magnitudes as well. In the 4- quadrant
there are maxima of magnitude 1.5 and .86 while in the quadrant we see minima of this

magnitude. The sensitivity to error is comparable to the previous section.

When we go 45 units from the maximum (minimum) in z and 45 in -y we obtain another

maximum (minimum) of the same type as long as we stay within a single quadrant. The

symmetries within the quadrant are similar to what we have seen previously.

We do not see any apparent symmetry between the + and quadrants.
VII. A Sixth Set of Data

Consider the following F.
(7) r2 r]3 r], i.o

r3 ro ro -1.0

r? r, r 1.0

r?2 F3 FI =-1.0

We obtain origin point data using (3). This set of data was studied previously in Reference 3.

When we specify an integration path we obtain Figure 2 of Reference 3 and when we use the new

approach to integrability we obtain Figure 3 of Reference 3 for the quantity rl.
We restudy the situation of Figure 3 of Reference 3. The results are given for the +-

quadrant in Figure 9. We do not see a symmetry between quadrants, but within the +-
quadrant we see the same type of symmetry that we have seen common to the other sets of data in

this paper. For example, starting with a maximum (minimum) and going 23 units in x and 23

units in -y leads to a maximum (minimum) of the same magnitude.
VIII. A Seventh Set of Data

Consider the following F.
(s) rl =-. r= =-. ra =.25

using e’ given by (3) we then obtain the origin point data.

A map of rll for the + + quadrant is given by Figure 10 when we specify an integration path
in the same manner as before. We note that Figure 10 look very similar to Figure 2 of Reference 3.

However, the magnitudes of maxima and minima are not all the same, but vary from .85 to .94,
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when use is made of a .01875 grid with spacing between points of 16 x .01875. Further computer

runs with different size grids also show this variation in magnitude. There is no obvious pattern for

the magnitudes that we have uncovered. Computer runs in z and x0 do not show a soliton system
as the magnitudes change in z and x0. In Figure 10 we see some deviation from a rigorous lattice

(note a 40 contour line appearing over one of the -40 contour lines and other small deviations from

regularities).
If we connect up the planar maxima (minima) as we vary z we obtain a network in a fairly

regular pattern.

We can think of Figure 10 as a kind of perturbation of the lattice of Figure 2 of Reference 3.

The questions is what happens to this system when we apply the new integration scheme. This is

shown in Figure 11 for F]l. Qualitatively we see a somewhat regular pattern but quantitatively we

do not see the A x a, A y =-a symmetry that we have seen throughout this paper. Also the

magnitude of planar maxima and minima does not remain the same.

This set of data illustrates that we need not restrict ourselves to soliton lattices within the

theory.
IX. Summary

The only soliton system we have thus far obtained in Aesthetic Field Theory in four

dimen,sional space-time is the loop lattice (when we specify an integration path). We have, in this

paper, obtained several different varieties of loop lattice and have taken the opportunity to study
them here. In three dimensional space-time we have also obtained a point soliton lattice.

We have on previous occasions studied how the soliton systems are affected by the new

integration scheme [1-3] which allows for a superposition principle at all points off the coordinate

axes. However, our results were constrained to regions close to the origin. In Figure 3 of Reference

3 an x,y map uncovered more than 50 planar maximum and minimum close to the origin in a

pattern that appeared rather erratic. In this paper we have had available considerably more

computer time. Also, we have made extensive use of tapes to store a large amount of information.

With these aids we have uncovered clear cut .symmetry patterns within a particular quadrant. The

symmetry was found for all soliton lattices studied. The symmetry is not as great as the lattice.

As we mentioned above, closer to the origin the planar maxima and minima appear to be located in

a more disorderly fashion.

We also note that the soliton magnitudes are preserved by the integration scheme. We also
found other magnitudes appearing as well.

An aim of our studies is to see whether the new integration scheme can rearrange soliton

lattice particles from a symmetric lattice configuration to a disorderly type system. The idea under
consideration is whether the new integration scheme can transform a "classical" system into a

"quantum" system. The evidence in this paper shows clear cut symmetry within a quadrant.
However, the type of symmetry observed is not present when more than one quadrant is involved.

Also, within a quadrant the situation does not appear regular close to the origin. Thus, it was easy
to be deceived by maps involving limited regions as in our previous work. Three and four

dimensional studies would be useful in obtaining a better understanding of the system. What

becomes of the non-regular looking regions as we integrate in z and x0? A study of non lattice

multiparticle solutions which we initiated in Section VIII may also be useful in generating
disorderly looking multiparticle solutions.
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Figure 5 Data of Section V specifying an integration path. Grid is .075. Map is for r0.
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APPENDIX

In the appendix we give some background for the material in the text.

The underlying hypothesis we make is that the foundations of physics lie in mathematical

aesthetics (if not how can we ultimately justify one set of equations rather than another as there are

fundamental limitations on empiricism). Another motivation, is that a system of mathematically

aesthetic principles may have sufficient content that it may simulate the world of nature in some

domain. Also, it may serve as a laboratory to study fundamental principles. As an example of this

we cite our article "The Arrow of Time"9. The arrow of time is not tied to any specific set of field

equations. We have found that this concept has a natural explanation within the aesthetic fields

program.

In References 4 and 10 we have shown that there is such a concept as mathematically aesthetic

principles; that these principles can be cast into the form of a set of nonhnear partial differential

equations; and these equations have considerable content as evidenced by computer solutions.

Once one introduces the notion of Cartesian tensor one opens the door to tensors of all rank.

We have, in our work, made the hypothesis that all Cartesian tensors, regardless of rank, should be

treated in a uniform way with respect to change. This is the core of what we call Aesthetic Field

Theory.
We also require that arbitrary data be supphed at a single point rather than on a hypersurface.

This minimizes the arbitrariness of the theory. Also, if data were arbitrary on a hypersurface then

particle structure, an aim of the theory, would also be arbitrary on the hypersurface.
As most theories admit a vector field we shall start off by assuming the existence of a vector

Ai. We write for the change of Ai, between neighboring points

(AI)

rk is a set of coefficients which we call the change function as it determines the change of Ai. We
have dropped terms of higher order in dzk. We allow for rk to be a function of Ai, among other

things, to allow for greater generality. For a second vector field we write

(A2)
is a universal change function that determines the change of allThus, we are assuming that rjk

vectors in a uniform way. That is, one set of numbers corresponding to a vector should not be

treated any differently from any other vector set of numbers. From the product AiBj we have from

(A1) and (A2)
(A3) d(AiBj) (rtAtBj+ rtAiBt)dk

determines the changeNow AiBj is an example of a second rank tensor. We then require that rjk
of all second rank tensors in a uniform way. For a second rank tensor gij we then get

(A4) dij (Fikgtj+ rjtit)dt
Going one step further, an nth rank tensor is taken to behave like a product of n vectors. From Ai,

gij, we introduce A

(AS) A gijA
The fom (A1) -d (A4), poidd gij has an inverse, we get

(A6) dAi= -rtAid
In a Cartesian system dA is a vector. Thus, rt is a third rank tensor from (A1) and thus behaves

like AiBjCk Therefore, the change of I’ik is given by

(AT) drk m(r,, r/+ rj,rt r r%t),
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Then from
dzl

we get the "aesthetic field equations"

(A9) ori r r/+r r-r r.
a 1 ins is determined in terms ofThee equations involve the chge fction one.

t a single int. We s from (Ag) that dewtiv of ga e ven by pructs of

gma.
We note that we c obtn (A6) by requiring that [ behaves like o. Thus, i is not

ncess th ij h m inverse o obn (A6).
The Aesthetic Fields Progr involves inflate number of equations deermines the

chge of tensors regs of r, in the mner shown previously in the pnx.
However, we nd only fus on Equation (Ag) ts ves the chge of r itself.

equation that is sued in he text. Further scussion c found in he ferences cit

preously. We hve found h (Ag) h remkble nen. We hve found mipicle

solutions, in he form of lattice solutions, well more complex systems. We hve found soliton

pticles cherized by he mmum (nimum) no chging in time. Also, we hve found

clo tring pticl.

An imrtt inedient in o work is that in inteting (Ag) om the orion there is no

re,on for integration to indendent of ph. Such system is led noninteable. We have

develod the thry of nonteable systems for equations where derivtiv e ven by
pructs ( in the c th (Ag)) in es of prs wch esid in ference 11. h

he prn paper we me use of wha is cled he ernae or second approh to nonineble
systems. This pproh c schemticy written

(A10) r() 1/ contMbution om neing int om-wch the field h reMy
ndeen.

The stion is over inteion directio d is thenr of inetion rtions. Ts
he se indecision scheme rome use of in he Arrow of Time pr9 where (A10) is scus
in eater del.
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