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ABSTRACT. Using measure theory, the orbit counting form of P61ya’s enumeration theorem

is extended to countably infinite discrete groups.
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1. INTRODUCTION.
Let G be countable discrete group acting as permutations on a countable set D. Let S be a

nite set with cardinality, SI N. Denote by S the set of functions from D to S. For 3’ S
define g S by g(d)=7(9ld). For a subgroup K of G let mK be a set of representatives for

the orbits of K in S. Let y be a Hilbert space with orthonormal basis {%,: 3" ’5} and inner

product < >. Define a unitary representation of G on by ,t(9)e3"= %3".
The number of orbits of G in SDis denoted by AGI. For finite G and D this can be

counted by the P61ya enumeration theorem. Specifically, for each 9 G, let ci(g)be the

number of cycles of length in the representation of 9 as a product of disjoint cycles in D and

let M(g)=vlc(a)...V,,c’(a), where n=IDI. The cycle index of G on D is the polynomial PG=
1 M(g). Denote by aPG the value Pa at y,=N, i=1 to n. P61ya’s enumeration theorem,G,g G

see P61ya [1], says that IAal aPa.
Define the operator TG on X by Ta= ,(g). Then it can also be shown, see

g G
Williamson [2], that IAGI- trace(Ta on ). It is these two ways of measuring a set of

representatives for orbits that we extend to infinite G and D.

2. THE MAIN RESULTS.
If we view S as a finite group with the discrete topology, then SD is a compact group in the

product topology. Let be normalized Haar measure on S.
={I if g3’=3’For g G and 3’ sD define f(3")= < r (g)e3", e3’ >. Then f(7) 0 otherwise.

LEMMA 1. f is measurable.

7(1d=7(d)PROOF. Let f.[d,,=’_
oherwise

and h,,(3")= H L(3"(d,))
i=1

Then h, is measurable for all n. Now g3,=7 if and only if 3’ is constant on the orbits of g. But
this happens if and only if 3"(g-td)=v(d) for all de D. Therefore :1:(3")=1 if and only if f,(3"(d,))=l
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for all i. This shows that f(7)= imoohd7) and therefore measurable by Hewett and Stromberg

[3, 22.24b]. 13

We write D={d,d2,da } and let D.=[d dO. Let < g > be the subgroup generated by g

and < /> d the orbit of d under < g >. For each n and each k _< n let ct’(9) be the number of

distinct cycles of g such that </>dt3D, k. Form the monomial

LEMMA 2. | < (:/)eT, e. > dp{/ lira trAP(g).

PROOF. From the proof of Lemma I we saw that < ,(#)e7, e7 > h(7). So by the

dominated

if d only if 7 is coaster on the intersection of the orbits of g with D otherwise hdT)=O. Let
co,rant on the intersection ofB,=

u(B. Since there e Nchoices for the vMue of on eh orbit mting D.d no restrictions

on 7 outside D., we get u(B ()...

Let Go be the subgroup of G consisting of all those g G having only a finite number of

cycles in D of length greater than 1.

LEMMA 3. I< (v) 0 yor Go.

PROOF. Suppose g ft Go. Then there either exists ko such that Cto"(g).-,oo as n.-,oo or there

exists an increasing sequence (k,,] such that ct,’() _> I. In the first case, for n>_ ko,

i=l i=l

0 _< I < (g)eT"e7 > dp(7) lin-’moot(B") < n.-.oolim N-’to’(t) O. I’n the second case we get

n- ci"(g) <_ k,,-1 and so 0 _< < ,r(g)eT, e7 > d#(7) lirmoot(B,,) -< n--,oolirn N’-(t"-’)= O.
i=l So

For each k let Ft= {g G: gdi= d for all > k}. Then {FI is a nondecreasing sequence of

subgroups with Ft=Go. Suppose G {g,, g, } and let G.,= {g, g.}. Assume G is
k=l

ordered in such a way that there exists a subsequence {rntj with Go c G,t= Ft.

Let F be a finite subset of G. Define the hi’cycle index of F to be the polynomial PF*
1 IW’(g). Define the operator TF on X by TF TI =(g)" Write P,* for Pa," and
IFgF
Tmfor TGm.
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THEOREM 4. A6. is closed and

I < T,,,,e3‘, e7 > d(7)(
k--,t an Go k-- Gn Go

PROOF. Fix k and let Dk,=(d+ 1, d+ }. If al % are representatives for the orbits

of F in SD, then Av (a, a,)xSDe. Therefore AV is closed and ,(A) . Let X be a

Hilbert space with orthonormal basis (ca: e ). By Willianson [2], s trace(Ton
aP, where Pr is the usual cycle index of F on D. Note that P=Pfor M1 n k. By

m, eP PF. Bym aP= aP"" ThcrefreLemma 3, G.,n Go
m lira aPLemma 2, P < Te,e > d,(@. So we get o(Ar)= G Go

S

Gn Go
S

Since F Go we can assume that Aao AF for all k. Therefore Aao klArt" We claim

To see this suppose that v 6 r for all k. Then there exists , 6 Aao andthat Aao=k 1
96 Go such that v=gv’. Since Go=U F there exists ko such that 9 Fo. Therefore v ad v,

k=1

represent the same orbit of F,oin S. Since 3‘ andT, E Ar we get 3’=7,. This proves the claim.

It follows that AGo is closed and hence measurable. Therefore U(AGo) ]moot(AV). This

completes the proof of the theorem. []

Suppose now that G is in no particular order. We show how to compute I(AGo). Let

a,,, tq Go and let Ta,.,

THEOREM 5. I(AG) m-oclim ln!m._. I < TA,,,’"e3"e3" > all,(3").
S

PROOF. Exists m so that lEG,,,. Fix m>_m and let H,,, be the subgroup of Go
I ifgeA,, andgenerated by A,. Define a probability measure t, on H, by u(g) A,,I

u(g) 0 otherwise. Let u be the n-fold convolution of u with itself and U the uniform

probability measure on H,,. Then by Diaconis [4, pg23], Ilu’"-UIlO where I1.11 is the

total variation lorm. If we extend the rcprcscntation , in the usual way, to the set of

measures on H, we get r(u") (Ta,,)"= Ta,,, and r(U) =Ttt,,,. It follows, therefore, that

lim < Ta,,,,,,c3’, e3" > < Ttt,,,e3", e3’ > for all "r fi St). By the dominated convergence theorem

lim [ < T e3’ > do(r) [ < TH,,,e3‘, e3" > all,(3’). Then as in the proof of Theorem 4, we
/,-x:) rn’ 7,

So So

get ,(Att)= < Ttlev, e3" > dt(3"). The result follows since Go U H. 13

sD
m=l
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3. EXAMPLE.
Suppose D D, where the D are disjoint and finite and that G sends D into itself.

Then if G is G restricted to D, G is isomorphic to the product II G. In this case the

product measure on SD need no longer come from uniform measures on q.

Let S /sl,-..,sk} nd let the measure v on S be defined by u(s. ai. If IDol m
define the measure # on S" by # H u. Let A be representatives for the orbits of G in

i=1o and PGa the cycle index. Then using the pattern inventory from P61ya’s enumeration
k k oo

i=l i=l n=l

and let A be representatives for the orbits of G in RD. Then, as in the proof of Theorem 4,

! i= I,.. k and IDol = we getwe get that (A) lira ’I k()" Note that when ai ,oo=I
p(A) p, which is the situation in Theorem 4.

Now consider the ple tiled by oc unit sque tiles with sides plel to the is d

center the crdinates (, ), m d integers. We color the tiles lack or white d compute

the meure the orbits of two goups of symmetries acting on the set of such tilings. For m a

a positive integer let D {tcs ccners (, or ,: =-,-+I,...,-I,.

Let G H l: t on D: by interchging tiles with centrM crdinates (n:,k)
k=l n+ln: d let H= H 1: act on D: by interchging tiles with centrM crdinates

(n:,v k=-n,..., n. Now let G H G, d H H H. With S={black, white}, we
n=1 m

define probability meures g. on " by u.= H ’-, where v.(black)= , n(+l)}- +
k=l

=d v.(white)= 1-v.(black). Let A(G=) =d A(H=) representatives for the orbits of G.d

H. respectively on d let A(G) d A(H) be representatives for the orbits of Gd H

resctively on S. Then .(A(H.)) ezp(-I/n9 =d so V(A(H)) _mit H .Ja(gd) > O.

n=l
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