AN INFINITE VERSION OF THE PÓLYA ENUMERATION THEOREM

robert A. bekes
Mathematics Department, Santa Clara University
Santa Clara, CA 95053
(Received July 29, 1991 and in revised form December 17, 1991)

Abstract

Using measure theory, the orbit counting form of Polya's enumeration theorem is extended to countably infinite discrete groups.

KEY WORDS AND PHRASES. Infinite discrete group, Pólya's emumeration theorem . 1991 AMS SUBJECT CLASSIFICATION CODE. 05A15

1. INTRODUCTION.

Let G be countable discrete group acting as permutations on a countable set D. Let S be a finite set with cardinality, $|S|=N$. Denote by S^{D} the set of functions from D to S. For $\gamma \in S^{D}$ define $g_{\gamma} \in S^{D}$ by $g_{\gamma}(d)=\gamma\left(g^{-1} d\right)$. For a subgroup K of G let Δ_{K} be a set of representatives for the orbits of K in S^{D}. Let 36 be a Hilbert space with orthonormal basis $\left\{e_{\gamma}: \gamma \in S^{D}\right\}$ and inner product <, >. Define a unitary representation of G on 36 by $\pi(g) e_{\gamma}=e_{g \gamma}$.

The number of orbits of G in $S^{D_{i s}}$ denoted by $\left|\Delta_{G}\right|$. For finite G and D this can be counted by the Pólya enumeration theorem. Specifically, for each $g \in G$, let $c_{i}(g)$ be the number of cycles of length i in the representation of g as a product of disjoint cycles in D and let $M(g)=y_{1}{ }^{c_{1}(g)} \ldots y_{n}{ }^{c_{n}(g)}$, where $n=|D|$. The cycle index of G on D is the polynomial $P_{G}=$ $\frac{1}{|G|_{g \in G}} \sum_{G(g)}$. Denote by σP_{G} the value P_{G} at $y_{t}=N, i=1$ to n. Pólya's enumeration theorem, see Pólya [1], says that $\left|\Delta_{G}\right|=\sigma P_{G}$.

Define the operator T_{G} on \nVdash by $T_{G}=\frac{1}{|G|} \sum_{g \in G} \pi(g)$. Then it can also be shown, see Williamson [2], that $\left|\Delta_{G}\right|=\operatorname{trace}\left(T_{G}\right.$ on 36$)$. It is these two ways of measuring a set of representatives for orbits that we extend to infinite G and D.

2. THE MAIN RESULTS.

If we view S as a finite group with the discrete topology, then S^{D} is a compact group in the product topology. Let μ be normalized Haar measure on S^{D}.

For $g \in G$ and $\gamma \in S^{D}$ define $f(\gamma)=<\pi(g) e_{\gamma}, e_{\gamma}>$. Then $f(\gamma)= \begin{cases}1 & \text { if } g \gamma=\gamma \\ 0 & \text { otherwise } .\end{cases}$
LEMMA 1. fis measurable.
PROOF. Let $f_{i}\left(\gamma\left(d_{1}\right)\right)=\left\{\begin{array}{ll}1 & \text { if } \gamma\left(g^{-1} d_{2}\right)=\gamma\left(d_{V}\right) \\ 0 & \text { otherwise }\end{array} \quad\right.$ and $h_{n}(\gamma)=\prod_{i=1}^{n} f_{i}\left(\gamma\left(d_{\mathfrak{l}}\right)\right)$.
Then h_{n} is measurable for all n. Now $g \gamma=\gamma$ if and only if γ is constant on the orbits of g. But this happens if and only if $\gamma\left(g^{-1} d\right)=\gamma(d)$ for all $d \in D$. Therefore $f(\gamma)=1$ if and only if $f_{1}\left(\gamma\left(d_{d}\right)\right)=1$
for all i. This shows that $f(\gamma)=\lim _{n \rightarrow \infty} h_{n}(\gamma)$ and therefore measurable by Hewett and Stromberg [3, 22.24b].

We write $D=\left\{d_{1}, d_{2}, d_{3}, \ldots\right\}$ and let $D_{n}=\left\{d_{1} \ldots, d_{n}\right\}$. Let $\langle g\rangle$ be the subgroup generated by g and $\langle g\rangle d$ the orbit of d under $\langle g\rangle$. For each n and each $k \leq n$ let $c_{k}{ }^{n}(g)$ be the number of distinct cycles of g such that $\left|\langle g\rangle d \cap D_{n}\right|=k$. Form the monomial $M^{n}(g)=\frac{1}{N^{n}} y_{1}{ }^{c_{1}{ }^{n}(g)} y_{2}{ }^{c_{2}(g)} \ldots y_{n}{ }^{c_{n}{ }^{n}(g)}$.

LEMMA 2. $\int_{S^{D}}<\pi(g) e_{\gamma}, e_{\gamma}>d \mu(\gamma)=\lim _{n \rightarrow \infty} \sigma M^{n}(g)$.
PROOF. From the proof of Lemma 1 we saw that $\left\langle\pi(g) e_{\gamma}, e_{\gamma}\right\rangle=\lim _{n \rightarrow \infty} h_{n}(\gamma)$. So by the dominated convergence theorem, $\int_{S^{D}}\left\langle\pi(g) e_{\gamma}, e_{\gamma}\right\rangle d \mu(\gamma)=\lim _{n \rightarrow \infty} \int_{S^{D}} h_{n}(\gamma) d \mu(\gamma)$. But now $h_{n}(\gamma)=1$ if and only if γ is constant on the intersection of the orbits of g with D_{n} otherwise $h_{n}(\gamma)=0$. Let $B_{n}=\left\{\gamma: \gamma\right.$ is constant on the intersection of the orbits of g with $\left.D_{n}\right\}$. Then $\int_{S^{D}} h_{n}(\gamma) d \mu(\gamma)=$ $\mu\left(B_{n}\right)$. Since there are N choices for the value of γ on each orbit meeting D_{n} and no restrictions on γ outside D_{n}, we get $\mu\left(B_{n}\right)=\frac{1}{N^{n}} N^{c l^{n}(g)} \cdots N^{c_{n}^{n}(g)}=\sigma M^{n}(g)$.

Let G_{0} be the subgroup of G consisting of all those $g \in G$ having only a finite number of cycles in D of length greater than 1.

LEMMA 3. $\int_{S^{D}}<\pi(g) e_{\gamma}, e_{\gamma}>d \mu(\gamma)=0$ for all $g \notin G_{o}$.
PROOF. Suppose $g \notin G_{0}$. Then there either exists k_{o} such that $c_{k_{0}}{ }^{n}(g) \rightarrow \infty$ as $n \rightarrow \infty$ or there exists an increasing sequence $\left\{k_{n}\right\}$ such that $c_{k_{n}}{ }^{n}(g) \geq 1$. In the first case, for $n \geq k_{0}$, $n-\sum_{i=1}^{n} c_{i}^{n}(g)=\sum_{i=1}^{n}(i-1) c_{i}^{n}(g) \leq c_{k_{0}}{ }^{n}(g)$. So with B_{n} as in the proof of Lemma 2, we get $0 \leq \int_{S^{D}}<\pi(g) e_{\gamma}, e_{\gamma}>d \mu(\gamma)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right) \leq \lim _{n \rightarrow \infty} N^{-c_{k_{0}}{ }^{n}(g)}=0$. In the second case we get $n-\sum_{i=1}^{n} c_{i}^{n}(g) \leq k_{n}-1$ and so $0 \leq \int_{S^{D}}<\pi(g) e_{\gamma}, e_{\gamma}>d \mu(\gamma)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right) \leq \lim _{n \rightarrow \infty} N^{-\left(k_{n}-1\right)}=0$.

For each k let $F_{k}=\left\{g \in G: g d_{i}=d_{i}\right.$ for all $\left.i>k\right\}$. Then $\left\{F_{k}\right\}$ is a nondecreasing sequence of subgroups with $\bigcup_{k=1}^{\infty} F_{k}=G_{o}$. Suppose $G=\left\{g_{1}, g_{2}, \ldots\right\}$ and let $G_{m}=\left\{g_{1}, \ldots, g_{m}\right\}$. Assume G is ordered in such a way that there exists a subsequence $\left\{m_{k}\right\}$ with $G_{o} \cap G_{m_{k}}=F_{k}$.

Let F be a finite subset of G. Define the $n^{\text {th }}$ cycle index of F to be the polynomial $P_{F}{ }^{\boldsymbol{n}}=$ $\frac{1}{|F|} \sum_{g \in F} M^{n}(g)$. Define the operator T_{F} on 36 by $T_{F}=\frac{1}{|F|} \sum_{g \in F} \pi(g)$. Write $P_{m}{ }^{n}$ for $P_{G_{m}}{ }^{n}$ and T_{m} for $T_{G_{m}}$.

THEOREM 4. $\Delta_{G_{o}}$ is closed and
$\mu\left(\Delta_{G_{o}}\right)=\lim _{k \rightarrow \infty}\left\{\frac{m_{k}}{\left|G_{m_{k}} \cap G_{o}\right|} \lim _{n \rightarrow \infty} \sigma P_{m_{k}}^{n}\right\}=\lim _{k \rightarrow \infty} \frac{m_{k}}{\left|G_{m_{k}} \cap G_{o}\right|} \int_{S^{D}}<T_{m_{k}} e_{\gamma}, e_{\gamma}>d \mu(\gamma)$.
PROOF. Fix k and let $D_{k^{\prime}}=\left\{d_{k+1}, d_{k+2} \ldots\right\}$. If $\alpha_{1}, \ldots, \alpha_{s}$ are representatives for the orbits of F_{k} in $S^{D_{k}}$, then $\Delta_{F_{k}}=\left\{\alpha_{1}, \ldots, \alpha_{s}\right\} \times S^{D_{k^{\prime}}}$. Therefore $\Delta_{F_{k}}$ is closed and $\mu\left(\Delta_{F_{k}}\right)=\frac{s}{N^{k}}$. Let \mathscr{F}_{k} be a Hilbert space with orthonormal basis $\left\{e_{\alpha}: \alpha \in S^{D_{k}}\right\}$. By Williamson [2], $s=\operatorname{trace}\left(T_{F_{k}}{ }^{o n} \mathfrak{ऊ}_{k}\right)=$ $\sigma P_{F_{k}}$, where $P_{F_{k}}$ is the usual cycle index of F_{k} on D_{k}. Note that $\sigma P_{F_{k}}=N^{k} P_{F_{k}}{ }^{n}$ for all $n \geq k$. By Lemma 3, $\frac{m_{k}}{\left|G_{m_{k}} \cap G_{o}\right|} \lim _{n \rightarrow \infty} \sigma P_{m_{k}}{ }^{n}=\lim _{n \rightarrow \infty} \sigma P_{F_{k}}{ }^{n}$. Therefore $\frac{m_{k}}{\left|G_{m_{k}} \cap G_{o}\right|} \lim _{n \rightarrow \infty} \sigma P_{m_{k}}^{n}=\frac{1}{N^{\star}} \sigma P_{F_{k}}$ By Lemma 2, $\quad \lim _{n \rightarrow \infty} \sigma P_{m_{k}}{ }^{n}=\int_{S^{D}}<T_{m_{k}} e_{\gamma}, e_{\gamma}>d \mu(\gamma)$. So we get $\mu\left(\Delta_{F_{k}}\right)=\frac{m_{k}}{\left|G_{m_{k}} n G_{o}\right|} \lim _{n \rightarrow \infty} \sigma P_{m_{k}}{ }^{n}=$ $\frac{m_{k}}{\left|G_{m_{k}} \cap G_{o}\right|} \int_{S^{D}}<T_{m_{k}} e_{\gamma}, e_{\gamma}>d \mu(\gamma)$.

Since $F_{k} \subseteq G_{o}$ we can assume that $\Delta_{G_{o}} \subseteq \Delta_{F_{k}}$ for all k. Therefore $\Delta_{G_{o}} \subseteq \bigcap_{k=1}^{\infty} \Delta_{F_{k}}$. We claim that $\Delta_{G_{o}}=\bigcap_{k=1}^{\infty} \Delta_{F_{k}}$. To see this suppose that $\gamma \in \Delta_{F_{k}}$ for all k. Then there exists $\gamma_{\prime} \in \Delta_{G_{o}}$ and $g \in G_{o}$ such that $\gamma=g \gamma$. Since $G_{o}=\bigcup_{k=1}^{\infty} F_{k}$ there cxists k_{o} such that $g \in F_{k_{o}}$. Therefore γ and γ, represent the same orbit of $F_{k_{o}}$ in S^{D}. Since γ and $\gamma \prime \in \Delta_{F_{k_{o}}}$ we get $\gamma=\gamma \prime$. This proves the claim.

It follows that $\Delta_{G_{o}}$ is closed and hence measurable. Therefore $\mu\left(\Delta_{G_{o}}\right)=\lim _{k \rightarrow \infty} \mu\left(\Delta_{F_{k}}\right)$. This completes the proof of the theorem.

Suppose now that G is in no particular order. We show how to compute $\mu\left(\Delta_{G_{o}}\right)$. Let A_{m} $=G_{m} \cap G_{0}$ and let $T_{A_{m}, n}=\left(T_{A_{m}}\right)^{n}$.

THEOREM 5. $\quad \mu\left(\Delta_{G_{0}}\right)=\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{S^{D}}<T_{A_{m}, n} e_{\gamma}, e_{\gamma}>d \mu(\gamma)$.
PROOF. Exists m_{o} so that $1 \in G_{m_{o}}$. Fix $m \geq m_{o}$ and let H_{m} be the subgroup of G_{o} generated by A_{m}. Define a probability measure ν on H_{m} by $\nu(g)=\frac{1}{\left|A_{m}\right|}$ if $g \in A_{m}$ and $\nu(g)=0$ otherwise. Let $\nu^{* n}$ be the n-fold convolution of ν with itself and U the uniform probability measure on H_{m}. Then by Diaconis [4, pg23], $\left\|\nu^{* n}-U\right\| \rightarrow 0$ where $\|\cdot\|$ is the total variation norm. If we extend the representation π, in the usual way, to the set of measures on H_{m} we get $\pi\left(\nu^{* n}\right)=\left(T_{A_{m}}\right)^{n}=T_{A_{m}, n}$ and $\pi(U)=T_{H_{m}}$. It follows, therefore, that $\left.\lim _{n \rightarrow \infty}<T_{A_{m}, n} e_{\gamma}, e_{\gamma}\right\rangle=\left\langle T_{H_{m}} e_{\gamma}, e_{\gamma}\right\rangle$ for all $\gamma \in S^{D}$. By the dominated convergence theorem, $\lim _{n \rightarrow \infty} \int_{S^{D}}<T_{A_{m},{ }^{n}} e_{\gamma}, e_{\gamma}>d \mu(\gamma)=\int_{S^{D}}<T_{I_{m}} e_{\gamma}, e_{\gamma}>d_{\mu}(\gamma)$. Then as in the proof of Theorem 4, we get $\mu\left(\Delta_{H_{m}}\right)=\int_{S^{D}}<T_{H_{m}} e_{\gamma}, e_{\gamma}>d \mu(\gamma)$. The result follows since $G_{o}=\bigcup_{m=1}^{\infty} H_{m}$.

3. EXAMPLE.

Suppose $D=\bigcup_{n=1}^{\infty} D_{n}$, where the D_{n} are disjoint and finite and that G sends D_{n} into itself. Then if G_{n} is G restricted to D_{n}, G is isomorphic to the product $\prod_{n=1}^{\infty} G_{n}$. In this case the product measure μ on S^{D} need no longer come from uniform measures on S.

Let $S=\left\{s_{1}, \cdots, s_{k}\right\}$ and let the measure ν on S be defined by $\nu\left(s_{i}\right)=a_{i}$. If $\left|D_{n}\right|=m_{n}$ define the measure μ_{n} on $S^{D_{n}}$ by $\mu_{n}=\prod_{i=1}^{m_{n}} \nu$. Let Δ_{n} be representatives for the orbits of G_{n} in $S^{D_{n}}$ and $P_{G_{n}}$ the cycle index. Then using the pattern inventory from Pólya's enumeration theorem, see Pólya and Read [1], we get $\mu_{n}\left(\Delta_{n}\right)=P_{G_{n}}\left(\sum_{i=1}^{k} a_{i}, \sum_{i=1}^{k} a_{i}{ }^{2}, \cdots, \sum_{i=1}^{k} a_{i}{ }^{n}\right)$. Let $\mu=\prod_{n=1}^{\infty} \mu_{n}$ and let Δ be representatives for the orbits of G in R^{D}. Then, as in the proof of Theorem 4, we get that $\mu(\Delta)=\lim _{n \rightarrow \infty} \prod_{k=1}^{n} \mu_{k}\left(\Delta_{k}\right)$. Note that when $a_{i}=\frac{1}{k}, i=1, \ldots, k$ and $\left|D_{n}\right|=n$ we get $\mu_{n}\left(\Delta_{n}\right)=\sigma P_{G_{n}}$, which is the situation in Theorem 4.

Now consider the plane tiled by one unit square tiles with sides parallel to the axis and center the coordinates (m, n), m and n integers. We color the tiles black or white and compute the measure the orbits of two groups of symmetries acting on the set of such tilings. For m a a positive integer let $D_{m}=\{$ tiles with centers $(\pm m, k)$ or $(k, \pm m): k=-m,-m+1, \cdots, m-1, m\}$. Let $G_{n}=\prod_{k=1}^{2 n^{2}+1} \mathbf{Z}_{2}$ act on $D_{n^{2}}$ by interchanging tiles with central coordinates $\left(\pm n^{2}, k\right)$, $k=-n^{2}, \cdots, n^{2}$ and let $H_{n}=\prod_{k=1}^{2 n+1} \mathbf{Z}_{2}$ act on $D_{n^{2}}$ by interchanging tiles with central coordinates $\left(\pm n^{2}, k\right), k=-n, \cdots, n$. Now let $G=\prod_{n=1}^{\infty} G_{n}$ and $H=\prod_{n=1}^{\infty} H_{n}$. With $S=\{b l a c k$, white $\}$, we define probability measures μ_{n} on $S^{D_{n}}$ by $\mu_{n}=\prod_{k=1}^{m_{n}} \gamma_{n}$, where $\nu_{n}(b l a c k)=\sqrt{\exp \left\{-\frac{1}{n(2 \sqrt{n}+1)}\right\}-\frac{9}{4}}+\frac{1}{2}$ and $\nu_{n}($ white $)=1-\nu_{n}(b l a c k)$. Let $\Delta\left(G_{n}\right)$ and $\Delta\left(H_{n}\right)$ be representatives for the orbits of G_{n} and H_{n} respectively on $S^{D_{n} 2}$ and let $\Delta(G)$ and $\Delta(H)$ be representatives for the orbits of G and H respectively on S^{D}. Then $\mu_{n}\left(\Delta\left(H_{n}\right)\right)=\exp \left(-1 / n^{2}\right)$ and so $\mu(\Delta(H))=\operatorname{limit}_{m \rightarrow \infty} \prod_{n=1}^{m} \mu_{n}\left(\Delta\left(H_{n}\right)\right)>0$. But $\mu_{n}\left(\Delta\left(G_{n}\right)\right)=\exp \left\{-\frac{2 n^{2}+1}{2 n^{3}+n^{2}}\right\}$ and so $\mu(\Delta(G))=\operatorname{limit}_{m \rightarrow \infty} \prod_{n=1}^{m} \mu_{n}\left(\Delta\left(G_{n}\right)\right)=0$.

REFERENCES

1. G. PÓLYA and R. C. READ, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds, Springer-Verlag, New York, 1987.
2. S. G. WILLIAMSON, Operator Theoretic Invariants and the Enumeration Theory of Pólya and de Bruijn, Journal of Combinatorial Theory, 11 (1971), 122-138.
3. E. HEWETT and K. STROMBERG, Real and Abstract Analysis , Springer-Verlag, New York, 1965.
4. P. DIACONIS, Group Representations in Probability and Statistics , Institute of Mathematical Statistics, Hayward, California, 1988.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

