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ABSTRACT. We have studied origin point data which lead to soliton loop lattice systems when

we specify an integration path in no integrability Aesthetic Field Theory. When we applied the

integration scheme developed in previous paper we found that the solitons get rearranged. Close to

the origin we saw a system more disorderly than the lattice. However, farther from the origin in

two dimensional maps the location of planar maxima (minima) for fixed y became regular. In this

paper, we investigate various approaches with the aim of enlarging the nonsymmetric regions.

Ihtegrating in did not lead to an enlarged nonsymmetric region. We were able to enlarge the

region by altering the magnitudes appearing in the origin point data. It is not clear if we can

continually enlarge the nonsymmetric region by this method. We studied what we call an

"imperfect" lattice which in a coarse sense can be thought of as being comprised of soliton loops
when we specify an integration path. Here the integration scheme did not lead to an exact

symmetry, but there was a repeat of "type" structures (as indicated by observations of contour

lines in the maps). We then extended the system to higher dimensions. In particular, we studied a

complex six dimensional space which is a natural extension of Minkowski space as an example. The

system studied gave rise to a loop lattice, but with magnitudes of maxima (minima) of the different

loops varying in an oscillatory way. When we applied the integration scheme to this system

found no sign of the previously discussed symmetry in the domain studied although the system is

not free from other regularities (this is also the case when magnitudes are altered).

KEY WORDS AND PHRASES. Numerical approximation to sohtions of partial differential

equations.

AMS SUBJECT CLASSIFICATION CODES. 35A40.

1. INTRODUCTION.
We have obtained soliton lattice solutions when we specify an integration path for a

nonintegrable system of equations [1]. The question we pose is whether there exists some operation
that preserves the form of the basic equations, preferably preserving the soliton concept, but

rearranging the multiparticles so they have a more disorderly arrangement.
What we have ultimately in mind is as follows. Disorderliness is a feature associated with

quantum systems. Although we shall not be able to make any definite statements regarding the
basis of quantum mechanics at this time, a first step along the way would be whether we can

induce a disorderliness (in a natural way) in a classical system by some mathematical operation

that does not affect the form of the basic equations.

It is well known that nonlinear systems can simulate chaotic systems. However, quantum

mechanics is present in even the simplest free field situations where the basic equations have the

appearance of being very simple. In our approach we will not tinker with the equations themselves,
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but seek some other way to simulate disorderliness. We have chosen to study a lattice system as

this is the simplest multiparticle system that we can deal with. Effects that we consider to be of a

quantun nature should appear ew:n with such a simple system.

The results of reference [2] suggest that the question posed in the first paragraph has already

been answered in the affirmative. However, since the time of reference [2] we have had access to

considerably more computer time and so we have been able to further study systems such as the

one appearing in Figure 3 of reference [2], over much greater regions and with more accurate grids.

With the additional computer time we were able to uncover a rather rigid symnetry in each

quadrant of the z,u plane (for data leading to loop soliton lattice systems when we specify an

integration path). As an example, note Figure 7 of reference [5]. This is the same system originally

studied in Figure 3 of reference [2]. Furthermore, the different soliton loop lattice systems studied

in reference [5] all showed the same type symmetry. Consider the maps of reference [5] of the +
quadrant which occur when we employ the integration scheme of reference [3]. When we pass to

the right of the x -u line, we find for fixed u that maxima (minima) of the same magnitude are

repeated in z for fixed spacings

Thus, on the one hand computer runs for regions close to the origin suggest a more disorderly

arrangement of planar maxima (minima) as in Figure 3 of reference [2]. On the other hand, with a

bigger picture we see a repetitive pattern for planar maxima and minima to the right of the

line’as in reference [5].
In the + + quadrant the location of planar maxima (minima) is regular as we alter z to the

right of the =: + u line. All four quadrants have a + u or x u type symmetry.

The symmetry in the + quadrant to the left of the : -u line occurs when we alter u for

fixed r.

The r + t lines appear in a basic way in the above symmetry. We note that the integration

scheme, [3], [4] in the z,t plane, involves one step in z and one step in u before we sum

contributions. Thus, the t +u symmetry is likely to have its roots in the nature of the

integration scheme (when combina with a lattice as in reference [5]).
Getting back to the problem posed in the first paragraph. Can we introduce an operation that

preserves the basic equations and yet rearranges the lattice particles in what appears to ie a

disorderly way? In reference [2] we have shown that we can do this in a small region, but we have

not succeeded in doing this in the large (reference [5]). We shall thus rephrase the question in

paragraph 1. Can we enlarge the nonsymmetric region obtained in reference [2] by some operation

that does not alter the form of the basic equations? This will be the goal of the present study.

2. INTEGRATION IN g.

We consider date discussed in reference [6], namely:

(i) r I.O r2 I.O

Il 1.0 I, 1.0

with the other r 0. To get away from such simple values we integrate along
hen , hen , and then going 700 points for each segment with a grid size of .005. The resulting
r, are hen used s origin point data. The system is one of three space-time dimensions.

In Figure 1 we display results using the integration scheme of reference [$] for the component

r in the +- quadrant. We recognize the symmetry discussed in Section 1. The grid used is

.0097. The solion magnitude is .49 as emphasized in [6]. We then made computer runs to

z 101 in units of .00057. This is a coarse grid and this shows up as the soliton magnitude drops
to .45 in some instances (see Figure P.). However, the symmetry of regularity of maxima (minima)
or fixed as we increase to the right of the - line, is still present even though contour lines

have changed in a substantial way in this interval.

The symmetry of repeating to the right of the - line appears even if we do not just focus
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on maxima (minima). Consider, as an example, columns of numbers appearing in the map of

Figure at z 0,37, and 65 (in units of 24 x .009375) for the component 1"133. These are given in

Table I. Numbers are truncated after two decimal places.

x 9 z 37 z 65

.13 .13 .13

.20 .20 .20

.23 .23 .23

.21 .20 .20

.12 .12 .12

Table Columns of Numbers Taken from the Map of Figure 1 Showing Repetition of F3 for
z 9, 37, 65, at 0

In Table II we given the corresponding columns at z I01 in units of .009375.

z=9 z 37 z 65

.02 .02 .02

.04 .04 .04

.13 .13 .24

.33 .33 .33

Table II Columns of Numbers Showing Repetition of r3 for 9, 37, 65 in the + quadrant for
z 101

Thus, the symmetry of repeating in z has not been avoided by integrating in z to 101. The

symmetry sets in to the right of the x -y line and appears when z is increased by 28 units. It is

true for z 0 and z 101 as well as for the z’s studied in between.

We mention steps taken to verify the correctness of the computer program. Close to the origin
results were checked to five decimal places for points on an individual basis. The integration
scheme of reference [3] was in this way checked against programs used previously. A discussion of

checks on the original program is found in reference [1].
As an additional check we tested the integration scheme of reference [3] using data that

satisfied the integrability equations. The integration scheme gives the same answers as the

conventional calculus in this case and this was checked using previous programs. The parameters
used for long runs were the same for the test systems as for the runs appearing in this paper.

In reference [fi] we note that the data of this section had the interesting property that
trajectories of solitons could not be followed in "time" (the z axis is referred to as the "time" axis)
due to solitons appearing and disappearing.
3. EFFECT OF ALTERING THE MAGNITUDES OF ORIGIN POINT DATA.

Consider the following I’k
(2) r. .0 r .0

r 1.0 r -1.0

121 1.0 Ii -1.0

with the other rk 0. This intrinsically is a three dimensional system. It gives rise to a soliton

lattice when we specify an integration path.
In this section we will study the effect of altering magnitudes of the six F appearing in (2).
We shall use the data (1) together with the g-dimensional ’, of reference [5] as a comparison

system. A map of the data in the + quadrant for ri using the integration scheme of reference

[3] and [4] is given in Figure 3. Figure 3 is done with the same grid size and over the same region
as Figures 5 7 13 and thus we can investigate whether our methods enlarge the nonsymmetric
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region. The grid used is .028125 which is a coarse grid but it is accurate enough to establish the

symmetry discussed in Section 2.

We next consider the data

(3) r’ i.o Fi32 I.O

r, .s r, .8

We use the following ’,

88 .42 .32 0.0

5 .9 .425 0.0
(4) ,= . -.5 .0 0.0

0.0 0.0 0.0 1.0

The resulting map is given in Figure 4 when we specify a path in the usual way by integrating over

z, then /, then x. The grid is .075 and the spacing between points is .3. The map is at z -.3.
The system is that of a soliton lattice with soliton magnitude .16+/-.02. The solitons remain
stationary in time due to the underlying three dimensional character of the system.

In Figure 5 we show a + quadrant map using the integration scheme of reference [3]. In
comparing with Figure 3 we see that the nonsymmetric region has been enlarged. The number of

max!ma (minima) in the region y -3 to -5 in units of .3 is now 6 before repetition occurs.

We next consider.

(5) rl .s r . .
r’ 1.0 r, .0 , .s

with the other r zero. We use the same e",, (4), as before. When we specify an integration path
we get the map of Figure 6. In this map z -.6. We again see a soliton lattice, with soliton

magnitude .13 +/-.01. The + .10 and -.10 contour lines are repeated in an alternating manner as a

function of and as a function of z. The +/-.10 contour lines with an uncertainty of +/-.01 have
similar structure.

In Figure 7 we use the integration scheme of reference [3]. We see once more that the

nonsymmetric region has been enlarged. Further runs indicate that the .12 on the far right on the

top of the map is a repeat of the .13 on the left top. There are now eight maxima (minima) within
a small before a repeat occurs. However, the repeat is not quantitative as in Table I and Table
II.

In Figure 8 the system is studied with a more accurate .00234375 grid." This map confirms the

results of Figure 6 and allows a glimpse of a larger region of space.

Despite the fact that the regularities in z for fixed to the fight of the z - line do not

appear over a larger region there are still regularities observed. There is an indication that maxima

(minima) are evenly spaced on each of a set of lines parallel to the z - line. The spacing of
maxima (minima) on a line is 20 +/- 5 units (one unit is 48 x 2 x .00234375) although this effect is not

seen for all maxima and minima (at least for the grid size used). The contour lines around the

repeating maxima (minima) do not have a similar appearance so the impression on looking at

Figure 8 is of a largely disorderly pattern at least until repeats in z for fixed occurs. We see at

most 3 maxima (minima) along any line due to limitations incurred by the size of the map.
We have seen that by altering magnitudes of the origin point data we can obtain an enlarged

nonsymmetric region. It is not clear if there are limits on such enlargements. It is not feasible to

alter magnitudes so that the numbers appearing in the origin point data (r and ei) are very large
since then we have a problem of numerical errors. For this reason we have restricted magnitudes in

(2) to the order of one. We have considered the case of r32 1.5,r3 -1.5 in (5). The resulting
map showed that the nonsymmetric region was comparable with Figure 6.
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In both Figure 5 and Figure 7 we see th(’ soliton nagnitudc as well as maxima (minima) with

smaller magnitudes. This is similar to the results of reference [5].
Figures 5 and 7 show that the lattice paxticles have been rearranged by the integration scheme

in a more disorderly way than the lattice for a larger region than that obtained in reference [5]
(although some regularities are still seen). This effect arises when magnitudes of the origin point

data e altered.

4. CONCEPT OF "IMPERFECT" LATTICE.
Another approach we can take is to find sets of data for which the notion of soliton appears,

but in a coarse sense. As an example of this consider the data

(6) r =.8 ro .4

r .o r -.
rh .6 ro .3

rg, -.o r .5

r .6 r? .3

r, .8 r, .4

wih he oher F$7 zero. We use he same four dimensional , as in reference [5]. When we specify
a path we obtain Figure 9.

Figure 9 lks like a lattice. Bu on closer scrutiny we see, an exple, plan mima of

magnitudes .74 and .80 wighin he region enclosed by a single .40 contour line. For a perfec lattice

hese numbers would be he se. Figure 9 w obned using a .0375 grid which is a finer grid
han we generMly use in obtaining such lattices. We also see from he computer runs hat he .10

contour lines e no symmetric he .40 contour lines. Thus, for hese reons, we refer o the

system "impeffecg" lattice. Deviations from a symmetrical siguafion will Mso be apparent

when we use he ingegrafion scheme of reference [3].
We emphize hag from a numerical poin of view we can never say wigh cerainy whether

lagfice is rfec or impeffecg. We will ghen rely on visual observations of he maps in s:

chgerizing a solution.

Maps for different z show tha he two mima (minima) in close proximigy evenguMly merge
(gh for increing z d decreeing z) so hag he maxima (minima) lie on a lp. For
imffecg lattice he magnitudes of he maxima (minima) vy somewha (in his ce he rge is
of he order of en percent). After he merng of two closely sepaed pl mima (minima)
here is a mked drop off in he magnitude of he pl mima (minima). For ghe system
closes go he origin the mimum magnitude drops o .28 a z 10 in units of .3. The magnitudes
of he lpw of he order of .80.

A lp w sudied as he time z evolves in he rge z0= 0 go z 8 in unigs of .3. We found,
in MI insces, a magnitude of .80 sociaed wih ghe lp Mhough as discussed before ghere w
a viation in magnitude wih z. This resul suggests hag, in imperfec sense, we have a solion
lp lattice.

The system w hen sgudied using the integration scheme of reference [3]. The results e
given in Figure 10. We mapped a larger region han in Figures 3, 5, d 7 (841 points in z raher
ghan 601 points). We used a grid of .009375 which is smaller han in Figures 3, 5, and 7.

From Figure 10, we do no see he symmetries discussed in Section 1 in he region mapped.
Thus, he imperfec lattice is a way to overcome ghe rigid symmetry seen in reference [5].
However, even hough here is no longer a sricg symmetry we c recognize thag "gype" structures
do repeag (in a nonexac way). For example, ghe .70 magnitude surrounded by a .10 contour line
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on the top left is mirrored by a .72 maximum surrounded by a .10 contour line close to the cad on

the top right. Even though the contour lines have solnewhat different shape, there is a

corresponding structure that appears as we increase z. There are some eight structures in between

such a repeat, similar to the results of Figure 7. In Figure 11, we study the same system with a

finer .0046875 grid over a larger region. We can see the repeat of "’type" structures more clearly
here. We may call this symmetry a correspondence between structures.

As we tnentioned before, the magnitude of a maximum (minimum) lies on a loop with a

magnitude varying of the order of ten percent in the situation studied when we specify a path. We
have looked into the corresponding situation when we use the integration scheme of reference [3].
However, lack of computer time here is a problem as finer grids would be needed. A study of a

maximum close to the origin in the +- quadrant shows a similar range of variation for the

magnitude of the maxima in the domain studied. The maximum lies on an open string n the

interval studied.

Another example of an imperfect lattice is given in Figure 11 of reference [5].
When we take data (5) and use the four dimensional , of reference [5] we obtain another

example of an imperfect lattice. With a .10 contour line close to the origin in the + quadrant we

see a pair of planar maxima of magnitudes .57 and .60. The effect of using the e"i of reference [5]
appears to give results similar to data (6) when use of the integration scheme of reference [3] is

made.

5. IGHER DIMENSIONS.
We have seen that the integration scheme of reference [3] can rearrange the lattice particles.

In reference [5] we saw a more disorderly system close to the origin, but longer rungs showed a rigid
symmetry pattern taking over. We have found in Section 3 that we can enlarge the nonsymmetric

region by altering the magnitudes appearing in the origin point data. To what degree such an

enlargement is possible is not clear as numerical errors will be a problem if magnitudes become’ too

large. In Section 4, we saw that the symmetry can be overcome if we consider a nonperfect lattice.

However, there was a repeat of somewhat similar structures in this case. In this section we shall

study an example of a higher dimensional system with an aim of seeing how the situation s

affected.

At this point, we do not have reason to favor a particular dimension rather than anothc We
chose to study a complex six dimensional space as we have previously investigated such a situation

in reference [7].
x, , x3 are taken to be real and x, xs, x6 are taken to be pure" imaginy. This then

represents a symmetric generalization of the Minkowski hypothesis. Such a system has been

studied by other authors as well. For example, note references [8] and [9].
Components of r, are taken to be real if the number of times the indices 4,5, or 6 appearing

in r is even. r is pure imaginary if the number of times 4, 5, or 6 appearing in r is odd. A
similar prescription is taken for e",. These reality properties are preserved by the field equations.

Real fields can be said to comprise the subuniverse Ul, while imaginary fields comprise the

subuniverse U2. The notion of U and U are preserved by the field equations although Ux affects U

and vice versa.

We decompose I’] into real and imaginary parts (A]., B]. are real)

(7) r, A7 +

Origin point data is chosen as follows. For nonzero A we take
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(8) Ah .8 A, .0

AI3: 1.0 A132 -.6

A3 -.6 AI .8

This is the same F used in (5). In addition, our nonzero B are taken co be

(9) B.6 =.I0 B4 -.15

.,

We also write (f’,and g, are real)

(10) ’, fa, + ig’,

using

(11 rt e e’t, r.
We then get the origin point data. e", is the same as appears in reference [7] wih the following

differences:

(12) f5 .46 f5 .88 f56 -.35

.18 f6 -.3 fee .94

In Figure 12, we map All is the + quadrant of the x,v plane when we specify a path. The

grid used was .15 with every second point printed. We see what appears to be a lattice, but of a

different type than we have seen before. Close to the origin we note a .09 contour line. Within this

contour we see two planar maxima of magnitude .11. This looks just like what we see for loop

lattices (for example, see reference [5]). We study maps with different z. We find that the two

maxima approach one another in positive as well as negative z. The maxima merge at z -11 (in
units of .3). Then the magnitude drops off to .085 by z 17. The maxima merge also at z 2.

The results thus far have the characteristics of a loop lattice.

We integrated in z0 from 0 to 13 (in units of .3) with zs 0 and z6 0. We saw the value of
.11 preserved when we studied the region around z -13. The situation is then suggestive of a

soliton loop lattice. However, such a simple picture is not realized..We see this when we look at
other structures in Figure 12. We note that the magnitudes of the planar maxima (minima) vary
from loop to loop. What we see then is a picture consistent with a loop lattice, but with a whole
range of different magnitudes.

Table III. Magnitude of Planar Maxima (Minima) at v 3 4-1 as

a Function of x. The Top Number is Farthest from the Origin in the Quadrant. z

is Increased as We Go Down the Column So the Bottom Number is Farthest From the

Origin in the + Quadrant. Numbers are Ten Times Actual Numbers.

The spacing between maxima (minima) in the Table is consistent with Az 24.5 4-1 (z, y, and

z are all in units of .3).
The results show a repetitive pattern. We see this as follows. The largest planar minima

having value -1.22 4-.01 repeats on a regular basis. The smallest magnitude minimum -.39+.02,

the largest magnitude maximum 1.25 4-.05 and the smallest magnitude maximum .40 4- .05 all repeat

in a regular manner.

Table III indicates an oscillatory pattern for the magnitude of the planar maxima (minima).
The magnitudes also vary in an oscillatory way as we alter y for fixed .
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The results appear consistent with a loop lattice similar to what we have seen before, but with

magnitudes of maxima (minima) varying but in a symmetric oscillatory way. This picture was

drawn from results close to the origin and may need to be amended if information further from the

origin so dictates.

This type of system was not seen in our previous studies. As the planar maxima {minima)
have different magnitudes we have drawn contour lines in Figure 12 having different values

associated-with them.

In Table III we show how the magnitude of a planar maximum close to the origin varies as a
function of z for v fixed at 3 4-1 (in units of .3). The other coordinates are zero in this table.

Value of Planar Maximum Value of Planar Minima
1.12 .37

.82 .58

.51 .88

.35 .1.22

.45 1.19

.73 1.04

1.02 .71

1.25 .43

1.15 .38

.94 .55

.60 .84

.40 1.13

.44 1.23

.67 1.06

.97 .81

1.20 .49

1.19 .41

.98 .52

.68 .79

.48 1.09

.44 1.23

.62 1.12

.93 .87

1.19 .56

1.25 .40

1.07 .49

.74 .77

.47 1.05

.42 1.23

.58 1.17

.86 .94

1.15 .63

We next study this system using the integration scheme of reference [3]. The resulting map forAll is given in Figure 13 in the + quadrant. The region in the map and the grid size is the same
as Figures 3, 5, and 7. We see no evidence for the symmetry discussed in Section 1.
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We then restudied the system with a finer grid of .0046875 over a larger region. The results

are given in Figure 14, 15, 16, 17 for the + quadrant. Figure 15 fits to right of Figure 14. Figure

16 fits to the right of Figure 15 and Figure 17 fits to the right of Figure 16. This confirms the

property that the lattice particles are rearranged by the integration scheme without evidence of the

rigid symmetry discussed in’Section 1, at least in the domain studied.

Although this effect has been obtained in a higher dimensional system we cannot, at this stage,

say that the effect occurs as a consequence of the higher dimensions. We have found the rigid

symmetry of Section 1 for some other loop lattice systems in both six and eight dimensions.

Although we have yet to obtain this effect in four space-time dimensions the possibility exists that

a judicious choice of number for the origin point data is responsible for the effect. At any rate, the

results of this section show that it is possible to start with a loop lattice, albeit a reasonably

complicated one with oscillatory magnitudes of planar maxima (minima), and have the lattice

particles rearranged in a way that gives the appearance of a disorderly system (as compared to the

lattice) by an integration scheme. The integration scheme arises since the system is nonintegrable.

We do not alter the form of the basic nonlinear equations which are taken to be the Aesthetic Field

Equations.

Despite the absence of the rigid symmetry described in Section 1, there appear to be other

regularities. We see evidence for locations of maxima (minima) along lines parallel to x -y lines

a was observed in Section 3. As with this prior case this is not observed in all instances.

When we specified a path the range of magnitudes for the maxima (minima) was between .12

and .03 (numbers truncated after two places). Using the integration scheme of reference [3] we

found the range of the maxima magnitudes to be between .11 and .03 and the minima magnitudes

to be between .12 and .03. Thus, we can say that the range of magnitudes for maxima (minimk)
which occurs when we specify a path is preserved when we use the integration scheme of reference

[3]. The results suggest an oscillatory pattern for the magnitudes although we have not integrated
as far in as we did in Table IV to confirm this.

6. CONCLUSION.
We have studied loop lattice systems when we make use of the integration scheme of reference

[3]. Prior to this paper we have seen the lattice particles get rearranged by the integration scheme.

Close to the origin the pattern appears disorderly, but in the large a rigid symmetry sets in. In this

paper we have shown that by altering the magnitudes of the origin point data we can enlarge the
nonsymmetric region. We have shown that certain sets of origin data lead to what we call an

"imperfect" lattice when we specify a path. When we apply the integration scheme there is no

exact symmetry seen but there is a "correspondence" between structures. For the six dimensional

generalized Minkowski system we observe a loop lattice in which magnitudes vary in an oscillatory
way when we specify an integration path. When we apply the integration scheme of reference [3]
the symmetry pattern is no longer observed in the domain mapped. We cannot say whether this
result can be obtained in four dimensions or is a result of the higher dimensions. Although the
region for the absence of the rigid symmetry of Section 1 has been enlarged in Section 3 and done
away with (in the region mapped) in Section 5, other regularities appear to be still present.
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Figure 1. Map of data in Section II at z 0 using the integration scheme of [3]. Number of
points in map is 2022 by 661. Grid is .009375. This and the other maps are in + quadrant.
The numbers in this figure and the other figures are 100 times the actual numbers. Map is for

Figure 2. Map of data appearing in Figure at z 101 in units of 009375. The parametersused are the same as in Figure 1. The contour lines have changed significantly from Figure butthe symmetry .which involves repeating maxima (ninima) for fixed y with z being varie, l, is
maintained by the integration scheme. Map is for 1"33.

-I I0

411

Figure 3. Number of points equals 601 x 148. Grid is .028125. Map is for the data (1) with
the 4-dimensional ea: of [5]. Map is for F]l. This map is the same size and with the same
parameters as Figures 5, 7, 13 which enables-6s to compare the size of the nonsymmetric region.
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-13

0 -I0
._I

Figure 4. Data based on Equation (3). Map is obtained by specification of path by integratingalong z, then y, then z. Grid is .075. z is equal to -.3. Results indicate a .16 + .02 soliton looplattice that is stationary in time. Map is for rl.

Figure 5. Data based on Equation (3) using the integration scheme of [3]. Comparison with
Figure 3 shows that the nonsymmetric region has been enlarged by altering magnitudes of ,rigin
point data. Map is for

6 I0 -6
6 -6

Figure 6. Data based on Equation (5). Map is obtained by specification of path. Grid is .15.z has value of -.6 the data is consistent with a soliton loop lattice that is stationary in time ofmagnitude .12 4-.01. Map is for rll.
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o o

Figure 7. Data based on Equation (5) using scheme of [3]. Number of points is 601 by 145.
Grid is .028125. Comparison with Figure 3 and Figure 5 shows that the nonsymmetric region has
been enlarged. The .12 maximum at the far right is a repeat of the .13 znaximum at the far left.Map is for FI.

io I 13

"-L
0

ligure 8. lstel of ligure 7 is studied with a laer .0111175 grid and a greater region in lie
+ luadrt is exhibited. Number of liars is 14 limes 173 by IIII. Whis maI gives evidence
that the .II on tle far right of ligure 7 is a repeat of lhe .II maximum at the far left. Map is
or

-35

Figure i. "--i:Jata based on Equation (6). Path is specified. Grid is .0375 Spacing between
points is 8. Results indicate what we call an "imperfect" lattice. The two maxima (minima).
within a contour line have slightly different magnitudes in general, r]l is mapped.
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Figure 10. Data based on Equation (6) using integration scheme of reference 3. Number of
points is 2521 by 433. The grid is .009375. The region mapped is larger than Figures 3, 5, and 7.
No exact symmetry is observed. There is a repeat of similar type structures (for example, the .72
maximum surrounded by the contour line .10 on the right in a coarse sense is a repeat of the .79
maximum surrounded by the .10 contour line appearing on the far left). Map is for F]I.

ligure 11. Data based on Equation (fi) using a finer .004fi875 grid. Number of points is fi times
1393 by 1393. Map is for

Figure 12. Six-dimensional system of Section V is mapped by specifying an integration path.
The value of z is zero. The grid is .15. This is a loop lattice system in which the magnitudes of
the maxima (minima) vary in an oscillatory way. Map is for
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70 61

Figure 13. Data of Figure 12 using the integration scheme of [3]. The parameters of the 1nap
are the same as Figures 3, 5, and 7. Number of points is 601 by 145. The grid is .028125. The
numbers are 1000 times the actual numbers. Symmetry of Section is not observed. Map is forA}I.

-I

ioo

-IO
-2

Figure 14. Data of Figure 13 using a finer .0046875 grid over a larger region than Figure 13.
Numbers are 1000 times actual numbers. Number of points is 73 plus 20 times 193 by 1345
points. The symmetries of Section are not observed in the domain mapped. Map is for Al
Integration scheme of [3] is used.

Figure 15. This figure fits to the right of Figure 14.
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I00

Figure 16. This figure fits to the right of Figure 15.

-I0

-!00

Figure 17. This figure fits to the right of Figure 16.
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