\title{

ON CERTAIN MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS \\ YONG CHANG KIM \\ SANG HUN LEE

Department of Mathematics
Yeungnam University
Gyongsan 713-749, Korea

Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea

SHIGEYOSHI OWA

SHIGEYOSHI OWA

Department of Mathematics Kinki University Higashi-Osaka, Osaka 577, Japan
(Received October 24, 1991)

Abstract

In this paper, we introduce a new class $T_{p}(\alpha)$ of meromorphic functions with positive coefficients in $D=\{z: 0<|z|<1\}$. The aim of the present paper is to prove some properties for the class $T_{p}(\alpha)$.

KEY WORDS AND PHRASES. Meromorphic function, meromorphically starlike and convex.
1991 AMS SUBJECT CLASSIFICATION CODES. 30C45, 30D30.

1. INTRODUCTION.

Let A_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n} \quad(p=1,3,5, \cdots) \tag{1.1}
\end{equation*}
$$

which are analytic in $D=\{z: 0<|z|<1\}$ with a simple pole at the origin with residue one there.
A function $f(z) \in A_{p}$ is said to be meromorphically starlike of order α if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{-\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$ and for all $z \in D$.
Further, a function $f(z) \in A_{p}$ is said to be meromorphically convex of order α if it satisfies .

$$
\begin{equation*}
\operatorname{Re}\left\{-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\alpha \tag{1.3}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$ and for all $z \in D$.
Some subclasses of A_{1} when $p=1$ were recently introduced and studied by Pommerenke [1], Miller [2], Mogra, et al [3], and Cho, et al [4].

Let T_{p} be the subclass of A_{p} consisting of functions

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geq 0\right) \tag{1.4}
\end{equation*}
$$

A function $f(z) \in T_{p}$ is said to be a member of the class $T_{p}(\alpha)$ if it satisfies

$$
\begin{equation*}
\left|\frac{z^{p+1}{ }_{f}(p)(z)+p!}{z^{p+1}{ }_{f}^{(p)}(z)-p!}\right|<\alpha \tag{1.5}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$ and for all $z \in D$.
In this paper we present a systematic study of the various properties of the class $T_{p}(\alpha)$ including distortion theorems and starlikeness and convexity properties.

2. DISTORTION THEOREMS.

We begin with the statement and the proof of the following coefficient inequality.
THEOREM 2.1. A function $f(z) \in T_{p}$ is in the class $T_{p}(\alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=p}^{\infty}\binom{n}{p} a_{n} \leq \frac{2 \alpha}{1+\alpha} \tag{2.1}
\end{equation*}
$$

where

$$
\binom{n}{p}=\frac{n(n-1) \cdots(n-p+1)}{p!}
$$

PROOF. Assuming that (2.1) holds for all admissible α, we have

$$
\begin{align*}
& \mid z^{p+1} 1_{f}^{(p)}(z)+p!|-\alpha| z^{p+1} f^{(p)}(z)-p!\mid \tag{2.2}\\
& \quad=\left|\sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_{n^{z^{n}}}+1\right|-\alpha\left|2 \cdot p!-\sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_{n} z^{n+1}\right| \\
& \quad \leq \sum_{n=p}^{\infty} \frac{n!}{(n-p)!}(1+\alpha) a_{n}|z|^{n+1}-2 \alpha \cdot p!.
\end{align*}
$$

Therefore, letting $z \rightarrow 1^{-}$, we obtain

$$
\begin{equation*}
\sum_{n=p}^{\infty} \frac{n!}{(n-p)!}(1+\alpha) a_{n}-2 \alpha \cdot p!\leq 0 \tag{2.3}
\end{equation*}
$$

which shows that $f(z) \in T_{p}(\alpha)$.
Conversely, if $f(z) \in T_{p}(\alpha)$, then

$$
\begin{equation*}
\left|\frac{z^{p+1} f_{f}^{(p)}(z)+p!}{z^{p+1} f_{f}^{(p)}(z)-p!}\right|=\left|\frac{\sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_{n} z^{n+1}}{2 \cdot p!-\sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_{n} z^{n+1}}\right|<\alpha \quad(z \in D) . \tag{2.4}
\end{equation*}
$$

Since $\operatorname{Re}(z) \leq|z|$ for all z, (2.4) gives

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_{n} z^{n+1}}{2 \cdot p!-\sum_{n=p}^{\infty}=p \frac{n!}{(n-p)!} a_{n} z^{n+1}}\right\}<\alpha \quad(z \in D) . \tag{2.5}
\end{equation*}
$$

Choose values of z on the real axis so that $z^{p+1} f^{(p)}(z)$ is real. Upon clearing the denominator in (2.5) and letting $z \rightarrow 1^{-}$, we have

$$
\begin{equation*}
\sum_{n=p}^{\infty} \frac{n!}{(n-p)!}(1+\alpha) a_{n} \leq 2 a \cdot p! \tag{2.6}
\end{equation*}
$$

which is equivalent to (2.1). Thus we complete the proof of Theorem 2.1.
Taking $p=1$ in Theorem 1, we have
COROLLARY 2.1. $f(z) \in T_{1}(\alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n a_{n} \leq \frac{2 \alpha}{1+\alpha} \tag{2.7}
\end{equation*}
$$

THEOREM 2.2. If $f(z) \in T_{p}(\alpha)$, then
and

$$
\begin{equation*}
\left|f^{(j)}(z)\right| \geq \frac{j!}{|z|^{j+1}}-\frac{p!2 \alpha}{(p-j)!(1+\alpha)}|z|^{p-j} \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\left|f^{(j)}(z)\right| \leq \frac{j!}{|z|^{j+1}}+\frac{p!2 \alpha}{(p-j)!(1+\alpha)}|z|^{p-j} \tag{2.9}
\end{equation*}
$$

for $z \in D$, where $0 \leq j \leq p$ and $0<\alpha \leq \frac{j!(p-j)}{p!2-j!(p-j)!}$.
Equalities in (2.8) and (2.9) are attained for the function

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{2 \alpha}{1+\alpha} z^{p} . \tag{2.10}
\end{equation*}
$$

PROOF. It follows from Theorem 2.1 that

$$
\begin{equation*}
\frac{(p-j)!(1+\alpha)}{p!} \sum_{n=p}^{\infty} \frac{n!}{(n-j)!} a_{n} \leq \sum_{n=p}^{\infty}\binom{n}{p}(1+\alpha) a_{n} \leq 2 \alpha . \tag{2.11}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\left|f^{(j)}(z)\right| \geq \frac{j!}{|z|^{j+1}}-\sum_{n=p^{\infty}}^{\infty} \frac{n!}{(n-j)!} a_{n}|z|^{n-j} \geq \frac{j!}{|z|^{j+1}}-\frac{p!2 \alpha}{(p-j)!(1+\alpha)}|z|^{p-j} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{(j)}(z)\right| \leq \frac{j!}{|z|^{j+1}}+\sum_{n=p^{\infty}}^{\infty} \frac{n!}{(n-j)!} a_{n}|z|^{n-j} \leq \frac{j!}{|z|^{j+1}}+\frac{p!2 \alpha}{(p-j)!(1+\alpha)}|z|^{p-j} \tag{2.13}
\end{equation*}
$$

Taking $j=0$ in Theorem 2.2, we have
COROLLARY 2.2 If $f(z) \in T_{p}(\alpha)$, then

$$
\begin{equation*}
\frac{1}{|z|}-\frac{2 \alpha}{1+\alpha}|z|^{p} \leq|f(z)| \leq \frac{1}{|z|}+\frac{2 \alpha}{1+\alpha}|z|^{p} \tag{2.14}
\end{equation*}
$$

for $z \in D$. Equalities in (2.14) are attained for the function $f(z)$ given by (2.10).
Making $j=1$ in Theorem 2, we have
COROLLARY 2.3. If $f(z) \in T_{p}(\alpha)$, then

$$
\begin{equation*}
\frac{1}{|z|}-\frac{2 \alpha p}{1+\alpha}|z|^{p-1} \leq\left|f^{\prime}(z)\right| \leq \frac{1}{|z|^{2}}+\frac{2 \alpha p}{1+\alpha}|z|^{p-1} \tag{2.15}
\end{equation*}
$$

for $z \in D$, where $0<\alpha \leq \frac{1}{2 p-1}$. Equalities in (2.15) are attained for the function (z) given by (2.10).
Letting $p=1$ in Theorem 2.2, we have
COROLLARY 2.4. If $f(z) \in T_{1}(\alpha)$, then

$$
\begin{equation*}
\frac{1}{|z|}-\frac{2 \alpha}{1+\alpha}|z| \leq|f(z)| \leq \frac{1}{|z|}+\frac{2 \alpha}{1+\alpha}|z| \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{|z|^{2}}-\frac{2 \alpha}{1+\alpha} \leq\left|f^{\prime}(z)\right| \leq \frac{1}{|z|^{2}}+\frac{2 \alpha}{1+\alpha} \tag{2.17}
\end{equation*}
$$

for $z \in D$. Equalities in (2.16) and (2.17) are attained for the function

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{2 \alpha}{1+\alpha} z \tag{2.18}
\end{equation*}
$$

3. STARLIKE AND CONVEXITY.

THEOREM 3.1. If $f(z) \in T_{p}(\alpha)$, then $f(z)$ is meromorphically starlike of order $\delta(0 \leq \delta<1)$ in $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=\inf _{n \geq p}\left\{\frac{\binom{n}{p}(1+\alpha)(1-\delta)}{2 \alpha(n+2-\delta)}\right\}^{\frac{1}{n+1}} \tag{3.1}
\end{equation*}
$$

The result is sharp for the function

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{2 \alpha}{\binom{n}{p}(1+\alpha)} z^{n} \quad(n \geq p) \tag{3.2}
\end{equation*}
$$

PROOF. It is sufficient to show that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right| \leq 1-\delta \tag{3.3}
\end{equation*}
$$

for $|z|<r_{1}$. We note that

Therefore, if

$$
\begin{equation*}
\sum_{n=p}^{\infty} \frac{n+2-\delta}{1-\delta} a_{n}|z|^{n+1} \leq 1 \tag{3.5}
\end{equation*}
$$

then (3.3) holds true. Further, using Theorem 2.1, it follows from (3.5) that (3.3) holds true if

$$
\begin{equation*}
\frac{n+2-\delta}{1-\delta}|z|^{n+1} \leq \frac{\binom{n}{p}(1+\alpha)}{2 \alpha} \quad(n \geq p) \tag{3.6}
\end{equation*}
$$

or

$$
\begin{equation*}
|z| \leq\left\{\frac{\binom{n}{p}(1+\alpha)(1-\delta)}{2 \alpha(n+2-\delta)}\right\}^{\frac{1}{n+1}} \quad(n \geq p) . \tag{3.7}
\end{equation*}
$$

This completes the proof of Theorem 3.1
THEOREM 3.2. If $f(z) \in T_{p}(\alpha)$, then $f(z)$ is meromorphically convex of order $\delta(0 \leq \delta<1)$ in $|z|<r_{2}$, where

$$
\begin{equation*}
r_{2}=\inf _{n \geq p}\left\{\frac{\binom{n}{p}(1+\alpha)(1-\delta)}{2 \alpha n(n+2-\delta)}\right\}^{\frac{1}{n+1}} . \tag{3.8}
\end{equation*}
$$

The result is sharp for the function $f(z)$ given by (3.2).
PROOF. Note that we have to prove that

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+2\right| \leq 1-\delta \tag{3.9}
\end{equation*}
$$

for $|z|<r_{2}$. Since
we see that if

$$
\begin{equation*}
\sum_{n=p}^{\infty} \frac{n(n+2-\delta)}{1-\delta} a_{n}|z|^{n+1} \leq 1, \tag{3.11}
\end{equation*}
$$

Or

$$
\begin{equation*}
\frac{n(n+2-\delta)}{1-\delta}|z|^{n+1} \leq \frac{\binom{n}{p}(1+\alpha)}{2 \alpha} \quad(n \geq p), \tag{3.12}
\end{equation*}
$$

then (3.9) holds true. Therefore, $f(z)$ is meromorphically convex of order δ in $|z|<r_{2}$.
ACKNOWLEDGEMENT. The first and second authors were partially supported by a research grant from TGRC-KOSEF of Korea. We are thankful to Professor H.M. Srivastava of University of Victoria for his valuable comments on the subject.

REFERENCES

1. POMMERENKE, Ch., On meromorphic starlike functions, Pac. J. Math. 13 (1963), 221-235.
2. MILLER, J.E., Convex meromorphic mapping and related functions, Proc. Amer. Math. Soc. $\underline{25}$ (1970), 220-228.
3. MOGRA, M.L.; REDDY, T.R. \& JUNEJA, O.P., Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc. 32 (1985), 161-176.
4. CHO, N.E.; LEE, S.H. \& OWA, S., A class of meromorphic univalent functions with positive coefficients, Kobe J. Math. 4 (1987), 43-50.
5. LEE, S.H. \& OWA, S., Certain classes of univalent functions with the fixed second coefficient, Kyungpook Math. J. 31 (1991), 101-112.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

