VECTOR FIELDS GENERATING MORE THAN ONE FLOW

SLAWOMIR DOROSIEWICZ* and KAZIMIERZ NAPIÓRKOWSKI**

```
* Institute of Econometry, Central School of Planning and Statistics, Al.
    Niepodlegtosci 162, 02-519 Warsaw, Poland.
** Department of Mathematical Methods in Physics, Warsaw University, Hȯa 74,
```

 00-682 Warsaw, Foland.
 (Received February 18, 1993 and in revised form July 19, 1993)
 ABSTRACT. Vector fields generating more than one flow on a manifold are constructed. For one-dimensional case a complete description of the set of flows 15 given. For dimensions larger than one a method of constructing vector fields with dense or open branched sets sets 15 given. Density of vector fields with nonempty sets of branched points is studied.

KEY WORDS AND PHRASES. Dynamical systems, uniqueness, Cauchy problem.
1991 AMS SUBJECT CLASSIFICATION CODE: 34A10.

1. INTRODUCTION.

There are many elementary examples of vector fields for which the corresponding differential equation has non-unique solution of the Cauchy problem. The examples, as a rule, do not define flows on the underlying manifold. The reason 15 that considered vector fields have singularity at isolated points. In the present paper we show, mainly on examples, how to construct vector fields which generate more than one flow.

The basic sections in this paper are Section 3, 4 and 5. Section 3 describes the one-dimensional case. It occurs that the set of singularıties (1.e. zeros) of the vector field has to be of special type, namely, it must contain the support of a nonatomic measure satisfying some additional conditions. The set of all flows generated by a given vector field can be completely described by means of class of measures supported on the set of zeros of the vector field.

Two and more dimensional case is considered in section 4. Situation is much more complicated. The points in which the non-uniqueness of the flow takes place (called branched points) are no longer zeros of the vector field. Another phenomenon $1 s$ that the set of of branched points can be dense or open. We are not able to give a complete description as in Section 3 , but some methods of constructing examples based on combining one dimensional examples with a constant vector field are given. Approximation methods developed in this section are use in Section 5 for a study of density properties of the set of vector fields generating more than one flow.

2. GENERA PROPERTIES OF FLOWS AND QUASI FLOWS.

DEFINITION 2.1
Let X be a Hausdorff space.
(i) A continuous map $\varphi: \mathbb{R} \times X \rightarrow X$, such that $\varphi(O, x)=x$ for $x \in X$, satisfying the group property: $\varphi(t+s, x)=\varphi(t, \varphi(s, x))$ and for all $t, s \in \mathbb{R}$ and $x \in X$ will be called a flow on X.
(11) If a map $p: \mathbb{P} \times x \rightarrow x$ satisfies the group property and for all $x \in X$ the map $p(\cdot, x): \mathbb{R} \rightarrow x$ is continuous, then φ will be called a quasi-floiv on x.

DEFINITION 2.2
Let φ be a quasi-flow on a Hausdorff space x.
(1) The set $\left\{\varphi(t, x):\right.$ telR\} 15 called φ-orb t of x and 15 denoted by $O_{\varphi}(x)$.
(11) A point $x \in X$ is called φ-f $2 x e d$ point if φ-oroit of x is trivial i.e. $O_{\varphi}(x)=\{x\}$. A set of $\varphi-f_{1 \times 2}$ points will be denoted by $S(\varphi)$.
EXAMPLE 2.3
For any given integer n, let φ be the map $\mathbb{R}_{\times} \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $\varphi\left(t, x_{1}, \ldots, x_{n}\right)=\left(x_{1}+t, x_{2}, \ldots, x_{n}\right)$. It is easy to see that φ is a flow on \mathbb{R}^{n}; we denote it by 1_{n}.
DEFINITION 2.4
Let U be an open subset of a Hausdorff space x, and let ϕ, ψ be flows on x. we say that φ and ψ are equal on U if the following condition is satisfied: for any $(t, x) \in \mathbb{R} x \cup$ if $\phi(t, x) \in U$ and $\psi(t, x) \in \cup$ then $\phi(t, x)=\psi(t, x)$.

DEFINITION 2.5
Let X and Y be Hausdorff spaces, $U \in X$ be a nonempty subset. Suppose that φ and ψ are the flows on X, Y respectively. We say that φ and ψ are conjugate on U if there exists a nomeomorphism $f: X \rightarrow Y$, such that:

$$
\psi(t, f(x))=f(\varphi(t, x))
$$

for all $x \in X$ and $t \in \mathbb{R}$ such that $\varphi(t, x) \in U$. If $U=M$, then we say that the flows φ, ψ are conjugate.

Elementary properties of flows on one dimensional connected manifolds are described in the following two propositions.

PROPOSITIUN 2.6
Let φ be a quasi-flow on \mathbb{R}. Then φ is a flow on \mathbb{R}, and for any point $x \in \mathbb{R}$ exactly one of the following conditions is satisfied:
(a) x is a φ-fixed point,
(b) the orbit $\mathcal{O}_{\varphi}(x)$ is an open interval containing the point x. Moreover, if a set \mathcal{O} is a nontrivial φ-orbit then the restriction $\left.\varphi\right|_{\mathbb{R}_{\times \mathcal{O}}}$ of φ to the set $\mathbb{R} \times \mathbb{O}$ is conjugate with the unit flow 1_{1}, i.e. there exists a homeomorphism $\sigma: \mathbb{R} \rightarrow \mathcal{O}$, which satisfies the equality: $\varphi(t, x)=\sigma\left(t+\sigma^{-1}(x)\right)$ for all $x \in \mathcal{O}$ and $t \in \mathbb{R}$.
A similar result can be formulated for the flows on the one dimensional sphere:
PROPOSITION 2.7
Let φ be a quasi-flow on \mathbb{S}^{1}, then φ is a flow, and for any point $x \in \mathbb{S}^{1}$ exactly one of the following conditions is satisfied:
(a) x is φ-fixed point,
(b) the orbit containing x is equal $\1,
(c) the orbit $\mathcal{O}_{\varphi}(x)$ is diffeomorphic to \mathbb{R}, i.e. $\mathcal{O}_{\varphi}(x)$ is an open arc.

The proof is elementary and will be omitted.
The following definition introduces a notion very useful in further considerations: the time measure of a flow on \mathbb{R}. This notion is a special case of the

LEF INITION $2 . E$
Let β denote the family of Borel sets on \mathbb{R} and $\overline{\mathbb{P}}$ denote $\mathbb{R} \cup\{+\alpha\}$, let φ be a fiow on \mathbb{R}. The time measure of the flow φ is a Borel measure $\mu: \beta \rightarrow \bar{R}$ detined as follows:
(a) If \times is a p-fixed Doint then $\mu(\{x\})=+\alpha$,
(b) $1+x \in S(\varphi)$ then for any Borel subset $A_{\varphi}(x)$

$$
\mu(A)=\mu_{L}\left(\varphi^{-1}(A, x)\right)=\mu_{L}\left(\left\{\tau \in \mathbb{R}^{1}: \varphi(\tau, x) \in A\right\}\right)
$$

where $\mu_{L} 15$ the Lebesque measure on the real line \mathbb{R},
(c) for any Borel set A :

$$
\mu(A)=\sum_{\Theta \in \Gamma} \mu(A r \theta)+\mu(A \sim S(\varphi))
$$

where Γ is the family of all nontrivial φ-orbits.
PROPQSITION 2.9
A necessary and sufficient condition for a Borel measure μ on \mathbb{R} to be the time measure of a flow on \mathbb{R} is that for each point $x \in \mathbb{R}$ exactly one of the following conditions is satisfied:
(1) $\mu(\{x\rangle)=+\infty$,
(1i) there exist $\gamma, \delta ;-\infty<\gamma<\delta \leq+\infty$, such that $x \in] \gamma, \delta[$ and the restriction of μ to the interval $] \gamma, \delta[15$ a nonnegative Borel measure with the properties:

1. If $A 15$ a nonempty open subset of $] \gamma, \delta[$ then $\mu(A)>0$,
2. The measure of any compact subset of $] \gamma, \delta[15$ finite and $\mu(] \gamma, c[)=\mu(] c, \delta[)=+\infty$ for each $c \in] \gamma, \delta[$.
The proof 15 easy and will be omitted.

3. VECTOR FIELDS AND FLOWS ON ONE-DIMENSIONAL MANIFOLDS.

DEFINITION 3.1
Let M be a n-dimensional smooth manifold, V be a vector field and φ be a flow on M. We say that V generates the flow φ, if for any point $x \in M V(x)$ is the tangent vector to the curve $t \rightarrow \varphi_{t}(x)$ at $t=0$. The set of all flows generated by the vector field V will be denoted by $F 1(V)$.
An analogous definition may be formulated for quasi-flows. The set of all quasiflows generated by a vector field V will be denoted by $\mathrm{Fl}_{q}(V)$.
DEFINITION 3.2
Let m be a cardinal number. We say that:
(i) a vector field V on a differential manifold has Fm-property if the cardinality of the set $F 1(V)$ is equal m.
(1i) a flow φ on differential manifold has Fm-property if it 15 generated by the vector field with Fm-property.
From standard theorems of the theory of ordinary differential equations follows that any smooth and bounded vector field on finite dimensional manifold generates exactly one flow, l.e. it has F1-property. The following example shows that
even on a one-dimensional manifold there exist vector tields which have Fo-property.

EXAMPLE こ. こ

Let \mathbb{C} denote the Cantor set in the interval $[0,1]$, and let $d: \mathbb{P} \rightarrow \mathbb{P}$. be a nonneuative contimuous function on \mathfrak{F} with period 1 such that $\{x \in[0.1 j: \gamma(x)=(1) j=$. It is easy to see that the map

$$
\sigma: \mathbb{R} \rightarrow \mathbb{R}, \sigma(t)=\int_{0}^{t} \gamma(s) d s
$$

is a homeomorphism of \mathbb{R} onto \mathbb{R}. It 15 also obvious, that the velocity of the flow $\varphi=\sigma\left[1_{1}\right]$, 1.e. $\varphi(t, x)=\sigma\left(t+\sigma^{-1}(x)\right)$ for $t \in \mathbb{R}$ and $x \in \mathbb{P}$, is equai

$$
V_{\varphi}(x)=\lim _{\varepsilon \rightarrow 0} \frac{\varphi(\varepsilon, x)-x}{\varepsilon}=\frac{\partial p}{\partial t}(0, x)=\gamma\left(\sigma^{-1}(x)\right)
$$

for any point $x \in \mathbb{P}$. We shall show that the vector field V_{φ} generates uncountable many flows on \mathbb{R}. Let μ_{p} genote the time measure of the flow φ. The set $Z\left(V_{\varphi}\right)$ of critical points of V_{φ} is equal:

$$
\left.Z\left(v_{\varphi}\right)=\left\{x \in \mathbb{R}: \gamma\left(\sigma^{-1}(x)\right)=0\right)\right\}=\left\{x \in \mathbb{R}: \sigma^{-1}(x) \in \bigcup_{k \in \mathbb{Z}} k+C\right\}=\sigma\left(\bigcup_{k \in \mathbb{Z}} k+C\right)
$$

Let v be a measure concentrated on the set $\sigma^{-1}, \underset{k \in \mathbb{Z}}{U} k+C$) of critical points of v_{φ}. One can take for example the measure generated by the Cantor function as follows. First, let us define a function $f: C \rightarrow[0,1]$ in the following way: if $r=\sum_{i=1}^{+\infty} r_{i} \cdot 3^{-i}$, where $r_{1} \in\{0,2\}$, then $f(r)=\sum_{i=1}^{+\infty} r_{i} \cdot 2^{-i}$. It can be shown that f is a continuous sur jection, moreover, it has a unique extension to a continuous function F on $[0,1]$. The derivative of this function vanishes on $[0,1]-C$, and does not exist on C. Let F^{*} denote the following function: $F^{*}(x+k)=F(x)+k$ for all $x \in[0,1]$ and $k \in \mathbb{Z}$. It is obvious that the measure v defined for any compact, nonempty interval $[\alpha, \beta]$ as:

$$
v([\alpha, \beta])=F^{*}(\sigma(\beta)) F^{*}(\sigma(\alpha))
$$

is a continuous nonnegative Borel measure concentrated on the set of critical points of the vector fleld V_{φ}. Let us return to general considerations of this example. It is easy to see that for any positive number τ, the measure $\mu_{\mu}=\mu_{\varphi}+\tau \cdot v$ satisfies the conditions (1), (1i) of proposition 2.9 and therefore is the time measure of a flow a flow $\bar{\varphi}$ on \mathbb{R}. Now it is sufficient to show that this flow (i.e. the flow with the time measure μ is generated by the same vector field v_{φ} i.e. the flows φ and $\bar{\varphi}$ nave the same velocity V_{φ}.

1) The set $\mathbb{R}-Z\left(V_{\varphi}\right)$ is open. Consider any of its points x and take a positive number $R>0$ such that $] x-2 R, x+2 R) d R-Z\left(V_{\varphi}\right)$. It means that $\mu-([x, x+\varepsilon] \cup[x+\varepsilon, x])$ is equal $\mu_{\varphi}([x, x+\varepsilon] L[x+\varepsilon, x])$ for $\varepsilon<2 \eta$, and this fact $1 m p l i e s$ the equality $\bar{\varphi}(t, x)=p(t, x)$ in a neighbourhood of the point $t=0$. It means that the flows φ and $\bar{\varphi}$ have the same velocities at the point x.
2) If $x \in Z\left(V_{\varphi}\right)$ then $V_{\varphi}(x)=0$, and $\lim _{\varepsilon \rightarrow 0} \frac{\varepsilon}{\mu_{\varphi}([x, x+\varepsilon] \cup[x+\varepsilon, x])}=0$

It follows from definition of the measure μ that

which is equivalent that the velocity of the flow $\bar{\varphi}$ at the point \times vanishes. Therefore the vector field $V_{\varphi}=\gamma\left(\sigma^{-1}\right)$ generates the flows $\bar{\varphi}$ and φ.
In Section 4 we shall use vector fields with compact sets of critical points and similar properties.

EXAMPLE 3.4
Let γ^{\prime} be any any smooth nonnegative function $\gamma^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$, such that $\gamma^{\prime}=1$ on $\mathbb{R}-[-1 / 2,3 / 2]$ and $\gamma^{\prime}=\gamma$ on $[0,1]$, where γ denotes the function from the last example. It is clear that the vector field $V^{\prime}=\gamma^{\prime}\left(\sigma^{,-1}\right)$, where $\sigma^{\prime}(x)=\int_{0}^{x} \gamma^{\prime}(s) d s$, has the FC-property.

Example 3.3 suggests that there 15 a one to one correspondence between flows generated by a given vector field on \mathbb{R} and some measures concentrated on the set of critical points of this field.
In further considerations, let V be a continuous, bounded vector field on \mathbb{R}, and let $Z(V)$ denote the set of its critical points. First note that if $x_{0}{ }^{1 s}$ not a critical point of the vector field V on \mathbb{R}, then there exists a neighbornood U of x_{0} such that the Cauchy problem

$$
\begin{equation*}
\frac{d y}{d t}=v(y), \quad y(0)=x_{0} \tag{3.1}
\end{equation*}
$$

has exactly one solution in U.
Indeed, if U is a connected component of $\mathbb{R}-Z(V)$ containing x_{0}, then we can write (3.1) on U as: $t=t_{0}+\int_{x_{0}}^{y} \frac{d s}{V(s)}$, yeU, obtaining exactly one function $t=t\left(\cdot, x_{0}\right)$ and equivalently one function $y=y\left(\cdot, t_{0}\right)$, which is the solution of (3.1).

We shall consider now the set of flows generated by a given vector field V on \mathbb{R}. Let V be a continuous, bounded vector field on \mathbb{R} and let φ be a flow generated by this field with the time measure μ_{φ} and the set $S(\varphi)$ of φ-fixed points. For any closed set $\Omega \subset Z(V)$ let $\left\{P_{\alpha}\right\}_{\alpha \in Q}$ be the family of connected components of the set $\mathbb{R}-\Omega$.
For further considerations we introduce, for a given Ω and φ, the set $K_{\varphi}(\Omega)$, elements of which are all (not necessarily positive) Borel measures m on \mathbb{R} satisfying the following conditions:

1. m is concentrated on $Z(V)$,
2. $\mu_{\varphi}+m$ is nonnegative and if A is any open nonempty subset of \mathbb{R} then $\left(m+\mu_{\varphi}\right)(A)>0$,
3. if A is a compact subset of any P_{α} then $m(A)<+\alpha$, and $\left(\mu_{\varphi}+m\right)\left(P_{\alpha}\right)=+\infty$,
4. for any $x \in Z(V) \quad \lim _{\left.\varepsilon \rightarrow 0^{(m+\mu}{ }_{\varphi}\right)(] x, x+\varepsilon[U] x+\varepsilon, x[)}^{(m)}=0$,
5. if $x \in \Omega$ then $m(\{x\})=+\infty$, for $y 巴 \Omega \mu(\{y\})=0$.

A topology in $K_{\varphi}(\Omega)$ may be introduced by the following

DEFINITIUN 3.5
We say that a sequence $m_{n} \in k_{\varphi}(\Omega)$ converges to a measure m if:

$$
\lim _{n \rightarrow+x} \sup _{x \in 0}\left\{\left|m_{n}(B)-m(B)\right|: B \text { is any compact subset of } P_{x}\right\}=0
$$

The set $F l(V)$ has the standard uniform convergence topology.

THEOREM 3.6
Let V be a continuous, bounded vector field on \mathbb{P}. IF the set Fi(V) is not empty, then there exists a flow $\Phi \in F l(V)$ such that the mapping

$$
\lambda: \bigcup_{\Omega} K_{\Phi}(\Omega) \rightarrow F I(V), \quad \lambda(m)=\Psi_{m}
$$

which assigns to a measure m the flow Ψ_{m}. which has the time measure $\mu_{\Phi}+m$, where μ_{Φ} denotes the time measure of Φ, 15 a continuous bi jection.
Proof. Since $F 1(V)=$ we can choose $\varphi \in F l(V)$. For a closed set $S<2$ we denote by $F 1(V, \Omega)$ the subset of $F l(V)$ consisting of all flows having Ω as the set of fixed points. It $1 s$ clear that for $\Omega=S(\varphi)$ the mapping λ gives a contiruous bijection between $K_{\varphi}(\Omega)$ and $F l(V, \Omega)$. To complete the proof it suffices to show that there exists a flow $\Phi \in F l(V)$ with a minimal set of fixed points $1 . e . S(\Phi) S(\Psi)$ for any $\psi \in F l(V)$. We remark first that if $\varphi, \psi \in F l(V)$ and $\mu_{\varphi}, \mu_{\psi}$ are their time measures then $\mu=\min \left(\mu_{\varphi}, \mu_{\psi}\right)$ is the time measure of a flow belonging to Fl(V). We denote that flow by $\min (\varphi, \psi)$. Since $x \in S(\varphi)$ if and only if $\mu_{\varphi}(\{x\})=\alpha$ we have $S(\min (\varphi, \psi))=S(\varphi) \Gamma S(\psi)$. One can check that a decreasing net of time measures of flows in Fl(V) converges to the time measure of a flow in Fl(V). Using Kuratowski-Zorn lemma we get the existence of a flow Φ Gfl(V) with the minimal set of fixed points. Q.E.D.

An analogous result holds when \mathbb{R} is replaced by S^{1}. For manifolds of larger dimension than 1 one can conclude the following

COROLLARY 3.7
Suppose that φ and ψ are different flows on a manifold M, and each ψ-orbit is contained in a φ-orbit. If φ and ψ are generated by the same vector field V then \checkmark has at least one critical point.

4. VECTOR FIELDS AND FLOWS ON HIGHER DIMENSIONAL MANIFOLDS.

This part starts from the following definition describing singular points of a given vector field V on finite-dimensional manifold.

DEFINITION 4.1

Let V be a vector field on a differential manifold M.
(a) A point $x \in M$ will be called a V-strong branched point if there exist quasiflows φ and ψ generated by V and a positive number $\varepsilon>0$ such that the set $R(\varphi, \psi)=\{t \in \mathbb{R}: \varphi(t, x) \neq \psi(t, x)\}$ contains at least one of the intervals ($0, \varepsilon$), $(-\varepsilon, O)$. The set of V-strong branched points will be denoted by $\mathcal{R}(V)$.
(b) A point $x \in M$ will be called a V-weak branched point if there exist two solutions $y_{1}(\cdot, 0, x), i=1,2$ of Cauchy Problem:
such that $t=1,15$ a cluster point of the set $\left\{t \in f^{\prime}: v_{1}\left(t,(\cdots, x) x_{2}(t .)_{0} x\right)\right\}$. Ine set of weak $v-\left[\right.$: anchen points will de denoted by R_{w} (V).

It 15 obvious that each strong branched point of a glven vector fiela $v i s \quad 7$
 probiem (4.1) has uncountatie manv soiutions (see for example [5]. theorem 4.1) LEFINITION 4.:

If. for a alven subset A of a manifola M, there evists a vector fiela v on in such that $\mathcal{K}(V)=A\left(\mathcal{R}_{w}(V)=A\right)$, then A wili be called a strong oranched set (resp. weak branched set).

The following fact follows easilv from Theorem 4.6:

FROFOSITION 4.3
Suppose that $V 1 s$ a contiruous bounded vector field on \mathbb{F} or S^{1}. then $R(V)$ is a nowhere-dense subset of this manifold, contained in the set of critical points of the field v.

It follows from the above proposition that an open subset of tre or $\$$ can never be a weak branched set. Now we shall show that there exist strong branched sets dense in higher dimensional manifolds, especially in \mathbb{P}^{2}. The construction is a continuation of M. Lavrentiev's and P. Hartman's ldeas (see [6] and [7]), who have constructed examples of ordinary differential equations with locally nonunique solution of Cauchy Problem in any point of an open subset of \mathbb{R}^{2}. It is equivalent to proving that $\left[\mathbb{R}^{2} 15\right.$ a weak oranched set 1 .e. there exists a contiruous vector field V on $\mathbb{R}^{2} \operatorname{such}$ that $\mathcal{R}_{w}(V)=\mathbb{R}^{2}$. we are going to show more. namely, that $\mathbb{R}^{2} 15$ a strong oranched set. First in the example 4.4 we construct a vector field V such that $\mathcal{R}(v)$ is dense in \mathbb{R}^{2}

EXAMPLE 4.4
we construct an example of a contiruous vector field V on \mathbb{R}^{2}, with a dense set of strong branched points. The construction 15 divided into two steps. In first of them we define an operation called MoD-operation and analyse 1 ts properties. The second step included a proper description of the construction.
STEP 1
Let v be a continuous vector field on \mathbb{R}^{2} and $\mathcal{R}(v)$ be the set of 1 ts strong branched points. Suppose that for a connected open subset U of the set $\mathbb{R}^{2}-\mathcal{R}(v)$ there exists a smooth local coordinate system ($2, U$) in which v has the coordinates $\langle 1,0\rangle$.

Let Ω denote a nonempty rectangle $[a, b] \times[c, d] \in \lambda(U)$. We choose real functions $\alpha(\cdot)$ and $h(\cdot)$ such that $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ is contimuous in $] a, b[$, and $\alpha=0$ on $\mathbb{R}-] a, b[$, $h: \mathbb{R} \rightarrow] c, d\left[\right.$ is a diffeomorphism such that $\frac{d h}{d x} \rightarrow 0$ when $x \rightarrow+\infty$. we assume, moreaver, that

$$
\begin{equation*}
\int_{a}^{b} \alpha(s) d s=0, \sup |\alpha|>6 \pi(b-a)^{-1} \text { and } \sup \left|\frac{d h}{d x}\right|=n \tag{4.2}
\end{equation*}
$$

where R is a positive real number.
Let u denote the vector field constructed in Example 3.3. We can define the following vector field on $\mathbb{R}^{2}: f(x, y)=\langle 1, \bar{u}(y) \cdot \alpha(x)\rangle$, where:

$$
\bar{u}(y)= \begin{cases}n^{\prime}(y)\left(1!n^{-1}(y)\right) & \text { for } v \in] c \cdot \square[\\ u & \text { for } y \in \mathbb{P}-] c . \sigma[.\end{cases}
$$

To assure that each orbit of any flow from Fl(f) crosses the set of oranched points of f, we assume agditionally that there exist a'. b^{\prime} such that

$$
\begin{equation*}
f_{a}^{b^{\prime}} \alpha(s) d s>\sigma^{-1}(1) \tag{4.3}
\end{equation*}
$$

where σ is defined in Example 3.3.
DEF INITION 4.5
We say that a vector field v_{1} ls a modr $f 2 \cot 2$ on of v_{0} and write $v_{1}=M O D(U . R) v_{0}$ if there exist $\alpha, n, \lambda, \Omega$ as above such that $v_{1}=v_{0}$ outside U and $v_{1}=f$ in U in local coordinates given by λ.

To analyze properties of v_{1} note that f nas F--property: for anv 中EFl(u), it generates the flow

$$
\begin{equation*}
\varphi(t,(x, y))=\left(x+t, \quad \phi\left(\int_{0}^{t} \alpha(x+s) d s, y\right)\right) \tag{4.4}
\end{equation*}
$$

Vector fields $\langle 1,0\rangle$ and f are different only inside the rectangle Ω. It is easy to see that $\mathcal{R}=] a, \square[\times \mathcal{R}(\bar{u})$ is the set of f-strong branched points. Condition (4.3) implies that the orbits of any flow generated by f, which pass across s have nonempty intersection with the set R. It 15 easy to see that flows generated by f which are of the form (4.4) are conjugate with the unit flow $\mathbf{1}_{2}$ by the following homeomorphism Λ :

$$
\Lambda(x, y)=\left(x, \phi\left(\int_{-\alpha}^{x} \alpha(x+s) d s, y\right)\right), \text { for }(x, y) \in \mathbb{R}^{2}
$$

DEF INITION 4.6

We say that a vector field V has a-property if for any point pē(V) there exists a connected neighborhood $U(p)$ and a local map $\lambda: U(p) \rightarrow \lambda(U(p)) \subseteq \mathbb{R}^{2}$ such that V has the coordinates $\langle 1,0\rangle$ in the map λ.

Observe that if a vector field V has the α-property, p and $U(p)$ are as in the above definition, then $\operatorname{MOD}(U(p), R) V$ has the α-property. The operation $\operatorname{MOD}(U(p), R)$ depends on the choice of the local map λ. We can choose λ in such a way that $p \in R(\operatorname{MDD}(U(p), R) V)$. In the following we shall always choose such a λ. STEP 2
We choose a countable dense set $P=\left\{p_{n}: n \in \mathbb{N}\right\}$ in \mathbb{R}^{2} and start from the vector field V_{1} with coordinates $\langle 1,0\rangle$ which obviously has a-property. Let v_{n} denote the vector field obtained in n-th iteration. As the next iteration we take $V_{n+1}=\operatorname{MOD}\left(U\left(p_{n}\right), R_{n}\right) V_{n}$ if $p_{n} \mathbb{E \mathcal { R } (V _ { n })}$ and $V_{n+1}=V_{n}$ otherwise.

LEMMA 4.7
Parameters η_{n} of the MOD-operation can be chosen small enough, so that
a) the sequence $\left(V_{n}\right)$ converges uniformly on \mathbb{R}^{2} (in the sense of the uniform convergence of coordinates in the camonical map in \mathbb{R}^{2}).
b) each of v_{n} has the Fc-property.
C) $R\left(V_{n+1}\right) \equiv K\left(v_{n}\right)$.

Proof. The distance d_{n} between v_{n} and v_{n+1}. defined as $\sup \left\{\left\|V_{n}(x)-V_{n+1}(x)\right\|: x \in \mathbb{P}^{2}\right\}$, 15 proportional to η_{n} (with a constant depending on n. So it is possible to make the series $\sum_{n=1} d_{n}$ convergent. D) and ci foliow immediately from the construction. Q.E.D.
If n is such that $V_{n+1} \not V_{n}$ then for any flow $\Phi_{n} E I\left(V_{n}\right)$ we can construct, using (4.3), continuum of flows $\Phi_{n+1} \in \mathcal{F}\left(V_{n+1}\right)$ which are equal to Φ_{n} outside $U\left(p_{n}\right.$) (in the sense of definition 4.4). The distance between Φ_{n} and Φ_{n+1} defined as $\sup \left\{\left\|\Phi_{n}(t, p)-\Phi_{n+1}(t, p)\right\|: t \in \mathbb{R}, p \in \mathbb{R}^{2}\right\}$ can be bounded by constant (depending on n) proportional to Ω_{n}.

LEMMA 4.8
Farameters Ω_{n} of the MOD-operation can be chosen small enough, so that any sequence (Φ_{n}) chosen as above converges uniformly to a flow on \mathbb{R}^{2}.

The proof follows from the above remarks.
PROFOSITION 4.9
If n_{n} are chosen according to Lemmas 4.7 and 4.8 then the vector field $v=11 m v_{n}$ has a dense set of strong branched points. The limit of any sequence $\left(\Phi_{n}\right)$ as in Lemma 4.8 is a flow generated by V.
Proof. Lemma 4.8 guarantees that $11 m \Phi_{n} 1 s$ a flow on \mathbb{R}^{2}. From standard theorems about differential equations (see [5] Theorem 4.4) follows that lim Φ_{n} is generated by v. It is easy to see from the construction, that using different flows from $F 1(\bar{u})$ in any $\operatorname{MOD}\left(U\left(p_{n}\right), \eta_{n}\right)$-operation we obtain different limits lim Φ_{n}. It implies that V has $F c$-property and any point of P is a V-strong branched point. Q.E.D.

It can be proved that if the parameters η_{n} are sufficiently small the set $\mathcal{R}(V)$ $1 s$ dense but different from \mathbb{R}^{2}. This completes Example 4.4.

REMARK 4.10
If the vector field u used in MOD-operation, is replaced by the vector field constructed in Example 3.4 we can obtain a vector field V^{*} such that $R\left(V^{*}\right)=R^{2}$, i.e. \mathbb{R}^{2} is a strong branched set.

5. GENERAL PROPERTIES DF VECTOR FIELDS AND FLOWS WITH FC-PROPERTY

In this part we investigate sets of vector fields and flows having Fc-property. Those sets will be regarded as subsets of the spaces $F^{0}(M)$ and Fl(M) respectively, which consist of all contiruous vector fields and flows on a finite-dimensional manifold M. In order to avoid problems with non-integrable vector fields and with definition of the uniform convergence of vector fields we assume that all considered manifolds are compact.

PROPOSITION 5.1
If M is an n-dimensional manifold and $n \geq 2$, then any continuous vector field on M can be uniformly approximated by vector fields with Fc-property.

Proof: If the given vector field is smooth and does not vanish one can apply MOD-operation with a sufficiently small parameter R. If the field vanishes in an
open set one can add to it any field with Fe-property, multiplied by a sufficiently small constant. A continuous vector field can be uniformly approximated by smooth fields. Q.E.D.

Let k be any cardinal number; the set of continuous, bounded vector fields on M with the Fk-property will be denoted by $G(M, k)$. The same way, if we consider the set $G_{1 n t}(M)$ of vector fields with nonempty, open sets of strong oranched points (for instance $G_{1 n t}\left(\mathbb{R}^{2}\right)=0$ - see Remark 4.10), it can be similarly proved that $G_{1 n t}(M)$ is dense in $F^{\circ}(M)$. The sets $G(M, O)$ and $G(M, 1)$ are also dense in $F^{\circ}(M)$, it can be shown much more: $G(M, 1)$ is the set of second Baire category (see [3] pp.119-121).
The space $F^{\circ}(M)$ may be in a natural way represented as a sum of disjoint sets $G(M, k)$, for $k \geq 0$. Unfortunately, for many dimensional (dim $M \geq 2$) manifolds authors do not know anything about the sets $G(M, k)$ for $k \geq 2$ and $k \leq N_{0}$; are these sets nonempty?
It was shown that on the n-dimensional manifolds, $n \geq 2$, there exist vector fields having open sets of strong branched points. For an arbitrary open set, approximating it by sums of rectangles, we get

PROPOSITION 5.2
Every open subset $U U_{\mathbb{R}^{n}}$, where $n>1$, is a branched set.
It is easy to see that the stronger result occurs: every open subset of the n-dimensional manıfold, where $n>1$, is a branched set.

DEFINITION 5.3
For a compact manifold M and given cardinal number k we define the following sets:

$$
\begin{aligned}
A_{q}(M, k)= & U \quad\{f \in G(M, k) \\
B_{q}(M)= & U \times F l_{q}(f) \\
& U \in F^{\circ}(M)
\end{aligned}
$$

Since M is metrizable, then using the metric ρ on M we define a topology of above sets by the following metric:

$$
d\left(\left(f_{1}, \varphi_{1}\right),\left(f_{2}, \varphi_{2}\right)\right)=\left\|f_{1}-f_{2}\right\|_{0}+p_{0}\left(\varphi_{1}, \varphi_{2}\right)
$$

where $\|\cdot\|_{0}$ is the norm of the uniform convergence in $F^{\circ}(M)$, the set of all continuous vector fields on M, and p_{0} denotes the norm:

$$
P_{0}\left(\varphi_{1}, \varphi_{2}\right)=\sup _{t \in \mathbb{R}} \sup _{x \in \mathbb{M}} P\left(\varphi_{1}(t, x), \varphi_{2}(t, x)\right)
$$

In what follows the topology defined by din those sets will be called the C°-topology.

Before formulating results of this section, we give a short description of MOD1operation which which assigns to a quasi-flow ψ a quasi-flow φ having the Fc-property such that the $p_{0}(\varphi, \psi)$ can be arbitrarily small. Let V be a contınuous vector field on a manifold M with the set $Z(V)$ of critical points diffe-
rent from M. Suppose that $F_{q}(V) 15$ not empty and let ψ de a quasi-flow generated by V. It 15 oovious that for any $x e Z(V)$ there exists a map ($\lambda . U$) of a neighoournood u of x such that $\psi 15$ conjugate to the unit flow 1_{n} on $\operatorname{unc}_{\psi}(x$) (in the sense of definition 2.5). Without loss of generality we can assume that (U) contalns the cube $[0.1]^{n}$. Let α be a nonnegative continuous function on \mathbb{F}^{1} such that
(a) $x(\cdot)-1$ vanishes Devond a neighborhood of the Cantor set \bar{C} on intervai $[0,1]$,
(b) $\int_{0}^{1}(\alpha(s)-1) d s$ \& , where δ denotes a positive number.
(C) for any $x \in C, \quad(x)=1$.

Let ψ ' be anv flow which in the map (λ, U) has the following coordinates:

$$
\psi(t, x)=\left(\operatorname{pr}_{1}(x)+\int_{a_{1}}^{D_{1}} \alpha(s) d s, \operatorname{pr}_{2}(x), \ldots, \operatorname{pr}_{n}(x)\right)
$$

where $x \in \mathbb{R}^{n}$. Let φ denote the quasi-flow which 15 equal ψ on M-Ure $\psi(x)$, and ψ, on $\operatorname{UNO}_{\Psi}(x)$.
DEFINITION 5.4
We say that a map $\varphi_{1}: \mathbb{R} \times M \rightarrow M$ is a modification of quasi-flow ψ and write $\varphi_{1}=\operatorname{MOD}(\cup, \delta) \psi$ if there exist $\alpha, \lambda, \varepsilon, \cup, \Psi, \Psi$ ' as above such that $\varphi_{1}=\psi$ outside $\operatorname{UrO}_{\psi}(x)$ and $\varphi_{1}=\psi^{\prime}$ in Ure $\psi_{\psi}(x)$.
It is easy to see that the map: φ is a quasi-flow with a Fc-property, suffi-
 λ, α and U.

THEOREM 5.5

Let M be a compact smooth manifold with Euler characteristic $\mathcal{X}(M)$ different from zero. Suppose that V is contiruous vector field on M and $\varphi_{n} F_{l_{q}}(V)$. Then there exists a sequence of vector fields v_{n} having the Fc-property and quasi-flows $\varphi_{n} \in l_{q}\left(V_{n}\right)$ which uniformly converge to V and φ respectively; $1 . e$. the set $A_{q}(M, C)$ is dense in $B_{q}(M)$ in C°-topology.
Proof. Let V be a continuous vector field on M with nonempty set $F l_{q}(V)$. If V vanishes in an open subset of M theorem is obvious. In the other case let us consider an integer number n and any quasi-flow $p \in F l_{q}(V)$. Since $x(M)=0$, it follows from Poincare Hopf theoren (see [B] p.69), that V has nonempty set $Z(V)$ of critical points. Let us choose a point $x \in Z(V)$ and open set U such that O (x)ry is disjoint from $Z(V)$.
Performing the MOD1-operation we obtain quasi-flow $\Psi=M O D 1(U, 1 / n) \varphi$ which satisfies the condition

$$
\left\|v^{\prime}-v\right\|_{0}+p_{0}(\psi, \varphi) \leq n^{-1}
$$

where V'denotes the vector field which generates the quasi-flow Ψ. Since n can be chosen arbitrarily large, the proof is complete. Q.E.D.
Since Euler characteristic $x\left(\$^{k}\right)$ of k-dimensional sphere is equal $1+(-1)^{k}$, it follows immediately from theorem 5.5 that the $\operatorname{set} A_{q}\left(S^{2 n}, C\right)$ is dense in $B_{q}\left(S^{2 n}\right)$
$\ln \mathrm{C}^{-}$-topologr.
Theorem 5.5 does not, in general, hola for manifolas with tuler characteristic zero. For example, since any vector field on s^{1} with Fc-propertw nas uncrintadie many of critical points isee Section 3): this fact imolies that $A\left(S^{1}\right.$. C) 15 not dense in $B_{a}\left(S^{1}\right)$. There exist also nigner dimensional manitolds for which ineorem 5.5 does not nold. Let us consider $T^{2}=s^{1} \times S^{1}=\{\exp (2 \pi 1 \alpha): x \in R ;<\exp (2 \pi 1 \beta): \beta \in R ;$. and the flow Φ naving the form $\Phi(t,(\alpha, \beta))=(\alpha+b t+a t c o s \beta, \beta)$, where a and b are positive numbers. Let V_{Φ} denote the vector field which generates Φ. It can be checked that the pair $\left(V_{\Phi}, \Phi\right)$ can not de uniformly approximated by the vector fields and flows from $A_{q}(M, C)$. It appears, nowever, that V_{Φ} and Φ separately can be uniformly approximated by vector fields and flows with Fe-property. Note that this fact 15 more general:

PROPUSITION 5.6
If M 15 a compact smooth manifold, then the set $\underset{V \in G(M, C)}{ } F_{q}(V)$ is a dense subset of $U F l_{q}(V)$ in the C° topology, 1.e. any quasıflow on M can be uniformly $v \in F^{\circ}(M)$
approximated by quasi-flows with Fc-property.
The proof 15 analogous to the proof of Theorem 5.5 and will be omitted.
We can easily construct an analogous example of a vector field and a flow on Klein bottle \mathbb{K}^{2}. Since for any two-dimensional compact manifold apart from $\2 and \mathbb{K}^{2} Euler characteristic 15 negative, we can formulate:

COROLLARY 5.7
Suppose that M is a two-dimensional compact manifold. Then the following conditions are equivalent:

1. Euler characteristic $\chi(M) 15$ different from zero,
2. The set $A_{q}(M, C)$ is dense in $B_{q}(M)$ in C° topology, 3. $M=\mathbb{S}^{2}$ and $M=K^{2}$.

REFERENCES

1. BATTY, C.J.K. Delays to flows on the real line. Preprint, iofo, unput 2. BECK, A. Continuous Flows in the Plane, Springer-Verlag, Berlin, Heidelberg, New York, 1974.
2. CHOQLET, G. Lectures on Analysis, W. A. Benjamin, Mathematical Lecture Series, 24.
3. ENGELKING, R., SIEKLUCKI,K. Geometry and topology, PWN, Warsaw, 1981
4. HARTMAN, P. Ordinary Differential Equations, John Wiley and Sons, N. Y., London, Sydney, 1964.
5. HARTMAN, P. A differential equation with nonunique solutions. Amer. Ma Monthly, 70 (1963), pp. 255-259.
6. LAVRENTIEV, M. Sur une equation differentielle du premier ordre, Mat Zeit. 23 (1925), pp. 197-209.
7. SZLENK, W. Smooth dynamical systems, PWN Warsaw, 1982.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

