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ABSTRACT. An associative ring R with identity 1 is a generalized matrix ring with idempotent
set E if E is a finite set of orthogonal idempotents of R whose sum is 1. We show that, in the
presence of certain annihilator conditions, such a ring is semiprime right Goldie if and only if eRe
is semiprime right Goldie for all e € E, and we calculate the classical right quotient ring of R.
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1. INTRODUCTION.

Each ring considered in this paper is associative and has an identity. Such a ring R is a
generalized matriz ring with idempotent set E if E is a finite set of orthogonal idempotents of R
whose sum is 1.

In this paper, we show that, in the presence of certain non-degeneracy conditions, a
generalized matrix ring R with idempotent set E is semiprime right Goldie if and only if eRe is
semiprime right Goldie for all e € E, and we calculate the classical right quotient ring of R.
Kerr’s example [4] of a right Goldie ring whose matrix ring is not right Goldie shows that our
semiprimeness condition cannot be omitted.

Examples of generalized matrix rings include incidence algebras of directed graphs with a
finite number of vertices (see [5] and [9]), structural matrix rings (see Van Wyk [13] and
subsequent papers), endomorphism rings of finite direct sums of modules and Morita context
rings. Sands [10] observed that if [S,V,W,T] is a Morita context, then

)

is a ring. These Morita context rings are precisely generalized matrix rings with idempotent sets
E such that |E| =2, and they have been widely studied. In particular, we note Amitsur’s
paper [1], the survey paper [6], McConnell and Robson’s treatment in ([7], 1.1 and 3.6) and
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Miiller’s computation of the maximal quotient ring in [8].

A generalized matrix ring R with idempotent set E is called a piecewise domain if for all
e,f.g€ E. r€eRf and y € fRg, we have vy =0 implies =0 or y = 0. These rings have been
studied in some detail — see, for instance, [2] and (3].

We denote the prime radical of a ring R by p(R) and if ¢ and f are idempotents of R, ¢ # f,
p(eRf) denotes the set {x € eRf:xfRe C p(c Re)}.

PROPOSITION 1.1 (Sands [10]). If R is a generalized matrix ring with idempotent set E,
then

PR)= Y pleRS).

e.f€E
PROOF. If |E| =1 there is nothing to prove and if | E| =2 this is Theorem 1 in Sands
[10]. Assume now that | E| =n >2 and that the theorem is true for generalized matrix rings

with idempotent sets of cardinality less than n. Let e € E and set E' = {¢,]1 —e}. Then R is a

generalized matrix ring with idempotent set E' and so Sands’ result implies that

p(R) = p(eRe) + p(eR(1 —€)) + p((1 — €)Re) + p((1 — e) R(1 — ¢€)).
Since (1 —e€)R(1 —e€) is a generalized matrix ring with idempotent set E, = E\{e}, our induction

hypothesis implies that
p(1-e)R1-e)= 3 p(fRyg).
f g€ El

Also, it is clear that p(eR(1—e€))= ¥ p(eRf) and p((1 —e)Re)= 3. p(fRe), so the result
follows. 15 TeB 0

Let R be a generalized matrix ring with idempotent set E. We say that the pair (R, E)
satisfies the left (respectively, right) annihilator condition if for all e, f € E, 0 # x € eRf implies
that zfRe # 0 (respectively, fRex #0). This concept is defined in [12] where right and left are
interchanged.

COROLLARY 1.2. (Wauters and Jespers [12]). The following conditions on a generalized
matrix ring with idempotent set E are equivalent.

(a) R is semiprime.

(b) (R, E) satisfies the left annihilator condition and eRe is semiprime for all e € E.

(¢) (R,E) satisfies the right annihilator condition and eRe is semiprime for all e € E. ]

2. THE GOLDIE CONDITIONS.

The right singular ideal of a ring S will be denoted by Z(S), and the right singular
submodule of a right S-module M will be denoted by Z(M). So, if R is a generalized matrix ring
with idempotent set E and e, f € E with e # f, then Z(eRe) is the right singular ideal of the ring
eRe and Z(eRf) is the right singular submodule of the right fRf-module eRf.

PROPOSITION 2.1. Let R be a generalized matrix ring with idempotent set E and suppose
that (R, E) satisfies the left annihilator condition. Then

Z(R)= ) Z(eRf).
e,fEE

PROOF. Let ¢, f € E and suppose that z € Z(R). Then ezf € Z(R), so there is an essential
right ideal I of R such that ezfI =0. To show that exf € Z(eRf) it suffices to show that fIf is
an essential right ideal of fRf. Let A be a nonzero right ideal of fRf. Because I is essential,
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INAR#0. Let 0#£u € INAR. Since IN AR is a right ideal there is an idempotent g € E such
that 0 £ ug € INAR, and ug = fug because ug€ ARC fRfR. Since (R, E) satisfies the left
annihilator condition, 0 # (fug)gRf C(INARVNfRf C fRfNA. It follows that

ZRC Y ZIeRS)
«feEFE

Conversely, suppose that €, f € E and y =eyf € Z(eRf). Then yH =0 for some essential
right 1decal H of fRf. Let J={r€ R:fre HR}. Clearly, J is a right ideal of R and
yJ =eyfJ =(eyf)fJ C(eyf)HR =0, so to show that y € Z(R) it is enough to show that J is
essential in R. Let B be a nonzero right ideal of R. If fB =0, then BCJ and so BNJ #0.
Now assume fB #0. Then fBg # 0 for some g € E, and so the left annihilator condition implies
that fBf #0. So we see that fBf is a nonzero right ideal of fRf. Thus fBf N H # 0 and so
BNJ #0 because HC HR. o

COROLLARY 2.2. If R is a generalized matrix ring with idempotent set E such that (R, E)
satisfies the left annihilator condition, then R is nonsingular if and only if eRe is nonsingular for
alle€ E.

PROOF. In view of the proposition, we need only show that Z(R)# 0 implies that
Z(eRe) # 0 for some e € E. Suppose that 0 # 2 € Z(R). Then 0 # exf € Z(R) for some ¢, f € E.
The right annihilator condition implies that (ezf)fRe # 0 and so eRe N Z(R) # 0. It now follows
from the proposition that Z(eRe) # 0. 0

The right uniform dimension of a ring R (respectively, right R-module M) will be denoted
by d(R) (respectively, d(M)).

PROPOSITION 2.3. Let R be a generalized matrix ring with idempotent set E such that
(R,E) satisfies the left annihilator condition. If d(R) < oo then d(eRe) < oo for all e€ E.
Moreover, if R is semiprime and d(eRe) < oo for all e € E, then d(eRf) < oo for all e, f € E and
hence d(R) < oo.

PROOF. Assume that d(R) < co,e € E and Y A, is a direct sum of nonzero right ideals of
eRe. To prove that d(eRe) < oo it is enough to show that 35 A,R is direct, and to accomplish
this we need only show that Y A,Rf is direct for each f € E. Suppose that f € E and b, € A,Rf
are such that b, =0. Since b,fRe C A, and ¥ A, is direct, b,fRe = 0 for all i. Thus the left
annihilator condition implies that b, = 0 for all : and hence " A,Rf is direct.

Now assume that d(eRe) < oo for all € € E and suppose that 3" N, is a direct sum of nonzero
fRf-submodules of eRf. Since 0# N,CeRf the left annihilator condition implies that
N.fRe #0, and each N;fRe is a right ideal of eRe. Let K = N,fRen 3 {N,fRe:i # j}. Then
KeRf CN,N T {N,i+# j} and so KeRf =0. Since K?C KeRf,K?=0 and so K =0 because
eRe is semiprime by Corollary 2. Thus Y N,fRe is direct and so d(eRf) < d(eRe). It follows
that R has finite right uniform dimension as a right { 3~ eReY}module and so certainly d(R) < of]
From Corollary 2, Corollary 4 and Proposition 5 we oi)%ai;n the following theorem.

THEOREM 2.4. Let R be a generalized matrix ring with idempotent set E. If R is
semiprime right Goldie, then so too are the rings eRe,e € E. Conversely, if (R, E) satisfies the
left annihilator condition and eRe is semiprime right Goldie for all e € E, then R is semiprime
right Goldie.

3. THE QUOTIENT RING.
Let S and T be rings and let M be an S — T — bimodule. We say that M satisfies the right
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bimodule Ore condition if for cach m € M and each regular clement ¢ € § there is an m; € M and
a regular ¢, € T such that me; = cm,.

PROPOSITION 3.1. If R is a semiprime right Goldic generalized matrix ring with
idempotent set E. then eRf satisfies the right bimodule Ore condition for all ¢. f € E.

PROOF. Let m€eRf and suppose that ¢ is regular in ¢Re¢. Define 8:cRf—ceRf by
0(x) = cx for all w €eRf. Clearly 6 is an fRf-module homomorphism and we now check that 8
is a monomorphism. Suppose that v € cRf and cx =0. Then cafRe =0 which implies that
zfRe =0 because ¢ is regular. But then the left annihilator condition implies that =0 as
required.

From Theorem 6 and Proposition 5 we know that eRf has finite right uniform dimension as
a right fRf-module. Since eRf and ceRf are isomorphic fRf-modules, d(ceRf) = d(eRf) and
so ceRf is an essential fRf submodule of eRf. Hence {y € fRf:my € ceRf} is an essential right
ideal of fRf which, since fRf is semiprime right Goldie, must contain the required regular
element c,. ]

If S is semiprime right Goldie, Q(S) denotes the classical right quotient ring of S and if M is
a right S-module, Q(M) = M ® 4Q(S). Using the right common denominator property of Ore
sets we see that every element of (M) is of the form m ® ¢ ~! where m € M and c is regular in
S. In what follows we shall write mc ~! instead of m© ¢ .

THEOREM 3.2. If R is a semiprime right Goldie generalized matrix ring with idempotent
set E, then

QR)= ). Q(eRf)
e,f€EE

PROOF. For each e€ E,eRe embeds in @(eRe) and we now check that for
e,f€E,e# f.eRf embeds in Q(eRf). Suppose that c is regular in fRf, z € eRf and zc = 0.
Then fRexc =0 and so fRexr =0 because c is regular in fRf. Thus exfRexf =0 and hence
0 =exf = r since R is semiprime. This shows that eRf is a torsion free fRf-module and so eRf
embeds in Q(eRf).

Let e,f,g€ E, z€eRf, y € fRg and suppose that c is regular in fRf and d is regular in
gRg. Define (zc~')(yd ~') = zy,c; 'd ~! where y, and ¢, are obtained from the right bimodule
Ore condition: yc; = cy,. It is straightforward to check that this multiplication is well-defined
and that as a result @ = ¥ Q(eRf) becomes a generalized matrix ring with idempotent set E.

We now show that a is semiprime. It follows from Theorem 6 that eRe is semiprime right
Goldie for all ¢ € E and hence Q(eRe) is semiprime for all e € E. In view of Corollary 1.2, it
suffices to show that (Q, E) satisfies the right annihilator condition. Let yd ~! € Q(fRe) be such
that Q(eRf)yd ' =0. Then (eRf)(yd ~') =0 and so (eRf)y = 0. From Corollary 1.2 we see that
(R,E) satisfies the right annihilator condition and so y=0. Thus (@, E) satisfies the right
annihilator condition and hence @ is semiprime.

Let e,f € E,e # f. From Proposition 2.3 we see that eRf has finite uniform dimension as a
right fRf-module and so Q(eRf) has finite uniform dimension as a right Q(fRf)-module. Since
Q(fRf) is semisimple Artinian it follows that Q(eRf) is an Artinian Q(fRf)-module, and hence
Q is right Artinian by an argument similar to ([7], 1.1.7). Since we have already seen that Q is
semiprime, @ is a semisimple Artinian ring.

To complete the proof, we need only show that R is a right order in Q. Let z€Q,

z= Y z(e f) where z(e, f) € Q(eRf) for all e,f € E. Using the right common denominator
e fEE
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bimodule Ore condition if for each m € M and each regular element c € S there is an m; € M and
a regular ¢, € T such that mc, = cm,.

PROPOSITION 3.1. If R is a semiprime right Goldie generalized matrix ring with
idempotent set E, then eRf satisfies the right bimodule Ore condition for all e, f € E.

PROOF. Let m € eRf and suppose that c¢ is regular in eRe. Define 6:eRf—ceRf by
8(z) = cz for all z € eRf. Clearly 6 is an fRf-module homomorphism and we now check that ¢
is a monomorphism. Suppose that z € eRf and ¢z =0. Then czfRe =0 which implies that
zfRe =0 because c¢ is regular. But then the left annihilator condition implies that £ =0 as
required.

From Theorem 6 and Proposition 5 we know that eRf has finite right uniform dimension as
a right fRf-module. Since eRf and ceRf are isomorphic fRf-modules, d(ceRf) = d(eRf) and
so ceRf is an essential fRf submodule of eRf. Hence {y € fRf:my € ceRf} is an essential right
ideal of fRf which, since fRf is semiprime right Goldie, must contain the required regular
element c,. u]

If S is semiprime right Goldie, Q(S) denotes the classical right quotient ring of S and if M is
a right S-module, Q(M) =M ® sQ(S). Using the right common denominator property of Ore
sets we see that every element of Q(M) is of the form m ® c~! where m € M and c is regular in
S. In what follows we shall write mc ~! instead of m @ ¢~ 1.

THEOREM 3.2. If R is a semiprime right Goldie generalized matrix ring with idempotent
set E, then

QR)= 3 Q(eRf).
e,fEE

PROOF. For each e€ E,eRe embeds in Q(eRe) and we now check that for
e,f € E,e # f,eRf embeds in Q(eRf). Suppose that c is regular in fRf, z € eRf and zc =0.
Then fRexc =0 and so fRex =0 because c is regular in fRf. Thus ezfRexf =0 and hence
0 =ezf = z since R is semiprime. This shows that eRf is a torsion free fRf-module and so eRf
embeds in Q(eRf).

Let e,f,g€ E, z€eRf, y € fRg and suppose that c is regular in fRf and d is regular in
gRg. Define (zc¢~')(yd ~!) = zy;c; 'd~! where y; and ¢, are obtained from the right bimodule
Ore condition: yc, = cy,. It is straightforward to check that this multiplication is well-defined
and that as aresult @ = ¥ Q(eRf) becomes a generalized matrix ring with idempotent set E.

We now show that eQ is semiprime. It follows from Theorem 6 that eRe is semiprime right
Goldie for all e € F and hence Q(eRe) is semiprime for all e € E. In view of Corollary 1.2, it
suffices to show that (Q, E) satisfies the right annihilator condition. Let yd ~! € Q(fRe) be such
that Q(eRf)yd~' =0. Then (eRf)(yd ') =0 and so (eRf)y =0. From Corollary 1.2 we see that
(R,E) satisfies the right annihilator condition and so y =0. Thus (@, E) satisfies the right
annihilator condition and hence @ is semiprime.

Let e,f € E,e # f. From Proposition 2.3 we see that eRf has finite uniform dimension as a
right fRf-module and so Q(eRf) has finite uniform dimension as a right Q(fRf)-module. Since
Q(fRf) is semisimple Artinian it follows that Q(eRf) is an Artinian Q(fRf)-module, and hence
Q is right Artinian by an argument similar to ([7], 1.1.7). Since we have already seen that @ is
semiprime, @ is a semisimple Artinian ring.

To complete the proof, we need only show that R is a right order in Q. Let z€Q,
z= ¥ Em(e, f) where z(e, f) € Q(eRf) for all e,f € E. Using the right common denominator

e, f€
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property we can find, for each f € E, an a; € fRf and elements y(e, f) € eRf such that for all

e€ E,z(e,fy=yle,fla;j'. Let y= ¥ yle,f)and z= ¥ a;. Then z= yz !

. . e,f€E J€EE

right order in Q. o
Let R be a semiprime right Goldie ring with idempotent e. Clearly, R is a generalized

matrix ring with idempotent set E = {e,1 — ¢} and so it follows from Theorem 2.4 that eRe is

and so R is a

semiprime right Goldie. This result seems to have been well-known for some time. Also, it
follows from Theorem 3.2 that the classical right quotient ring of eRe is eQe where @Q is the
classical right quotient ring of R. This result is due to Small [11].
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