EXISTENCE OF PERIODIC SOLUTIONS FOR NONLINEAR LIENARD SYSTEMS

WAN SE KIM
Department of Mathematics
Dong-A University
Pusan 604-714
Republic of Korea
(Received January 26, 1993 and in revised form March 29, 1993)

Abstract

We prove the existence and multiplicity of periodic solutions for nonlinear Lienard System of the type $$
x^{\prime \prime}(t)+\frac{d}{d t}[\nabla F(x(t))]+g(x(t))+h(t, x(t))=e(t)
$$ under various conditions upon the functions g, h and e.

KEY WORDS AND PHRASES: Nonlinear Lienard system, multiplicity of periodic solution. 1991 AMS SUBJECT CLASSIFICATION CODES: 34B15, 34C25

1. INTRODUCTION

Let R^{n} be n-dimensional Euclidean space. We define $\|x\|=\left[\sum_{i-1}^{n}\left|x_{i}\right|^{2 / 2}\right.$ for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$. By $L^{2}\left([0,2 \pi], R^{n}\right)$ we denote the space of all measurable functions $x:[0,2 \pi] \rightarrow R^{n}$ for which $\|x(t)\|^{2}$ is integrable. The norm is given by

$$
\|x\|_{L^{2}}=\left[\sum_{i=1}^{n}\left\|x_{i}\right\|_{L^{2}}^{2}\right]^{1 / 2}
$$

By $C^{k}\left([0.2 \pi], R^{n}\right)$ we denote the Banach space of 2π-periodic continuous functions $x:[0,2 \pi] \rightarrow R^{n}$ whose derivatives up to order k are continuous. The norm is given by

$$
\|x\|_{c^{k}}=\sum_{i=0}^{k}\left\|x^{(i)}\right\|_{\infty}
$$

where $\|y\|_{\infty}=\sup _{t \in[0,2 \pi}\|y(t)\|$ which is a norm in $C\left([0,2 \pi], R^{n}\right)$. We use the symbol (\cdot, \cdot) for the Euclidean inner product in the space R^{n}. For x, y in $C\left([0,2 \pi], R^{n}\right)$ we define the L^{2}-inner product as follows

$$
\langle x, y\rangle=\int_{0}^{2 \pi}(x(t), y(t)) d t .
$$

The mean value \bar{x} of x and the function of mean value zero are defined by $\bar{x}=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) d t$ and $\tilde{x}(t)=x(t)-\bar{x}$, respectively.

We define inequalities in R^{n} componentwise, i.e. $x, y \in R^{n}, x \leq y$ if and only if $x_{i} \leq y_{i}$ for $i=1,2, \ldots, n$, and $x<y$ if and oniy if $x_{i}<y_{i}$ for $i=1,2, \ldots, n$. In this work, we will study the existence of periodic solutions and multiple periodic solutions for the problem

$$
\begin{equation*}
x^{\prime \prime}(t)+\frac{d}{d t}[\nabla F(x(t))]+g(x)+h(t, x)=e(t) \tag{E}
\end{equation*}
$$

(B)

$$
x(0)-x(2 \pi)=x^{\prime}(0)-x^{\prime}(2 \pi)=0
$$

where $F: R^{n} \rightarrow R$ is a C^{2}-function, $g: R^{n} \rightarrow R^{n}$ is continuous, $h:[0,2 \pi] \times R^{n} \rightarrow R$ is continuous in both variables and 2π-periodic in t, and $e:[0,2 \pi] \rightarrow R$ is in $L^{2}\left([0,2 \pi], R^{n}\right)$. We assume that $g(x)=\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{2}\right), \ldots, g_{n}\left(x_{n}\right)\right)$ for all $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$ and $h(t, x)=\left(h_{1}(t, x), h_{2}(t, x), \ldots, h_{n}(t, x)\right)$ for all $(t, x) \in[0,2 \pi] \times R^{n}$.

Moreover, we assume the following:
$\left(H_{l}\right) h$ is bounded; i.e., for each $i=1,2,3 \ldots, n$, there exists $K_{i}>0$ such that

$$
\left|h_{t}(t, x)\right| \leq K_{i}
$$

for all $(t, x) \in[0,2 \pi] \times R^{n}$.
$\left(H_{2}\right)$ for each $i=1,2, \ldots, n$,

$$
\frac{d}{d t} \frac{\partial F(x)}{\partial x_{i}}=\frac{\partial^{2} F(x)}{\partial x_{i}^{2}} x_{i}^{\prime}
$$

and there exists $C_{i}>0$ such that

$$
\left|\frac{\partial^{2} F(x)}{\partial x_{i}^{2}}\right| \geq C_{i}
$$

for all $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$.
The purpose of this work is to give existence and multiplicity results for periodic solutions of coupled Lienard system in R^{n}. This paper was motivated by the results in [1] and so our results in this work extend some results in [1]. To prove our results we adapt Mawhin's continuation theorem in [2], and we give appropriate region for the system's multiplicity by finding an a'priori bound.

2. A'priori Bound

To prove our assertion, we consider the following homotopy:
$\left(E_{\lambda}\right)$

$$
x^{\prime \prime}(t)+\lambda \frac{d}{d t}[\nabla F(x(t))]+\lambda g(x)+\lambda h(t, x)=\lambda e(t)
$$

Let $\lambda \in(0,1)$ and let $x(t)$ be a possible solution of the problem $\left(E_{\lambda}\right)(B)$. Taking L^{2}-inner product by $x^{\prime}(t)$ on both sides of $\left(E_{\lambda}\right)$, we have

$$
\begin{aligned}
& \lambda \sum_{i=1}^{n} \int_{0}^{2 \pi} \frac{\partial^{2} F(x(t))}{\partial x_{i}^{2}}\left[x_{i}^{\prime}(t)\right]^{2} d t+\lambda \sum_{i=1}^{n} \int_{0}^{2 \pi} g_{i}\left(x_{i}(t)\right) x_{i}^{\prime}(t) d t \\
& \quad+\lambda \sum_{i=1}^{n} \int_{0}^{2 \pi} h_{i}(t, x(t)) x_{i}^{\prime}(t) d t=\lambda \sum_{i=1}^{n} \int_{0}^{2 \pi} e_{i}(t) x_{i}^{\prime}(t) d t
\end{aligned}
$$

By the continuity of $\frac{\partial^{2} F(x)}{\partial x_{1}^{2}},\left(H_{2}\right)$ and the periodicity of $x_{i}(t)$ in t, we have

$$
\begin{aligned}
& \sum_{i=1}^{n} C_{i} \int_{0}^{2 \pi}\left[x_{i}^{\prime}(t)\right]^{2} d t \leq\left|\sum_{i=1}^{n} \int_{0}^{2 \pi} \frac{\partial^{2} F(x)}{\partial x_{i}^{2}}\left[x_{i}^{\prime}(t)\right]^{2} d t\right| \\
& \leq \sum_{i=1}^{n} \sqrt{2 \pi}\left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1 / 2}\left[\int_{0}^{2 \pi}\left|x_{i}^{\prime}(t)\right|^{2} d t\right]^{1 / 2}+\left[\sum_{i=1}^{n} \int_{0}^{2 \pi}\left|\bar{e}_{i}(t)\right|^{2} d t\right]^{1 / 2}\left[\sum_{i=1} \int_{0}^{2 \pi}\left[x_{i}^{\prime}(t)\right]^{2}\right]^{1 / 2}
\end{aligned}
$$

Hence

$$
\left\|x^{\prime}\right\|_{L^{2}} \leq\left(\frac{1}{\min _{1 \leq i \leq n} C_{i}}\right)\left[\sqrt{2 \pi}\left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1 / 2}+\|\tilde{e}\|_{L^{2}}\right] \equiv M_{0}
$$

By the Sobolev inequality, we have

$$
\|\tilde{x}\|_{\infty} \leq \sqrt{\frac{\pi}{6}} M_{0} \equiv M_{1}
$$

Suppose there exist $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right), b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ in R^{2} such that $a \leq b$; if $x(t)$ is a solution of $\left(E_{\lambda}\right)(B)$ such that $a \leq \bar{x} \leq b$ and $\|\tilde{x}\|_{\infty} \leq M_{1}$, then

$$
\|x\|_{\infty} \leq\left[\sum_{i=1}^{n}\left[\max \left(\left|a_{i}\right|,\left|b_{i}\right|\right)\right]^{2}\right]^{1 / 2}+M_{1} .
$$

Taking L^{2}-inner product by $x^{\prime \prime}(t)$ on both sides of $\left(E_{\lambda}\right)$, we have

$$
\begin{aligned}
& \sum_{i=1}^{n} \int_{0}^{2 \pi}\left[x_{i}^{\prime \prime}(t)\right]^{2} d t+\lambda \sum_{i=1}^{n} \int_{0}^{2 \pi} \frac{\partial^{2} F(x)}{\partial x_{i}^{2}} x_{i}^{\prime}(t) x_{i}^{\prime \prime}(t) d t \\
& \quad+\lambda \sum_{i=1}^{n} \int_{0}^{2 \pi} g_{i}\left(x_{i}(t)\right) x_{i}^{\prime \prime}(t) d t+\lambda \sum_{i=1}^{n} \int_{0}^{2 \pi} h_{i}(t, x(t)) x_{i}^{\prime \prime}(t) d t \\
& = \\
& =\lambda \sum_{i=1}^{n} \int_{0}^{2 \pi} \tilde{e}_{i}(t) x_{i}^{\prime \prime}(t) d t
\end{aligned}
$$

Since F is a C^{2}-function, for each $i=1,2, \ldots, n$, there exists $i>0$ such that

$$
\left|\frac{\partial^{2} F(x)}{\partial x_{i}^{2}}\right| \leq D_{i},
$$

and also since g is continuous, for each $i=1,2, \ldots, n$, there exists $L_{i}>0$ such that

$$
\left|g_{i}\left(x_{i}\right)\right| \leq L_{i} .
$$

Hence

$$
\begin{aligned}
& \sum_{i=1}^{n} \int_{0}^{2 \pi}\left[x_{i}{ }^{\prime \prime}(t)\right]^{2} d t \leq\left(\max _{1 \leq i \leq n} D_{i}\right)\left[\sum_{i=1}^{n} \int_{0}^{2 \pi}\left|x_{i}^{\prime}(t)\right|^{2} d t\right]^{1 / 2}\left[\sum_{i=1}^{n} \int_{0}^{2 \pi}\left|x_{i}^{\prime \prime}(t)\right|^{2} d t\right]^{1 / 2} \\
&+\sqrt{2 \pi}\left[\sum_{i=1}^{n} L_{i}^{2}\right]^{1 / 2}+\left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1 / 2}\left[\sum_{i=1}^{n} \int_{0}^{2 \pi}\left|x_{i}^{\prime \prime}(t)\right|^{2}\right]^{1 / 2} \\
&+\left[\sum_{i=1}^{n} \int_{0}^{2 \pi}\left|\bar{e}_{i}(t)\right|^{2} d t\right]^{1 / 2}\left[\left.\sum_{i=1}^{n} \int_{0}^{2 \pi} x_{i}^{\prime \prime \prime}(t)\right|^{2} d t\right]^{1 / 2} .
\end{aligned}
$$

and thus we have

$$
\left\|x^{\prime \prime}\right\|_{L^{2}} \leq\left(\max _{1 \leq i \leq n} D_{i}\right) M_{0}+\sqrt{2 \pi}\left[\sum_{i=1}^{n} L_{i}^{2}\right]^{1 / 2}+\left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1 / 2}+\|\tilde{e}\|_{L^{2}} \equiv M_{2} .
$$

By the Sobolev inequality

$$
\left\|x^{\prime}\right\|_{\infty} \leq \sqrt{\frac{\pi}{6}} M_{2}
$$

for every solution of the problem $\left(E_{\lambda}\right)(B)$ where M_{2} depends on a, b, M_{0} and M_{1}.

3. OPERATOR FORMULATION

Define

$$
L: D(L) \subseteq C^{1}\left([0,2 \pi], R^{n}\right) \rightarrow L^{2}\left([0,2 \pi], R^{n}\right)
$$

by

$$
\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right) \rightarrow\left(x_{1}{ }^{\prime \prime}(t), x_{2}^{\prime \prime}(t), \ldots, x_{n}{ }^{\prime \prime}(t)\right)
$$

where $D(L)=C^{2}\left([0,2 \pi], R^{n}\right)$. Then Ker $L=R^{2}$ and

$$
\operatorname{Im} L=\left\{e \in L^{2}\left([0,2 \pi], R^{n}\right) \mid \int_{0}^{2 \pi} e(t) d t=0\right\}
$$

Consider two continuous projections

$$
P: C^{1}\left([0,2 \pi], R^{n}\right) \rightarrow C^{1}\left([0,2 \pi], R^{n}\right)
$$

such that

$$
\operatorname{Im} P=K e r L
$$

and

$$
Q: L^{2}\left([0,2 \pi], R^{n}\right) \rightarrow L^{2}\left([0,2 \pi], R^{n}\right)
$$

defined by

$$
(Q e)(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e(t) d t
$$

Then

$$
\operatorname{Ker} Q=\operatorname{Im} L, C\left([0,2 \pi], R^{n}\right)=K e r L \oplus K e r P
$$

and $L^{2}\left([0,2 \pi], R^{n}\right)=\operatorname{Im} L \oplus \operatorname{Im} Q$ as a topological sum. Since

$$
\operatorname{dim}\left[L^{2}\left([0,2 \pi], R^{n}\right) / \operatorname{Im} L\right]-\operatorname{dim}[\operatorname{Im} Q]-\operatorname{dim}[\operatorname{Ker} L]-n,
$$

L is a Fredholm mapping of index zero and hence there exists an isomorphism $J: \operatorname{Im} Q \rightarrow K e r L$. The operator L is not bijective but the restriction of L on $\operatorname{DomL} \cap \operatorname{KerP}$ is one-to-one and onto ImL, so it has its algebraic right inverse K_{R} and, as well known, it is compact. Define

$$
N: C^{1}\left([0,2 \pi], R^{n}\right) \rightarrow L^{2}\left([0,2 \pi], R^{n}\right)
$$

by

$$
x(t) \rightarrow-\frac{d}{d t}[\nabla F(x(t))]-g(x(t))-h(t, x(t))+e(t)
$$

where $x(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)$. Then N is continuous and maps bounded sets into bounded sets. Let G be any open bounded subset of $C^{1}\left([0,2 \pi], R^{n}\right)$, then $Q N: G \rightarrow L^{2}\left([0,2 \pi], R^{n}\right)$ is bounded and $K_{R}(I-Q): \bar{G} \rightarrow L^{2}\left([0,2 \pi], R^{n}\right)$ is compact and continuous. Hence N is L-compact on G. Now we see $x \in D(L)$ is a solution to the problem $\left(E_{\lambda}\right)(B)$ if and only if

$$
L x=\lambda N x .
$$

4. MAIN RESULTS

THEOREM 4.1. Besides conditions on F, g, e, and $\left(H_{1}\right),\left(H_{2}\right)$, we assume
$\left(H_{3}\right)$ there exists $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right), s=\left(s_{1}, s_{2}, \ldots, s_{n}\right), A=\left(A_{1}, A_{n}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ in R^{n} such that $r<s$ and $A \leq B$

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} g(r+\tilde{x}(t)) d t+\frac{1}{2 \pi} \int_{0}^{2 \pi} h(t, \bar{x}+\tilde{x}(t)) d t \leq A
$$

and

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} g(s+\tilde{x}(t)) d t+\frac{1}{2 \pi} \int_{0}^{2 \pi} h(t, \bar{x}+\tilde{x}(t)) d t \geq B
$$

for every $\bar{x} \in R^{n}$ such that

$$
\|\bar{x}\| \leq\left[\sum_{i=1}^{n}\left[\max \left(\left|r_{i}\right|,\left|s_{i}\right|\right)^{2}\right]^{1 / 2},\right.
$$

and for every $\bar{x} \in C^{1}\left([0,2 \pi], R^{n}\right)$ having mean value zero, satisfying the boundary condition (B) and such that

$$
\|\tilde{x}\|_{\infty} \leq \sqrt{\frac{\pi}{6}}\left(\frac{1}{\min _{1 \leq i \leq n} C_{t}}\right)\left[\sqrt{2 \pi}\left[\sum_{i=1}^{n} K_{t}^{2}\right]^{1 / 2}+\|\tilde{e}\|_{L^{2}}\right] .
$$

Then $(E)(B)$ has at least one solution if

$$
A<\frac{1}{2 \pi} \int_{0}^{2 \pi} e(t) d t<B
$$

PROOF. We construct a bounded open set Ω in $\left.C^{1}([0,2 \pi]), R^{n}\right)$ to apply Mawhin's continuation theorem in [2]. Using a'priori estimate, we have

$$
\left\|x^{\prime}\right\|_{L^{2}} \leq\left(\frac{1}{\min _{1 \leq i \leq n} C_{i}}\right)\left[\sqrt{2 \pi}\left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1 / 2}+\|\tilde{e}\|_{L^{2}}\right]=M_{0}
$$

for any solution $x(t)$ of $\left(E_{\lambda}\right)(B), \lambda \in(0,1)$. Hence $\|\tilde{x}\|_{\infty} \leq \sqrt{\frac{\pi}{6}} M_{0}=M_{1}$. Define a bounded set Ω^{0} by

$$
\Omega^{0}=\left\{x \in C^{1}\left([0,2 \pi], R^{n}\right) \mid r \leq \bar{x} \leq s,\|\tilde{x}\|_{\infty} \leq M_{1}\right\} .
$$

Then, for any solution $x(t)$ of $\left(E_{\lambda}\right)(B)$ lying in Ω^{0}, we have

$$
\|x\|_{\infty} \leq\left[\sum_{i=1}^{n}\left[\max \left(\left|r_{i}\right|,\left|s_{i}\right|\right)\right]^{2}\right]^{1 / 2}+M_{1}
$$

and

$$
\left\|x^{\prime \prime}\right\|_{L^{2}} \leq\left(\max _{1 \leq i \leq n} D_{i}\right) M_{0}+\sqrt{2 \pi}\left[\sum_{i=1}^{n} L_{i}^{2}\right]^{1 / 2}+\left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1 / 2}+\|e\|_{L^{2}} \equiv M_{2}
$$

where L_{i} depends on r, s and M_{1}. Thus $\left\|x^{\prime}\right\|_{\infty} \leq \sqrt{\frac{\pi}{6}} M_{2}$. Define a bounded open set Ω by

$$
\Omega=\left\{x \in C^{1}\left([0,2 \pi], R^{n}\right) \mid r<\bar{x}<s,\|\tilde{x}\|_{\infty}<2 M_{1},\left\|x^{\prime}\right\|_{\infty}<\sqrt{\frac{2 \pi}{6}} M_{2}\right\} .
$$

Let $(x, \lambda) \in[D(L) \cap \partial \Omega] \times(0,1)$ and if (x, λ) is any solution to $L x=\lambda N x$, then (x, λ) is a solution to the problem $\left(E_{\lambda}\right)(B)$,

$$
\|\tilde{x}\| \leq\left[\sum_{i=1}^{n}\left[\max \left(\left|r_{i}\right|,\left|s_{i}\right|\right)\right]^{2}\right]^{1 / 2},\|\tilde{x}\| \leq M_{1}
$$

and there exists some $i \in\{1,2, \ldots, n\}$ such that $\tilde{x}_{i}=r_{i}$ or s_{i}. Take L^{2}-inner product with $e_{i}=(0,0, \ldots, 0,1,0, \ldots, 0)$ on both sides of $\left(E_{\lambda}\right)$, we have

$$
\lambda \int_{0}^{2 \pi} g_{i}\left(x_{i}(t)\right) d t+\lambda \int_{0}^{2 \pi} h_{i}(t, x(t)) d t=\lambda \int_{0}^{2 \pi} e_{i}(t) d t
$$

or

$$
\int_{0}^{2 \pi} g_{i}\left(x_{i}(t)\right) d t+\int_{0}^{2 \pi} h_{i}(t, x(t)) d t-\int_{0}^{2 \pi} e_{i}(t) d t=0
$$

if $\bar{x}_{i}=r_{i}$, then, by assumption

$$
\int_{0}^{2 \pi} g_{i}\left(r_{i}+\tilde{x}_{i}(t)\right) d t+\int_{0}^{2 \pi} h_{i}\left(t, \bar{x}_{1}+\tilde{x}_{1}(t), \ldots, r_{i}+\tilde{x}_{i}(t), \ldots, \bar{x}_{n}+\bar{x}_{n}(t)\right) d t-\int_{0}^{2 \pi} e_{i}(t) d t<0
$$

If $\bar{x}_{i}=s_{i}$, then again by assumption,

$$
\int_{0}^{2 \pi} g_{t}\left(s_{t}+\bar{x}_{t}(t)\right) d t+\int_{0}^{2 \pi} h_{t}\left(t, \bar{x}_{1}+\tilde{x}_{1}(t), \ldots, s_{t}+\bar{x}_{t}(t), \ldots, \bar{x}_{n}+\bar{x}_{n}(t)\right) d t-\int_{0}^{2 \pi} e_{t}(t) d t<0
$$

Thus, for each $\lambda \in(0,1)$, for every solution of

$$
L x=\lambda N x
$$

is such that $x \notin \partial \Omega$.
Next, we will show that $Q N x \neq 0$ for each $x \in K e r L \cap \partial \Omega$ and $d_{B}[J Q N, \Omega \cap K e r L, 0] \neq 0$ where d_{B} is the Brouwer topological degree. Since $J: \operatorname{Im} Q \rightarrow \operatorname{KerL}$ is an isomorphism and $\operatorname{dim}[\operatorname{Im} Q]=\operatorname{dim}[\operatorname{Ker} L]=n$, we may take J to be the identity on R^{n} and hence

$$
(J Q N)(x)(t)=-\frac{1}{2 \pi} \int_{0}^{2 \pi} g(x(t)) d t-\frac{1}{2 \pi} \int_{0}^{2 \pi} h(t, x(t)) d t+\frac{1}{2 \pi} \int_{0}^{2 \pi} e(t) d t
$$

with, for $i=1,2, \ldots, n$,

$$
(J Q N)_{t}(x)(t)=-\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{i}\left(x_{i}(t)\right) d t-\frac{1}{2 \pi} \int_{0}^{2 \pi} h_{i}(t, x(t)) d t+\frac{1}{2 \pi} \int_{0}^{2 \pi} e_{i}(t) d t
$$

where $x(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)$.
Let $x \in \operatorname{Ker} L \cap \partial \Omega$, then $x=\bar{x}$ is constant in R^{n},

$$
\|\bar{x}\| \leq\left[\sum_{i=1}^{n}\left[\max \left(\left|r_{i}\right|,\left|s_{i}\right|\right)\right]^{2}\right]^{1 / 2},
$$

and there exists $i \in\{1,2, \ldots, n\}$ such that $x_{i}=\bar{x}_{i}=r_{i}$ or s_{i}. In a similar manner we have $(Q N)_{i}(x) \neq 0$.
Thus $Q N x \neq 0$ for each $x \in \operatorname{KerL} \cap \partial \Omega$. It is easy to see that $P \equiv \overline{\Omega \cap \operatorname{KerL}}-\Pi_{i-1}^{n}\left[r_{t}, s_{i}\right]$. Let $P_{i}=\left\{x \in P \mid x_{i}=r_{i}\right\}, P_{i}^{\prime}=\left\{x \in P \mid x_{i}=s_{i}\right\}$ and $x \in P_{i}, x^{\prime} \in P_{i}^{\prime}, i=1,2, \ldots, n$.

Then $x=\bar{x}, x^{\prime}=\bar{x}^{\prime}$ are constant with

$$
\|\bar{x}\|, \quad \text { and }\left\|\bar{x}^{\prime}\right\| \leq\left[\sum_{i=1}^{n}\left[\max \left(\left|r_{i}\right|,\left|s_{i}\right|\right)\right]^{2}\right]^{1 / 2}
$$

and $x_{i}=\bar{x}_{i}=r_{i}, x_{i}{ }^{\prime}=\bar{x}_{t}{ }^{\prime}=s_{i}$. Hence

$$
(J Q N)_{t}(x)=-\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{t}\left(r_{i}\right) d t-\frac{1}{2 \pi} \int_{0}^{2 \pi} h_{i}\left(t, x_{i}, \ldots, r_{i}, \ldots, x_{n}\right) d t+\frac{1}{2 \pi} \int_{0}^{2 \pi} e_{t}(t) d t>0
$$

and

$$
(J Q N)_{i}\left(x^{\prime}\right)=-\frac{1}{2 \pi} \int_{0}^{2 \pi} g_{i}\left(s_{i}\right) d t-\frac{1}{2 \pi} \int_{0}^{2 \pi} h_{i}\left(t, x_{i}^{\prime}, \ldots, s_{i}, \ldots, x_{n}^{\prime}\right) d t+\frac{1}{2 \pi} \int_{0}^{2 \pi} e_{i}(t) d t<0
$$

Thus $(J Q N)_{i}(x)(J Q N)_{i}\left(x^{\prime}\right)<0$ for $i=1,2, \ldots, n$. Therefore, by the generalized intermediate value theorem, $d_{B}[J Q N, \Omega \cap K e r L, 0] \neq 0$. Hence, by Mawhin's continuation theorem, the problem $(E)(B)$ has at least one solution in $D(L) \cap \bar{\Omega}$.

THEOREM 4.2. Besides conditions on F, g, e, and $\left(H_{1}\right)$ and $\left(H_{2}\right)$, we assume
$\left(H_{4}\right)$ there exists $q=\left(q_{1}, q_{2}, \ldots, q_{n}\right), r=\left(r_{1}, r_{2}, \ldots, r_{n}\right), s=\left(s_{1}, s_{2}, \ldots, s_{n}\right), A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ in R^{n} such that $q<r<s$ and $A \leq B$ such that

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} g(q+\tilde{x}(t)) d t+\frac{1}{2 \pi} \int_{0}^{2 \pi} h(t, \bar{x}+\tilde{x}(t)) d t \geq B \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} g(r+\tilde{x}(t)) d t+\frac{1}{2 \pi} \int_{0}^{2 \pi} h(t, \bar{x}+\tilde{x}(t)) d t \leq A
\end{aligned}
$$

and

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} g(s+\tilde{x}(t)) d t+\frac{1}{2 \pi} \int_{0}^{2 \pi} h(t, \bar{x}+\tilde{x}(t)) d t \geq B
$$

for every $\bar{x} \in R^{n}$ such that

$$
\|\bar{x}\| \leq\left[\sum_{i=1}^{n} \max \left(\left|q_{i}\right|,\left|r_{i}\right|,\left|s_{i}\right|\right)^{2}\right]^{1 / 2}
$$

and for every $\tilde{x} \in C^{1}\left([0,2 \pi], R^{n}\right)$ having mean value zero, satisfying the boundary condition (B) such that

$$
\|\tilde{x}\|_{\infty} \leq \sqrt{\frac{\pi}{6}}\left(\frac{1}{\min _{1 \leq i \leq n} C_{i}}\right)\left[\sqrt{2 \pi}\left[\sum_{i=1}^{n} K_{t}^{2}\right]^{1 / 2}+\|\tilde{e}\|_{L^{2}}\right]
$$

Then $(E)(B)$ has at least 2^{n} solutions if

$$
A<1 / 2 \pi \int_{0}^{2 \pi} e(t) d t<B
$$

PROOF. We construct 2^{n} bounded open sets in $C^{1}\left([0,2 \pi], R^{n}\right)$ to apply Mawhin's continuation theorem in [3]. Using a'priori estimate, we have

$$
\left\|x^{\prime}\right\|_{L^{2}} \leq\left(\frac{1}{\min _{i \leq i \leq n} C_{i}}\right)\left[\sqrt{2 \pi}\left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1 / 2}+\|\tilde{e}\|_{L}^{2}\right]=M_{0}
$$

for any solution $x(t)$ of $\left(E_{\lambda}\right)(B), \lambda \in(0,1)$. Hence $\|\tilde{x}\|_{\infty} \leq \sqrt{\frac{\pi}{6}} M_{0} \equiv M_{1}$. Let I, J be two disjoint subsets of $\{1,2, \ldots, n\}$ such that $I \cup J=\{1,2, \ldots, n\}$ and define $\Omega_{I J}^{0}$ by $\Omega_{I J}^{0}=\left\{x \in C^{1}\left([0,2 \pi], R^{n}\right) \mid q_{i} \leq \overline{x_{i}} \leq r_{i}\right.$ for $i \in I, r_{j} \leq \overline{x_{j}} \leq s_{j}$ for $\left.j \in J,\|\tilde{x}\|_{\infty} \leq M_{1}\right\}$; then the number of such sets is 2^{n} and for any solution, $x(t)$ of $\left(E_{\lambda}\right)(B)$ lying in $\Omega_{I J}^{0}$, we have

$$
\|x\|_{\infty} \leq\left[\sum_{i \in I}\left[\max \left(\left|q_{i}\right|,\left|r_{i}\right|\right)\right]^{2}+\sum_{j \in J}\left[\max \left(\left|r_{j}\right|,\left|s_{j}\right|\right)\right]^{2}\right]^{1 / 2}+M_{1}
$$

and

$$
\left\|x^{\prime \prime}\right\|_{L^{2}} \leq\left(\max _{1 \leq i \leq n} D_{i}\right) M_{0}+\sqrt{2 \pi}\left[\sum_{i=1}^{n} L_{i}^{2}\right]^{1 / 2}+\left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1 / 2}+\|\tilde{e}\|_{L^{2}} \equiv M_{2}
$$

where L_{i} depends on q, r, s and M_{1}. Thus $\left\|x^{\prime}\right\|_{\infty} \leq \sqrt{\frac{\pi}{6}} M_{2}$. Define a bounded open set $\Omega_{I J}$ by

$$
\begin{gathered}
\Omega_{I J}=\left\{x \in C^{1}\left([0,2 \pi], R^{n}\right) \mid q_{i}<\bar{x}_{i}<r_{i} \text { for } i \in I, r_{j}<\bar{x}_{j}<s_{j}\right. \\
\text { for } j \in J,\|\tilde{x}\|_{\infty}<2 M_{1},\left\|x^{\prime \prime}\right\|_{\infty}<\sqrt{\frac{2 \pi}{3}} M_{2}
\end{gathered}
$$

Let $(x, \lambda) \in\left[D(L) \cap \partial \Omega_{I J}\right] \times(0,1)$ and if (x, λ) is any solution to

$$
L x=\lambda N x
$$

then (x, λ) is a solution to the problem $\left(E_{\lambda}\right)(B)$,

$$
\|\bar{x}\| \leq\left[\sum_{i \in I}\left[\max \left(\left|q_{i}\right|,\left|r_{i}\right|\right)\right]^{2}+\sum_{j \in J}\left[\max \left(\left|r_{j}\right|,\left|s_{j}\right|\right)\right]^{2}\right]^{1 / 2},\|\tilde{x}\| \leq M_{1}
$$

and there exists some $i \in\{1,2, \ldots, n\}$, such that $\bar{x}_{i}=q_{i}, r_{i}$ or s_{i}. By $\left(H_{4}\right)$ and assumption we can see for each $\lambda \in(0,1)$, for every solution of $L x=\lambda N x$ is such that $x \notin \partial \Omega_{I J}$. And similarly, we can also see $Q N x \neq 0$ for each $x \in \operatorname{Ker} L \cap \partial \Omega_{I J}$. It is easy to see $P \equiv \Omega_{I J} \cap \operatorname{Ker} L=\Pi_{i \in I}\left[q_{i}, r_{i}\right] \times \Pi_{j \in J}\left[r_{j}, s_{j}\right]$. Let

$$
\begin{array}{lll}
P_{i}=\left\{x \in p \mid x_{i}=q_{i}\right\} & \text { if } & i \in I, \\
P_{j}=\left\{x \in p \mid x_{j}-r_{j}\right\} & \text { if } & j \in J, \\
P_{i}^{\prime}=\left\{x \in p \mid x_{i}-r_{i}\right\} & \text { if } & i \in I, \\
P_{j}^{\prime}=\left\{x \in p \mid x_{i}=s_{j}\right\} & \text { if } & j \in I,
\end{array}
$$

and let $x \in P_{i}, x^{\prime} \in P_{i}^{\prime}$ with $i \in I \cup J$. Then, for $i \in I$, we have $x_{i}=q_{i}, x_{i}=r_{i}$. Hence $(J Q N)_{i}(x)(J Q N)_{i}\left(x^{\prime}\right)<0$ for $i \in I$. For $j \in J$, we have $x_{j}-r_{j}, x_{i}^{\prime}-s_{j}$. Thus $(J Q N)_{j}(x)(J Q N)_{j}\left(x^{\prime}\right)<0$ for $j \in J$. Therefore, we have $d_{B}\left[J Q N, \Omega_{J J} \cap K e r L, 0\right]=0$. Thus, by Mawhin's continuation theorem, the problem $\left(E_{\lambda}\right)(B)$ has at least one solution in $D(L) \cap \bar{\Omega}_{I J}$. Thus $\left(E_{\lambda}\right)(B)$ has at least $2^{n \prime}$ solutions.

Corollary 4.3. Besides the conditions on F, g and e, and $\left(H_{1}\right)$ and $\left(H_{2}\right)$, we assume
$\left(H_{5}\right)$ there exists $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right)>0$ in R^{n} such that

$$
g(T+x)=g(x) \text { and } h(t, T+x)=h(t, x)
$$

for all $(t, x) \in[0,2 \pi] \times R^{n}$.
$\left(H_{6}\right)$ there exists $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right), s=\left(s_{1}, s_{2}, \ldots, s_{n}\right), A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ in R^{n} such that $0<s-r<T, r<s, A \leq B$

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} g(r+\tilde{x}(t)) d t+\frac{1}{2 \pi} \int_{0}^{2 \pi} h(t, \bar{x}+\tilde{x}(t)) d t \leq A, \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} g(s+\tilde{x}(t)) d t+\frac{1}{2 \pi} \int_{0}^{2 \pi} h(t, \bar{x}+\tilde{x}(t)) d t \geq B
\end{aligned}
$$

for every $\bar{x} \in R^{n}$ such that

$$
\|\bar{x}\|\left[\sum_{i=1}^{n}\left[\max \left(\left|s_{i}-T_{i}\right|,\left|r_{i}\right|,\left|s_{i}\right|\right)\right]^{2}\right]^{1 / 2}
$$

and for every $\tilde{x} \in C^{1}\left([0.2 \pi], R^{n}\right)$ having mean value zero, satisfying the boundary condition (B) and such that

$$
\|\bar{x}\|_{\infty} \leq \sqrt{\frac{\pi}{6}}\left(\frac{1}{\min _{1 \leq i \leq n} C_{i}}\right)\left[\sqrt{2 \pi}\left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1 / 2}+\|\bar{e}\|_{L^{2}}\right] .
$$

Then $(E)(B)$ has at least 2^{n} solutions if

$$
A<\frac{1}{2 \pi} \int_{0}^{2 \pi} e(t) d t<B .
$$

ACKNOWLEDGMENT. This work was supported by the 1991 KOSEF grant and non-directed research fund, Korch Research Foundation, 1992.

REFERENCES

[1] MAWHIN, J. and WILLEM, M. Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Diff. Eq. 52, 2 (1984), 264-287.
[2] GAINES, R. E. and MAWHIN, J. Coincidence degree and nonlinear differential equations, Springer-Verlag, New York, 1977.
[3] DRABEK, P. Remarks on multiple periodic solutions of nonlinear ordinary differential equations, Comment. Math. Univ. Carolinae 211 (1980), 155-160.
[4] DRABEK, P. Periodic solutions for systems of forced coupled pendulum-like equations, J. Diff. Eq, 70, 3 (1987), 390-401.
[5] ZANOLIN, B. Remarks on multiple periodic solutions for nonlinear ordinary differential systems of Lienard type, Boll. U.M.I. (6) I-B (1982), 683-698.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

