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1. INTRODUCTION AND PRELIMINARIES

The study of (real or complex) ultrabarrelled topological vector spaces, the topological
vector spaces which replace barrelled locally convex spaces when local convexity is not presup-
posed, was initiated by W. Robertson in [1]. Since then, various authors have been considering
the subject. The most important results concerning ultrabarrelled topological vector spaces may
be found in the texts [2] and [3], the latter dealing with the case in which the fields of real or
complex numbers are replaced by a non-trivially valued division ring.

In this article we introduce and study the concept of barrelled topological module, the
natural extension of the classical concept of ultrabarrelled topological vector space. The main
results obtained here are extensions of the Banach-Steinhaus theorem and of the Open Mapping
and Closed Graph theorems to the context of topological modules. A version of Bourbaki's
criterion for the equicontinuity of separately equicontinuous families of bilinear mappings and a
version of Grothendieck’s “Théoréme B” are also established. It should also be mentioned that
the methods used by W. Robertson in her fundamental article just cited have strongly influenced
the preparation of our article.

We shall adopt the terminology of [4]. Throughout, A denotes an arbitrary topological
ring, unless otherwise specified. If A has an identity element, A* denotes the multiplicative group

of its invertible elements. For every A-modules E and F, F(E;F) denotes the A-module of
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all mappings from E into F and £,(E; F) denotes the additive subgroup of F(E; F) of all A-
lincar mappings from E into F. For every topological A-modules E and F, L(E; F') denotes the
subgroup of L,(E; F) of all continuous A-linear mappings from E into F. For every topological
A-modules E, F and G, L.p(E, F;G) denotes the additive group of all separately continuous A-
bilinear mappings from EXF into G. If f € Leep(E, F;G), &t € E, y € F, f; (105p. fy) denotes the
continuous A-linear mapping v € F — f,(v) = f(r,v) € G (vesp. u € E — f,(u) = f(u,y) € G).
FXCLyp(E,F;G),t€E,y€F, s :={fr; fEX}and Xy := {f,; f €V}

2. THE CLASS OF BARRELLED TOPOLOGICAL A-MODULES

Definition 2.1. A topological A-module (E, 7) is said to be barrelled if every A-module topology
on E which admits a fundamental system of neighborhoods of the origin consisting of 7-closed
sets is weaker than 7.

Remark 2.1. Assume that A is endowed with the discrete topology and let (E, 7) be a separated
topological A-module. Then E is barrelled if and only if 7 is discrete.

Proposition 2.1. Let A be a separated topological ring and let E be a separated barrelled
. topological A-module. Then the completion E of E is a barrelled topological A-module, where 4
designates the completion of A.

Proof. Analogous to that of Propositon 14 of {1].
The following information will be needed in the sequel.

Proposition 2.2. Let (E,), el be a family of topological A-modules, E an A-module and, for
each t € I, let f, € L.(E;; E). Then there exists a unique A-module topology on E which is
final for the family (E,, f,)

A-modules.

.¢;- In particular, inductive limits exist in the category of topological

Proof. Analogous to that of Theorem 2 of [5].

We now present certain stability properties of the class of barrelled topological A-modules,
some of which have been obtained in [1] (Proposition 13) and [6] (Corollary 1, p.297) when A = R
or C.

Proposition 2.3. Let ((E;,)),., be a family of barrelled topological A-modules. Let E be an
A-module and, for each : € I, let f; € L,(Ei; E). Let 7 be the final A-module topology for the
family ((E;, 7.), f')ie ; (Proposition 2.2). Then (E, 1) is barrelled.

Proof. Let 7* be an A-module topology on E which admits a fundamental system V of neighbor-
hoods of 0 consisting of 7-closed sets. Fix an i € I and let B; be the filter base on E; formed by
the sets f,1(V) (V € V). By Theorem 12.3 of [4] there is a unique A-module topology 7 on E,
for which B; is a fundamental system of neighborhoods of 0. Since each f}(V) is 7,-closed and
since (E;, 7;) is barrelled, it follows that 7 C 7;. Hence f,:(E,, ;) — (E, r*) is continuous. By

the arbitrariness of ¢ we obtain 7* C 7, and so (E, 7) is barrelled.

Corollary 2.1. (a) An inductive limit of an inductive system of barrelled topological A-modules
is a barrelled topological A-module.
(b) A quotient by a submodule of a barrelled topological A-module is a barrelled topological

A-module.
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(c) For a direct sum of a family of topological A-modules to be barrelled it is necessary and

sufficient that each of its members be barrelled.

Proof. (a), (b) and the sufficiency of (¢) are immediate consequences of Proposition 2.3. The

necessity of (c) follows from (b).

The following proposition contains Theorem 2.37 of [3] (Lhence Proposition 12 of [1]) as a

particular case.

Proposition 2.4. Let A be a topological ring with identity and assume that there exists a
countable subset C of A* such that 0 € C. If (E, 7) is a unitary topological A-module and M is a
submodule of E which is non-meager in (E, 7), then M is barrelled under the induced topology.

In particular, every Baire unitary topological A-module is barrelled.

Proof. Let 7/ be the A-module topology on M induced by 7, and let 7* be an A-module topology
on M which admits a fundamental system V of neighborhoods of 0 consisting of 7'-closed sets.
Given an arbitrary V € V there isa U € V with U — U C V. Since 0 € C, there is a sequence
(a,,)n €N in A* such that
M C U a,U".
neN

Therefore some ,,U" has a non-empty interior, because each @, U” is 7-closed and M is non-
meager in (E,7). Hence U7 has a non-empty interior, since the mapping z € (E,7) — ay €
(E,) is a homeomorphism. If ¢ € int(UT), there is a neighborhood U’ of 0 in (E,r) with
x4+ U' c U". Consequently, U' c U™ — U7 C V7, and so V7 is a neighborhood of 0 in (E, ).
Thus V is a neighborhood of 0 in (M, 7'), because V = V7 = M N V7. Therefore 7* C 7', and
so (M, 7') is barrelled.

Remark 2.2. (a) If A has an identity element, then the relation 0 € A* implies that the topology
of A is non-discrete (and is equivalent to this fact when A is a topological division ring).

(b) Every topological division ring which possesses a null sequence of non-zero elements satis-
fies the hypotheses of Proposition 2.4. Every topological ring with identity which contains an

invertible topologically nilpotent element satisfies the hypotheses of Proposition 2.4.

3. THE BANACH-STEINHAUS THEOREM AND SOME CONSEQUENCES

The Banach-Steinhaus theorem holds in our setting (previous results in this direction may
be found in [1], Theorem 5; (7], Theorem 3; [3], Theorem 2.58; (4], Theorem 25.6):

Theorem 3.1. Let E be a barrelled topological A-module, F' an arbitrary topological A-module
and X C L(E;F). If X(z) = {f(z);f € X} is bounded in F for each z € E, then X is
equicontinuous.

Proof. Let 7 be the given topology of E and let V be a fundamental system of closed neighbor-
hoods of 0 in F. For each V € V, let

Uv =) £ (V).

fex
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Obviously, B = (Uv) |, ey is afilter base on E. By Theorem 12.3 of [4] there is a unique A-module
topology 7* on E for which B is a fundamental system of neighborhoods of 0 (the condition (TMN
2) of Theorem 12.3 holds because the sets .V(z) are bounded in F). Since (E, 1) is barrelled and
since each Uy is T-closed, it follows that 7* C 7. Thus each Uy is a neighborhood of 0 in (E, 1),

and so X is equicoutinuous.

Corollary 3.1. Under the assumptions of Theorem 3.1, assume additionally that F is separated.
Let (f.),¢; be a net in L(E; F) such that (fi(z)),, is bounded in F for each z € E and such that

(f1),¢; is pointwise convergent to a mappings f: E — F. Then f € L(E; F) and (fi),¢, converges

1€l

to f uniformly on every precompact subset of E. In particular, if (f,) is a sequence in

neN
L(E; F) pointwise convergent to a mapping f: E — F, then f € L(E; F) and ( ), eN converges
to f uniformly on every precompact subset of E.

Proof. By Theorem 3.1, (f').el
6 and Theorem 1 of [8], chap.X, §2, and the fact that £,(E; F) is simply closed in F(E;F), to

conclude the proof.

is an equicontinuous net. Thus it suffices to apply Proposition

Remark 3.1. Let E and F be topological A-modules and let B be a family of bounded subsets of
E. Then the topology of B-convergence on L(E; F) (denoted by 75) is an additive group topology
which is separated if B is a covering of E and F is separated. Moreover, if A is commutative,
then L(E; F) is an A-module and 7g is an A-module topology on L(E; F) ([9], Proposition (a)).

When B is the family of all finite (resp. bounded) subsets of E, we write 7g = 7, (resp. 78 = 7).

Corollary 3.2. Let A be a commutative topological ring with identity such that 0 € A*. Let E
be a barrelled topological A-module, and let F' be a separated locally compact unitary topological
A-module. If X C L(E; F), the following statements are equivalent:
(i) X is p-bounded in L(E; F);
(ii) X is 7,-bounded in L(E; F);
(ili) X is 7,-relatively compact in L(E; F);

(iv) X is equicontinuous.

In order to prove Corollary 3.2 we shall need a lemma which is an extension of the Alaoglu-
Bourbaki theorem:

Lemma 3.1. Let A be a topological ring with identity such that 0 € A*. Let E be a topological
A-module and let F be a separated locally compact unitary topological A-module. If ¥ C L(E; F)
is equicontinuous, then X is 7,-relatively compact in L(E; F).

Proof. Since £,(E; F) is simply closed in F(E; F) and since X is equicontinuous, it suffices to
verify that X is simply relatively compact in F(E; F). But, for each z € E, X(z) is bounded
in F ([4], Theorem 25.5), hence relatively compact in F ([4], Theorem 15.4 (3)). By Tychonoff’s
theorem, X is simply relatively compact in F(E; F).

Proof of Corollary 3.2. (i) = (ii): Obvious; (ii) = (iii): Theorem 3.1 and Lemma 3.1; (ii)
= (iv): Theorem 15.4 (1) of [4] and Theorem 3.1; (iv) = (i): Theorem 25.5 of [4].

Non-locally convex versions of a classical theorem of Bourbaki ([10], TVS III. 29) have
been obtained in [7] (Theorem 5) and [11] (Corollary 9). Our next goal is to prove that it remains

valid in our context.
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Theorem 3.2. Let E and F be metrizable topological A-modules, E being assumed barrelled, and
let G be an arbitrary topological A-module. If ' C Lqep(E, F; G) is such that U is equicontinuous

for each z € E, then X’ is equicontinuous.
In order to prove the above theorem we shall need two lemmas.

Lemma 3.2. Let E, F and G be topological A-modules, and let .V he a separately equicontinuous
family of A-bilinear mappings from E x F into G. If .V is equicontinuous at the origin, then .V

is equicontinuous.

Proof. It suffices to recall the identity

f(x’y)_f("'ovyo) =f('1:_Ioay_yo)+f(":_1'o»yo)+f(-zoay_yo)v

which holds for every A-bilinear mapping f: E x F — G and every points (z,y), (Zo,¥o) in EXF.

Remark 3.2. When 4 is a non-trivially valued field, the equicontinuity of a family of A-bilinear

mappings at the origin is sufficient to ensure its equicontinuity ({10}, Proposition 6, TVS 1.9).

Lemma 3.3. Let E, F and G be topological A-modules, E being assumed barrelled. Let
X C L,ep(E, F; G) be such that A, is equicontinous for each z € E. Then &) is equicontinuous

for each y € F.

Proof. Fixay € F. If z € E, .Yy(z) = X;(y) is bounded in G since ; is equicontinuous. By

Theorem 3.1 X is equicontinuous.

Proof of Theorem 3.2. In view of Lemmas 3.2 and 3.3, it is enough to establish the equiconti-
nuity of X’ at (0,0). If .X' is not equicontinuous at (0,0), there are a neighborhood W of 0 in G,
nen in F and a sequence (fy), o in X such
that fu(z,,yn) € W for all n € N (remember that E and F are metrizable). By Theorem 25.5

of [4] and Theorem 3.1, the family

a null sequence (z,), . in E, a null sequence (y.)

{fy.: f € X,n €N}
is equicontinous. Therefore, there is an integer n, such that f(z,,y,) € W for all f € X’ and all
n > n,, a contradiction. Thus X’ is equicontinuous.
From Theorems 3.1 and 3.2 we derive:

Corollary 3.3. Let E and F be barrelled metrizable topological A-modules, and let G be an
arbitrary topological A-module. If X C L,,(E, F;G) is such that X(z,y) is bounded in G for
all (z,y) € E x F, then X’ is equicontinuous.
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4. OPEN MAPPING AND CLOSED GRAPH THEOREMS

The following theorem is an extension of Theorems 2.49 and 2.73 of [3], hence of the Open

Mapping and Closed Graph theorems of W. Robertson ([1], Proposition 5).

Theorem 4.1. Let E be a separated barrelled topological A-module, and let F be a complete

metrizable topological A-module.
() If f: F — E is a continuous surjective A-linear mapping, then f is open.

(b) If f: E — F is an A-linear mapping with a closed graph, then f is continuous.
Proof. Analogous to that of W. Robertson.

We now obtain the Open Mapping and the Closed Graph theorems of Banach ([12],
Chap.III, §3) in our setting (see also [4], Theorem 12.17).

Corollary 4.1. Let A be a topological ring with identity, and assume that there exists a countable
subset C of A* such that 0 € C. Let E and F be metrizable unitary topological A-modules, E
being assumed complete, and let f € L,(E; F).

‘(a) If f is continuous and f(E) is non-meager in F, then f is open, f(E) = F and F is complete.

(b) If Fis complete and f has a closed graph, then f is continuous.

Proof. (a): Since f(E) is a barrelled topological A-module under the induced topology (Propo-
sition 2.4), Theorem 4.1 (a) implies that if U is a neighborhood of 0 in E, then f(U) is a
neighborhood of 0 in f(E). Thus f(U) is a neighborhood of 0 in F, because f(E) is dense in F
by Exercise 15.3 (a) of [4] (f(E) is an open submodule). By a well known argument ([10], TVS
1.19), f is an open mapping. As a consequence, f is surjective ([4], Exercise 15.3 (a)). Finally,

the completeness of F is clear.

(b): Immediate from Proposition 2.4 and Theorem 4.1 (b) ((b) also follows from (a), via a

straightforward argument).

We now state a version of Grothendieck’s “Théoréme B” ([13], p.17), whose part (a)

contains Exercise 12.7 of [4] as a particular case.

Theorem 4.2. Let A be a topological ring with identity, and assume that there exists a countable
subset C of A* such that 0 € C. Let E and F be separated unitary topological A-modules, and
suppose that:

There exists a sequence (Ey), . of complete metrizable unitary topological A-modules and, for
each n € N, there exists an f,, € L(E,; E) such that E =J,,cn fu(Ex) -

There exists a family (F;), ¢ of complete metrizable unitary topological A-modules and, for each
t € I, there exists a g; € L,(F;; F) such that the topology of F is the final A-module topology
for the family (F,, g:),,-

(a) If f:E — F is a surjective continuous A-linear mapping, then f is open.

(b) .If f: F — E is an A-linear mapping with a sequentially closed graph, then f is continuous.

_ The proof of Theorem 4.2 depends on a lemma which corresponds to Grothendieck’s
“Théoréme A” ({13], p.16).
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Lemma 4.1. Let A be as in Theorem 4.2, and let F be a separated unitary topological A-module.
Let G be a complete metrizable unitary topological A-module, h € L(G; F), (En),en @ sequence
a complete metrizable unitary topological A-modules and, for each n € N, let h,, € L(E,; F).
Suppose that h(G) C U"EN Iy (E,) . Then there exists an integer m such that H(G) C h,, (En).

Moreover, if h,, is injective, then there exists a ¢ € £(G; E,,) such that h = Iy, 0 g.

Proof. The proof relies on Corollary 4.1, and is exactly the same as that of Grothendiceck.

Proof of Theorem 4.2. We may assume that (E,,) is a sequence of submodules of E whose

neN
union is E.

(a): We may assume that f is bijective. Otherwise, let M be the kernel of f (a closed submodule
of E), and consider E/M endowed with the quotient topology. Then E/M is a separated unitary

topological A-module and the canonical A-linear mapping
t+MeE/Mv— f(r)e F

is bijective and continuous. Moreover, if 7: E — E/M is the canonical surjective A-linear map-
ping, then 7o f, € L(E,; E/M) for all n € N and E/M = {J,cn(7 © fu)(Ea) - Therefore, it is
enough to prove that f~! is continuous. In order to do so, let h, be the restriction of f to E,
(n € N) and fix an 7 € I. Then

U ku(En) = F > g(F).
neN

By Lemma 4.1, there are an m € N and a g € L(F}; E,;,) such that g, = h,, 0o g (hy, is injective).
Consequently, f~! o g, is continuous. By the arbitrariness of 7, f~! is continuous.

(b): Since the graph of each f o g, is sequentially closed, and since f is continuous if and only if
f 0g, is continuous for all 7 € I, we may assume that F' is complete and metrizable.

Let H be the graph of f endowed with the separated A-module topology induced by that of
F x E. For each n € N, let H,, = HN (F x E,). Obviously, each H, is a submodule of H and
H = UnEN H, . It is easily seen that H, is closed in F x E,, when F x E,, is endowed with the
product topology, so that H, is a complete metrizable unitary topological A-module under the
induced topology 7,. Moreover, the inclusion of (H,,7,) into H is continuous. Hence we can
apply (a) to the restriction to H of the projection of F' x E onto F to get the continuity of the

mapping ¢ € F — (z, f(z)) € H. Therefore f is continuous, by composition.

Remark 4.1. A topological A-module F as in Theorem 4.2 is necessarily barrelled (Propositions
2.3 and 2.4).
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