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ABSTRACT. A theorem of Harper for axially symmetric flow past a sphere which is a stream

surface, and is also shear-free, is extended to flow past a doubly-body N consisting of two

unequal, orthogonally intersecting spheres. Several illustrative examples are given. An analogue
of Faxen’s law for a double-body is observed.
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1. INTRODUCTION.
In Stokes’ flow, no-slip circle theorems for two dimensional and sphere theorems for

axisymmetric flows have been proved ([1], [2], [3], [6], [7], [9]). Recently, Harper [5] has proved

the following theorem for axisymmetric flows in which a sphere is a stream surface and is also

shear-free.
TREORIgM. If b(r,0) is the Stokes’ stream function of an axially symmetric steady slow

viscous flow with no singularities on the sphere r a, then so is

31(1", 0) D(I’, 0)- (I’3/123)

(r,O) being spherical polar coordinates and the fluid motion described by b1, has the sphere r a

as a shear-free stream surface for which

kl 0 and rr (r 0k’’-0-7/-0o

The term-(ra/aa) ;(a2/r,O) is defined to be the image of k(r,O)in the sphere r a. In the

special case when 0(r, 0)= 2
U-- rainO, the theorem gives

This is the stream function for the flow past a shear-free sphere, Rybczynski-Hadamard [4].
In this note, we have proved a theorem which may be considered as an extension of Harper’s

result when the flow is axisymmetric and takes place outside a double-body N, formed by two
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orthogonally intersecting unequal sl)hcres, which is imt)ervious and shear-free. Several

illustrative examl)h’s ar(’ giv(’n and in each cas(’ the drag on the doubh’-l)o(ly is calculated. A
result which is an analogue of Faxen’s law [4] for a double-body is observed. We also consider a

pair of spherical bubbles intersecting orthogonally and rising steadily in a viscous fluid. The drag
on this systen is calculated and compared wth Harper’s result for two equal spherical bubble

touching each other and rising in a viscous fluid.

A theorem for axisymmetric inviscid flow past a double-body has also been proved by the

authors [8].
2. THE DOUBLBODY N.

Consider a double-body N (Fig. 1) formed by two unequal spheres S, and Sb of radii ’a’ and

’b’ intersecting orthogonally, with centres O and O respectively. In the right-angled triangle

OAOt, c2= a+ b where OO= c. In the meridian plane, join AB to intersect OO in D; then
a bOD ,DO ,DA DB and D is inverse point of the centres O and O with respect o

the spheres S, and Ss respectively. Also, we have

v r + 2 crcosO + c, (2.1)

r r 2 crcosO + c, (2.2)
g2 g4R r- 2 rcosO+ (2.3)
b br + 2 rcosO + . (2.4)

Using (2.1)-(2.4) we have
r’ R, on a, (2.5)

r R, on v’= b. (2.6)

3. FOULATION OF THE PROBLEM.
We consider steady flow of an incompressible viscous fluid pt a shear-free double-body N

formed by two unequal spheres of radii ’a’ and ’b’ intersecting orthogonally. Let (r,O,), (R,O,)
d (rt, Ot, d) be the sphericM polar crdinates of a point P with respect to O,D,O respectively

(Fig. 1). It is well-known that in a steady, axisymmetric Stokes flow the stream function (r,O)
satisfies

D*=0 (3.1)
where

D2 0 0+ r 0,
cosO (3.2a)

0 0 0
Ow + O Oz’ w v sinO, z r cosO (3.2b)

(w,z,) being the cylindrical coordinates of P with respect to O. Since z does not occur explicitly

in the operator D given by equation (3.2b), it is form invariant under a translation of origin

along the z-axis. We observe that:

(A) Inversion: If p(r,O)is a solution of (3.1), then (r/a)3 la2/r, O) is also a solution.

(B) RMlection: If (w,z)is a solution of (3.1), then (,0, z)is also a solution.

(C) Tran.lation of origin: If (w,z) is a solution of (3.1), then ,(,z + h), where h is a constant,

is also a solution.

We take z-axis as the axis of symmetry, and (w,z), (w’,z’), (H,Z) as the cylindrical
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coordinates of P with r’sI)ect to O, ()t, D, respectively.

THEOREM. Let ’o(,z) be the Stokes stream function for an axisymmetric motion of a

viscous fluid in the unbounded region all of whose singularities being ottside the double-body
formed by two orthogonally intersecting unequal, impervious, shear-free spheres, and suppose

o(,z) o(r) at the origin. When the shear-free bomdarv is introduced, the stream flmction

for the fluid external to this boundary is

-(,"/) ’o k’ +]

( (-(z/)))+ (cR/ab) ’0 H, cR (3.3)

The second and third terms on the right hand side of (3.3) are the images of ,o(’,z) with respect
to the spheres S and S respectively and the last term is the image of

’/) ,0 <, +

in the sphere S.
PROOF. The conditions to be satisfied by the function W given in (3.3) are that

(i) the perturbation terms in (3.3) viz the 2"d, 3a and the 4t terms must. be solutions of

(ii) =0= r- onSand=0= r’-
0r]

on S thus making N a stress-

free stream surface;

(iii) the singularities of the perturbation terms must lie inside the double-body N;
(iv) the perturbation velocity must vanish as r.

By virtue of (A), (B), (C), the perturbation terms in (a.a) are the solutions of (a.1) and

hence condition (i) is satisfied.

It can be shown that the expression given by (a.a) satisfy the boundary conditions on N d
therefore (ii) is satisfied.

urther if a singularity of 0(w,z) exists at E outside N, then all the singularities of the

perturbation terms will lie inside N (see the Appendix) and condition (iii) is satisfied.

inally, since o(w,z)= o(r) at the origin, the perturbation terms in (a.) are at most of

order o(r) for large r. Hence, the perturbation velocity tends to zero as r, and the condition

(iv) is also satisfied.. LSNNXNPLES.

(I) Ufo flow pt

The stream function for the uniform flow along Oz is

UrnO.

When the shear-free double-body is introduced in the flow field, then the modified stre

tio boms (sig (.3))

Thus the image system of uniform flow at infinity consists of three Stokeslets of strengths
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4rrpUa, 47rpUb, -47rpU h)(:at(’d at. 0,()r, and D resl)ectivoly. The drag on the double-body in

this case is found to l)e

F 4wldY(a + b _9_) (4.2)

=47rp ([aqo]o + [bq0]o [.(’ qolD)
where qo represents the velocity of the undisturbed flow and the subscripts outside the square

brackets indicate the evaluation at those points respectively.

Putting b 0 in (4.2), we get the drag on a single shear-fl’ee sphere.

(II). Quadratic flow

In this case

g,0(r, 0) r3slrt20

and by applying the theorem wc obtain

(r, O) rZsin20 cosO a3sin20 cosO b3sinO cosO’
a3b-bcr’ sinO +--- s,n20 cosO

a3b RsinO (4.3)+-Y
The image system consists of a Stokes-doublet at 0; a Stokeslet and a Stokes-doublet at 0;

a Stokeslet and a Stokes-doublet at D. The drag is given by

F 8’,u
b(3 c3)

Putting b 0, the drag on a single shear-free sphere r a with centre at O is zero, while putting

a O, F -8rpbc.

(m) Stokeslet outside

Consider a Stokeslet of strength F3/8’kt located at E(0,0,-d) outside % on the axis of

symmetry. The stream function due to the Stokeslet in an unbounded fluid is

o(r, ) F3
g- rsin20i

where (r,0,) are the polar coordinates of P with E as the origin (Fig. 1). Using the theorem,
we obtain

b(r,O): F3
-gTfi [r’sin=8’ b r33in203(c+d)

ab r4sin2O4]. (4.5)(a + cd)

where (r2,02,) and (r,3,03,) axe the spherical polar coordinates of P with E,, and E as origin,

which are the inverse points of E with respect to Sa and Sn respectively and (r4,0,) are the

spherical polar coordinates of P with respect to E; the inverse point of Es in the sphere S..
F3 a F3 b F3 abThe image system consists of three Stokeslets of strengths 8rp d’ 8r (c + d)’ 8rp (a + cd)

located at E,E and Es,, respectively inside . The drag on is found to be

F Fa + (c + d) (a -4- cd)
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47rp ([aqo]o + [bqo]o -[__b qolD)-
149

(4.6)

(IV) Potential-Doublet outside

Consider a potential-doublet of strength c located at E(O.O,-d) outside on the axis of

synimetry. The stream function due to a potential-doublet in an llllbOllllde(l fluid is

’0(r, 0) o

Applying the theorem we get

,(r,O) o
rl d3 r2 2 - coO2 4r

b ( 2b cosO+(C -6 d)3 \
1"3

(4.7)

The image system consists of:
a_q_ b abc2 located at E, E, Es;(i) three Stokeslets of strengths 0
d3 (c + d)3’ c

(a + cdt3

a3 b3 a3b3c located at E,Es, Es;(ii) three Stokes-doublets of strengths 2a d4,2a (c -6 d)4’2 (a -6 cd)3

a b aSb(iii) three potential-doublets of strengths -c -dg - (c + dS,o (a + cd)S
located at Ea, E,Ea

respectively.
The drag in this case is

a b abc )F 87rtta + (c + d)
-6 (a -6 cd)

47r# ([aqolo + [bq0]ot- [@ q0lD). (4.8)

In the examples considered, we find that the drag on the double-body is given by

4rr# ([aqo]o + [bq0]o -@ [q0lo).F (4.9)

where [q0]o, [q0]ot [q0]D are the velocity of the undisturbed flow evaluated at O,O’,D
respectively. If we put b 0 in (4.9), we get the drag formula for a single shear-free sphere of

radius ’a’. This result is an analogue of Faxen’s law [4] for a double-body.

5. APPLICATION TO RISING BUBBLES.
We consider two equal spherical bubbles intersecting orthogonally and rising steadily with a

velocity U in a viscous fluid. The stream function for the motion of this double-body is obtained

from (4.1) by taking a b. This gives

(r, 0)-1/2 Ur sinO + r’sinO -2 R sinO] (5.1)

The drag on the double-body is
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F 5.172rryUa k (5.2)

The total drag for tvo (’(lual 1)ut)l)h.s tou(’hing each other and rising in a viscous fluid is given I)y,

Harper (1983)
F 5.54rryUa k (5.3)

Hence, the drag on the double-body is less than that of the total drag on touching bubbles, when

they are rising in a viscous fluid which is at rest, otherwise.

APPENDIX
As E (Fig. 1) moves from z -c to E, the inverse point of E with respect to S, namely

E,, moves frown O to E; also the inverse point of E with respect to S, namely E moves from O

to F. Now the inverse point of E with respect to S, namely E lies on the segment DF.

Therefore, the singularities of the perturbation terms in (3.3) lie inside .
P (x,y, z)

Z-axis

FIGURE 1. THE DOUBLE BODY
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