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1. INTRODUCTION.

The terms whose definitions are given here for the sake of completeness are discussed in many
textbooks in topology. A set A is a directed set if there exists a relation < on A such that 1) 5 < i for all 5
e A, 2) 51 <- 52 and 52 <- implies that 51 < and 3) if il and 52 belong to A then there exists some

element 3 in A such that 51 < 3 and 2 <. A net in a set X is a function s A -- X from a directed set

A into X. If . is in the domain A of the net s A X we will denote s(,) by s. and the net s in X by s.
k e A }. For a directed set A we will denote by txA the set i e A i > IX }. If E is a subset of the directed

set A then E is cofinal in A (orfrequently in A) if IXA E O for any Ix A. If E -- X is a function

from into X then is a subnet of s A - X if for any Ix A there exists a 5 e 1 such that t[15:]

s[IXA]. A universal net (or ultranet) is a net with no proper subnet. The following ideas are introduced in

So [18]. A convergence structure on a set X is a class C of ordered pairs (s,x) where s is a net in X and x

X such that for any (s,x) in C the ordered pair (t,x) also belongs to C if is a subnet of s. A

convergence space (X,C) is a set X on which we have def’med a convergence structure C. If a convergence

structure C is defined on a set X we will usually abbreviate (X,C) by X. Also the phrase s converges to x

(denoted by s -- x) will mean (s,x) e C. A convergence space X is compact if every net in X has a

convergent subnet in X and, finally, X is Hausdorffif no net in X converges to two distinct points in X.

Throughout this paper X will denote a convergence space. If E X then clxE E u {x e X there is

some net s in E such that s x }. Note that this closure operator is not necessarily idempotent, i.e., clxE
may be a proper subset of clxclxE. A subset E of X is dense in X if clxE X. If f is a map from X into a
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convergence space Y then we say that f is continuous if s --4 x in X implies that fos f(x). Furthermore,

if f is one-to-one, continuous, and onto Y and if x- Y -- X is continuous then f is called a

homeomorphism from X onto Y. As for topological spaces a compactification Y of X is an ordered pair

(Y,h) where Y is a compact convergence space and h is a homeomorphism of X into Y such that h[X] is

dense in Y. Given a compactification ctX of a space X the outgrowth (or remainder) of X in X is txX’O(.

Two compactifications ctX and /X of X are said to be equivalent if there exists a homeomorphism between

0tX and "fX that fixes the points of X. We will say that X is pseudotopological at x if X satisfies the

following property: if every universal subnet of a net s in X converges to x then s converges to x. We will

sat that X is pretopological at x if X satisfies the following property: If for a net of nets S {ss 5 e A}

each net ss {ss I.t e Ai} (where As is the domain of ss) converges to a point xs in X and {x e A}

5 A, I.t e As} ordered lexicographically by A, then by As,converges to a point x in X, then the net s
has a subnet which converges to x (i.e. S has a "diagonal net" that converges to x). A convergence space

X is said to be pseudotopological (pretopological) ifX is pseudotopological (respectively pretopological)

at every point in X. It is known that if a convergence space X is both pseudotopological and pretopological
and satisfies the property "for a net A -- X, s x for each 5 e A implies ss -- x", then we obtain a

topology on X by defining the closure of a set E in X as clxE x e X there is some net in E such that

x}(see 1D of Willard [20]).

The following theorem is straightforward.

THEOREM 1. A convergence space X is compact if and only if every universal net in X converges.
We will say that a net s {ss 5 e A} in X is eventually in E X if s[ktA] K E for some I.t e A. The

following lemma is Proposition 3.3 in Aarnes et al. [2].

LEMMA 2. If s is a net in X, then s is universal if and only if for each subset E of X, s is eventually in

E or eventually in XkE.

In So [18] the author develops a method for constructing the one-point compactification of a non-

compact Hausdorff convergence space X and discusses some of the properties of this compactification. In

this paper we discuss a general method of constructing compactifications of a convergence space X. In

particular we use this method to construct a compactification to which every real-valued bounded function

on X extends.

2. PRELIMINARY DEFINITIONS AND RESULTS.

The following technique for constructing compactifications is modeled on a method of constructing

Hausdorff compactifications of locally compact Hausdorff spaces by using functions from X into a

compact Hausdorff space K (see Andr6 [1], Chandler et al. [5], [6], Cain et al. [4], and Faulkner [11]).

Let f X - K be a continuous function from the non-compact Hausdorff convergence space X into a

compact Hausdorff topological space K. Let Y cl:f[X], Kx {F X F is compact} and S(f)

c{clvf[XkF] F Kx }. The subset S(f) in K will be called the singular set of f. Clearly S(f) is closed

and hence is compact in Y.
LEMMA 3. Let f X K be a function from a non-compact Hausdorff convergence space X into a

compact Hausdorff topological space K. If s A -- X is a net in X that does not contain a convergent

subnet then any subnet of the net fos in Y clKf[X] converges to a point in S(f).

PROOF. Let f X - K be a function from a non-compact Hausdorff convergence space X into a

compact Hausdorff topological space K and let s A - X be a net in X that does not contain a convergent

subnet. Since K is compact the net fos has a convergent subnet that converges to some point y in Y. We
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claim that y S(f). Let F be a compact subset of X. Since s has no convergent subnet in X there exists a la
A such that s[ktA] XW. Consequently fos[gA] f[XXF]. It follows that y e clvfos[I.tA] clvf[XXF].

Since F was an arbitrary compact subset of X, y n{clKf[XW] F Kx} S(f) as claimed. I’-1

3. THE MAIN RESULTS.
Given an arbitrary continuous function f" X --) K from a non-compact Hausdorff convergence space X

into a compact Hausdofff topological space K let X X u S(f). We define a convergence structure on X

as follows A net s in X converges to a point x in X if and only if s is frequently in X (i.e., s has a cofinal

subnet in X) and six converges to x. Let f* X -o K be the function such that f’Is(f) is the identity
function on S(f) and f*lx f on x. A net s in Xf.converges to a point y in S(f) if and only if s has no

convergent subnet in X and f*os converges to y in S(f) (noting that, by lemma 3, y belongs to S(f)).
Let us now verify whether we have defined a convergence structure on Xf. We are required to show

that if s converges to x in X and is a subnet of s then also converges to x. It will suffice to show this

for a net s in X that converges to a point x in S(f). If s is a net in X that converges to a point x in S(f)

then s has no convergent subnet in X and f*os conve:ges to x in S(f). Let be a subnet of s. Then f*ot is a

subnet of f*os in K and so f*ot converges to x in K; hence converges to x. It follows that X is a

convergence space.

The following is a generalization of theorem 1.1 of Cain [4].

LEMMA 4. Let f be a continuous function from a Hausdorff convergence space X to a compact

Hausdorff topological space Z. Let Y clzf[X] and Kx {F c_ X F is compact}. Then the set x K

clxf[U] is not compact for any open neighbourhood U of x in K} S(f) (= c{clvf[XW] F Kx }).
PROOF. Let T {x K clxf-[U] is not compact for any open neighbourhood U of x in K }. We

will first show that T c_ S(f). Let F Kx. Suppose p belongs to Ylvf[. Then there exists an open

neighbourhood U of p in Y such that f[U] g7 F (since Y is a compact Hausdorff topological space).

Hence p T (since clxf[U] is compact). We have thus shown that T g7 clvf[XkF]. Since F was

arbitrarily chosen in Kx0 it follows that T {clvf[X’xF] F e Kx S(f). Suppose now that x belongs

to S(f). If x belongs to YT then there exists an open neighbourhood U of x in Y such that clxf*--[U] is

compact. But
x {clvf[XkF]" F e Kx}

clvf[Xlxf[U]] (since clxf-[U] Kx)
c::_ clvf[Xkf-[U]]

clvfof-[YkU]

YkU

This contradicts that x belongs to U. Consequently {clf[X] F Kx} T. The lemma follows, l-I

DEFINITION 5. We will say that a convergence space X is a LC space if it satisfies the following

property:

LC" Let S s" ; A be any net of nets in X such that each net ss ss e A (where A is the

domain of ss) in S has no convergent subnet in X. Let D Isn’t; e A, e A s] ordered

lexicographically by A, then by . Then no subnet of D is compact.

PROPOSITION 6. A Tychonoff topological space X is locally compact if and only if X is an LC space.

PROOF. Suppose X is a locally compact Tychonoff space. We can then construct the Stone-ech
compactification [X in which X is open (see 18.4 of Willard [2@]). Let S s;" 6 e A be a net of nets

in X such that each net s s e A] has no convergent subnet in X. Let D s
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Suppose that, for each i e A, l(t) is the limit of some convergent subnet ti ={si IX Ei} of si. Since

13X%X is compact the net {l(ti) 5 A} has a subnet {l(ti) 5 E} which converges to some point x in
it.it" 5 e Y., tx Z5} (itself a subnet of D). Then T is of the form T {siI3X. Let T be any subnet of

it. it.ie A, IX A} (where {si" ie A}is a subnet of {si" 5

e Z5} for each 8 X;). It follows that {s5 IX Ai} converges to l(ti), for each 8 e A. Since I3X is

topological it is pretopological. Hence the net T s 5 e A, IX e Ai has a subnet H that converges to x

(since {l(ti) A converges to x). It then follows that every subnet of H converges to x, i.e., no

subnet of H converges in X. This means that the subnet T of D has a subnet H with no convergent subnet

in X. We have shown that X is a LC space.

We now prove the converse. Suppose X is a Tychonoff LC space that is not locally compact. Then the

outgrowth X’XX of the Stone-ech compactification 13X of X is not closed in 13X (see 18.4 of [20]).
It" 5 e A, IX Ai}, where siThen there exists a net s in I3XXX that converges to a point x in X. Let D si

and ss are as described in the previous paragraph. Since 13X is pretopological D has a subnet H that

converges to x. This means that H is compact, contradicting our hypothesis. Thus X must be locally

compact. 1-1

’We shall see that the LC property will guarantee that X is dense in Xf.
We will now show that, for any continuous function f X -- K from a non-compact Hausdorff LC

convergence space X into a compact Hausdorff topological space K, X is a Hausdorff compactification

of X.

THEOREM 7. If f X K is a continuous function from a non-compact Hausdorff LC convergence

space X into a compact Hausdorff topological space K and X X u S(f) is equipped with the

convergence structure described above, then X is a compact, Hausdorff convergence space that densely

contains X.

PROOF. We will begin by showing that X is compact. Let s be a universal net in X such that s is

eventually in X. Suppose s does not converge to a point in X. Then the universal net f*os converges to

some point x in S(f) (by lemma 3). Hence s converges to x in xf. Thus every universal net in X converges

in X Obviously every universal net in S(f) converges in Xf. It follows that X is compact.

To verify that X is Hausdorff suppose s is a net in X that converges to both x and y in Xf. If x X

then s is frequently in X and six converges to x. Since s has a convergent subnet in X s cannot converge to

a point y in S(f); hence y is in X. Since X is Hausdorff, x y. Suppose x,y} S(f). This means that s

has no convergent subnet in X and that f*os converges to both x and y in S(f); hence x y (since S(f) is

Hausdorff). Thus X is Hausdorff.

We will now show that X is dense in Xf. Let x S(f) and let U be an open neighbourhood of x in K.

We wish to show that there exists a net in X that converges to x. Let M be an open neighbourhood of x in

K whose closure (in K) is contained in U. Then clxf--[M] is non-compact (by lemma 4) and so f-[M]

contains a net with no convergent subnet in X. Since f*ot is a net in K, f*ot has a convergent subnet that

converges to some point l(t) in S(f) (by lemma 3). Hence has a subnet that converges to l(t) (by definition

of the convergence structure on Xf). Since

S(f) c: U n S(f). Hence for each open neighbourhood U of x in K there exists a net with no convergent

subnet in X that converges to a point l(t) in U S(f). It follows that there is a net s {s 5 A} of such

nets in X whose limits l(s) {l(si) 5 A} in S(f) converges to x. (The open neighbourhoods of a point

x can be directed by defining U < U1 and U < U2 if U
_

U1 U2 where U, U and U2 are open
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neighbourhoods of x). For each 5 A let A denote the domain of sti and let si {si IX e Ai}. We

claim that the net D s" i e A, IX A ordered lexicographically by A, then by Ai, has a subnet that

converges to x. Let T be a subnet of D. Since X was declared to be a LC space then T has a subnet H with

no convergent subnet. We claim that H converges to x. If U is an arbitrary open neighbourhood of x in
t A} converges toS(f), then there exists an 0t e A such that {l(si) i e etA}

_
U. For 5 otA, {si IX e

l(si); hence f*os converges to l(s). Hence for any 15 otA there exists Ati such that {f*os IX
t 5 e ttA, IXIxaAi} U. Then, for any 5 0tA, f-[f**s IX e IxotAi}] f-[U] and so {s8_

tx-[U]. Hence f*oH is eventually in f*otX-[U] U. Since U was an arbitrary open neighbourhood of x

f*oH converges to x. Since H has no convergent subnet and f*H converges to x then H converges to x

(by definition of the convergence structure on xf). This means that x e clxfX and so X is dense in Xf.
We have shown that X is a Hausdorff compactification of X. l-]

Observe that in the last part of the above proof we have shown that, if X is a non-compact Hausdorff

LC convergence space and f is a continuous function from X into a compact Hausdorff topological space

then X is pretopological at each point x in S(f).
PROPOSITION 8. If f- X --) K is a function from a Hausdorff convergence space X into a compact

Hausdorff topological space K then the function f extends continuously to a function f* X --) K where

f*lsf) is the identity function on S(f).

PROOF. Clearly both f*ls(0 and f*lx f are continuous on S(f) and X respectively. Let s be a net in X

that converges to x in S(f). Then f*os converges to x f*(x) in S(f) (by definition of the convergence

structure on Xf). Hence f*os converges to f*(x). Thus f* is continuous on xf. i-1

EXAMPLE 9. Let X be the real line. Let a net s" A -- X (in X) converge to a point x in X if and only

if x is an integer and for any 0t e A there exists a y > 0t such that s[yA] 7 (x 1,x]. Observe that X is a

Hausdorff convergence space. To show that X is a LC space let S ss"/i A be a net of nets each of
t. t. ie A, IXwhich has no convergent subnet in X. For each i A, let si si I.t AS} and let D

t. i E, Ix e E8 be a subnet of D. We claim that T is notA} (ordered lexicographically). Let T s8
?> t+lcompact (hence X is a LC space). If i e ; and Ix e ;i then there exists a ? ] such that si

(since no cofinal subset of si[Ei] is bounded in the space of real numbers R). Consequently for each
; the net s= {si Ix Y-i} has a countably infinite subnet t {si Ix e A} with no bounded interval

in X containing more than finitely many points of t. Let 0t ; and 13 A. Then there exists a 51 > a in
t > s + 1. Consequently we can construct a cofinal subset H of T such that HY-. and Ix1 in Ai such that si

has no convergent subnet. It follows that T is not compact; hence X is a LC space.
Let f" X ---) [-1,1] be the function from X into [-1,1] (equipped with the usual interval topology)

defined as f(x) sin(n) if x (n-l,n] where n is an integer. If is a net in X that converges to a point y

(n-l,n] for some integer n then is eventually in (n- 1,n]; hence fot is eventually sin(n) f(n). It then

follows that f is continuous on X. We claim that if U is an open interval in [-1,1] then there exist an

infinite number of integers r such that sin(r) U. It would then follow that clxff- [U] is not compact in X

for any open neighbourhood U in [-1,1]. Let Z denote the set of all integers. If n Z let [ng] denote the

largest integer less than n. We will use the following fact: The set {n [n] "n Z} is dense

(equivalently, uniformly distributed) in [0,1]. (This fact is proved in most books on number theory). Let

> 0 and m be any number. We claim that there exists an integer r such that sin(r) (sin(m) e,sin(m) +

e). There exists a 5 > 0 such that sin[(m 5, m + i)] (sin(m) e,sin(m) + e). Suppose m > 0 and let k
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be an even integer larger than m + 1. Since the set ng [nn] n Z is dense in [0,1 then the set k(n/

[n]) n Z is dense in [0,k]. Then there exists an integer Z such that k(t: [tn])

[0,k] and so sin(ktn k[tn]) e (sin(m) e,sin(m) + e). But sin(kt k[tn]) sin(kt:)cos(-k[t/]) +

sin(-k[t])cos(ktn) --0 + sin(-k[tn]), the sine of an integer. Thus if r =-k[tn], sin(r) (sin(m)

e,sin(m) + e). It easily follows that sin-[(sin(m) e,sin(m) + e)] n Z is infinite. We arrive at the same

conclusion if we choose rn < 0. Hence clxf--[(sin(m) e,sin(m) + e)] is non-compact in X. Thus f[X]

sin[Z] is dense in S(f). Hence X is a compactification of X whose outgrowth is S(f) [-1,1 ].

The example above illustrates a special type of compactification called a singular compactification. We

define this below.

If the function f X K from a Hausdorff convergence space X into a compact Hausdorff topological

space K maps X into S(f) then we will say that f is a singular function and call X a singular

compactification of X. Singular compactifications of locally compact Hausdorff spaces are discussed

extensively in Andr6 [1] and Chandler [5]. They are characterized as being those compactifications ttX of

X whose outgrowthX is a retract of ctX.

The following theorem follows easily from Proposition 8.

THEOREM 10. If f X - K is a singular function from a Hausdorff convergence space X into a

compact Hausdorff topological space K then S(f is a retract of X under the function f* X -- S(f)

where f*lx f and f’Is(0 is the identity function on S(f).

In example 9 above, the closed interval [-1,1 S(f) is a retract ofXf.

Proposition 11 is a generalization of lemma in Chandler [5].
PROPOSITION 11. Let etX be a Hausdorff compactification of a convergence space X such that

0X’NX is compact. If f X--- K is a continuous function from X into a compact Hausdorff topological

space K that extends to fit txX -- K then fa[txX] S(f).
PROOF. Let Y clKf[X]. We are required to show that fa[] is contained in clvf[XW] for all F

Kx. Let F Kx (where Kx is as described above). Then t:tX’g( clax(XW) (since every net in F has a

convergent subnet in F and txX’kX clax(F u XW) claxF u claxXkF F clax(XW)). Hence

fa[oX’kX] fa[clax(XW)] clvf[XW]. Since this is true for all F Kx, fa[txX’xX]

Kxl S(f).
Let p KW[otXkX]. Let u be an open neighbourhood (in K) of p such that clKU misses

fa[]. Then clfa-[U] fa-[cl,U] X. Hence clxf[U] (= clfa[U]) is a compact subset of

X. This implies that p cannot belong to S(f) (by lemma 4). Hence S(f) fa[]. !-’1

LEMMA 12. Let f X K be a continuous function from a Hausdorff LC convergence space X into

a compact Hausdorff topological space K. If ix)( is a Hausdorff compactification of X such that txX is

compact and f extends continuously to ff txX -- K so that fa separates the points of txX, then txX is

equivalent (as a compactification of X) to Xf X u S(f).

PROOF. By 11, f[txX] S(f). We define a function txX -- X u S(f) as follows: j(x) f(x) if x

belongs to txX’kX and j(x) x if x belongs to X. Clearly is one-to-one. We now verify that is

continuous. Let s A X be a net in X such that s converges to x in ttXkX. We wish to show that jos

j(x) (= if(x)) in Xf. Equivalently we wish to show that s -- fa(x) in Xf. Suppose s y in Xf. If y fa(x)

then there exists an open neighbourhood U of y in K such that fa(x) e KIU. By 8 the function f X
K extends continuously to a function f* Xf -- K such that f’Is(0 is the identity function on S(f). Then

f*os f*(y) y U, and so there exists a Ix A such that f*os[llA] U. It follows that s[ktA]
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f*[U]. Similarly, since fa is continuous on 0iX, fitos - fa(x); hence there exist a e A such that

f%s[SA] KIKU and s[iA] fa<--[KIKU]. This implies that tX--[KIKU] f-[clKU] cannot be

empty, a contradiction. Hence y fit(x). Since s --> y, s --> fa(x) as required. Thus is a continuous

function.

We now proceed similarly to show that j<- is continuous. Let s A --> X be a net in X that converges to

x S(f). We wish to show that j-oS --> j<--(x) fit-(x). Equivalently we wish to show that s --> <-(x).
Suppose s ---> y in IxXXX. We claim that y fit*-(x). If y # fit<--(x) then fit(y) # fitofit-(x) x (since fit is

one-to-one on ctXXX). Hence there exists an open neighbourhood U of fa(y) such that x otXXcltxU.
Since fit" 0tX K is continuous fitoS --> fit(y). Hence there exists a I.t A such that fitoS[I.tA] c: U; then

s[I.tA]
_
f-[U]. Similarly, since f* X --> K is continuous and s -- x in Xf, f*os -- f*(x) x; hence

there exists a i e A such that f*os[iA] t::: KXcl:U. Thus s[SA]
_

f*t--[KXclKU]. It follows that tX-[KXclaU]

f-[clU] is non-empty, a contradiction. Hence y (x) as claimed. It then follows that s .-> fa-(x)
and so j<- is continuous. Since 0tX -+ X is a homeomorphism that fixes the points of X, ctX and X

are equivalent compactifications of X. [--!

If G is a collection of real-valued bounded functions on X, the evaluation map e induced by G is the

function e X Fl{Ig g e G} (where, for each g, I is a closed interval containing g[X]) defined by

e(x) <g(x)>g . Note that the closure in l-Ig Ig of e[ X] is a compact set.

Let X be a Hausdorff LC convergence space and let C*(X) denote the collection of all real-valued

bounded continuous functions on X. We will show that, by using the above method of constructing

compactifications of a Hausdorff LC convergence space we may construct a compactification X* ofX in

which X is C*-embedded, i.e., a compactification X* of X where every function f in C*(X) extends

continuously to a real-valued function f* on X*. Consider the evaluation map ec,tx induced by C*(X)

from X into FI{ Ig g C*(X)} (where, for each g, Ig is a closed bounded interval containing g[X]).

Then xec’x X S(ec,o:)). Since X is a LC space and ec,x)maps X into a compact Hausdorff topo-

logical space, xec’cx is a Hausdorff compactification of X. Now ec,cx extends continuously to ec,cx* on

xectx where ec,x* restricted to S(ec,cx) is the identity function. If f C*(X) and xf" FI I" g

C*(X)} -- If where xfoec,cx(x) f(x) then the map f* xf*ec,tx* is a continuous extension of f to

xec’tx mapping a point x in S(ec,x) to f*(x) in If. We have just constructed a compactification of X in

which X is C*-embedded and whose outgrowth is a compact Hausdorff topological space. We will denote

xec’xby X. We have purposely used a symbol resembling the one used for the Stone-ech compact-

ification 13X of a locally compact Hausdorff topological space X since the method used to construct 13X
mimics one used to construct 13X (see 2.2 of Andr6 [1]).

The family of all Hausdorff compactifications of a Hausdorff convergence space can be partially

ordered as follows: tzX < ),X if there exists a continuous function h ?X 0tX from ?X onto 0tX such

hlx fixes the points of X.

THEOREM 13. Let X be a Hausdorff LC convergence space. Then 13X > 0X for all Hausdorff

compactifications oO( of X whose outgrowth aX is a compact Hausdorff topological space that is C*-

embedded in oX. Also X > ?X for any compactification ),X where ),X is of the form xf X S(f)

where f" X -- K is a continuous function from X into a compact Hausdorff topological space K.

PROOF. Let X be a non-compact Hausdorff LC convergence space. Let oX be a Hausdorff

compactification of X such that ctX’ is a compact topological space that is C*-embedded in txX. We are

required to show that ctX < 13X. Let M f C*(0tX): f is a continuous extension to 0t,X of a function in



664 R.P. ANDRE

C*(xXLX) }. Since C*(XLX) separates the points of 0XLX, M separates the points of 0d. Hence, eM
is one-to-one on 0tXLX. Let T C*(0X)]x. Since each function in T extends continuously to X, eT

extends continuously to a function exI on X. Let night 15X 0tX be a function from ISX to 0X which

maps eTI3*--(x) n 15XLX toeTa(x) C oXZX for each x eTa[CXLX] and which fixes the points of X

(noting that ewl[15X] eTt[cX]). It is easily verified thatx is continuous. Hence X < X.
Suppose that ?X is a compactification of the form X X w S(f) where f X K is a continuous

function from X into a compact Hausdorff topological space K. Let Y clKf[X]. If g e C*(Y) then gof* e

C*(xf). Since C*(Y) separates the points of Y and S(f)
_
Y then the family {gof* g C*(Y) separates

the points of S(f). Consequently if T C*(xf), eT is one-to-one on S(f). Let M TIx. Then eM extends

continuously to the function (eM)13 on X. Let lxf 13X -- X be a function from 15X onto X which

maps (eM)13(x) XXX toeT(X) S(f) for each x (eM)I[yXZX] and which fixes the points of X.

Again it is easily verified that nfxf is continuous. Hence yX < X. l’-’1

EXAMPLE 14. Let o1 denote the first uncountable ordinal. Let X {Ii [0,ol) where, for each

[0,01), Ii is the unit interval [0,1]. We will say thdt a net s in X converges to a rational number x in

if and only if s is eventually in every open interval in Ii that contains x. A net s converges to an irrational

number x in Ii if and only if has an immediate predecessor and s is eventually in every open interval

containing x in Ii_ 1. Thus a net s in Ii will always converge in Ii Ii / 1. It is easily seen that X is a non-

compact Hausdorff convergence space. We will describe some other properties of X.

We claim that X is not pretopological. Let S {si" 5 A} be a net of nets in Ii (i [0,01)) where

each net si converges to some irrational number l(si) in Ii / 1- Suppose the nets are chosen so that the net

{l(si) i A} converges to an irrational number y in Ii + 2. For each 5 A, let s {si la. Ai} and

Ix" 5 A, I.t Ai} (ordered lexicographically). Since D Ii no subnet of D can converge to alet D si
point in Ii + 2 (since all nets in Ii converge in Iit.) Ii / 1). Hence no subnet of D can converge to y. Thus X

is not pretopological.

Also observe that for the irrational number rd4 in some Ii the net s si" i A where si rd4 for all

i A converges to the irrational number n/4 in Ii / 1. Hence a constant net s in X where each member is

the same number r in X need not necessarily converge to r.

We now claim that X is a LC space. Let S sti i A be a net of nets each of which has no

convergent subnet in X. For each i A, let si s I.t Ai }. If i A, si has no convergent subnet

Ix" Zi} such thatin X hence no cof’mal subset of s is contained in any Ii. Thus s/i has a subnet t {s I.t
Ix" 5 A, :Ei (ordered lexicographically). Let Tti Ii is finite for each [0,1). Let D {si

ix. 5 A, I.t As} (where A and Ai are cofinal in A and Ei respectively). Let o A and 15 Ai. If{s
s Ii then there exists a 51 > 0 in A and tl in Ai such that si Ii / 1. Consequently we can construct a

subnet H of T such that H has no convergent subnet. It follows that T is non-compact; hence X is a LC

space.

Let f be any continuous function from X into a compact Hausdorff topological space K and let u be an

irrational number in [1,0]. Let U {ui" [0,01)} where ui u for all [0,01) and let s {sti" 5
A be the constant net in some Ii such that si ui for all 5 A. Then the net s converges to the number ui

/ 1. (Note that U is non-compact). Since f(s) is a constant net in K and f is continuous f(ui + 1) f[s]. It

follows easily that f[U] must be a singleton set in K {f(u0)}. Let x be an arbitrary point in f[X] and let V

be an open neighbourhood of x in clKf[X]. If x is an irrational number than clxf[V] is non-compact

(since clxf-[V] contains a set such as U above). Suppose x is a rational number in some Ii. Let s si" 5
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e A} be a net of irrational numbers in I, such that s converges to x. Since f is continuous the net f[s]

converges to f(x) in clKf[X]. Hence there exists an 0 e A such that f[s[oA]] g; V. This means that V

contains the image of an irrational number in Ii. Again it follows that clxf-[V] is not compact. Then, by

lemma 4, ClKf[X] is the singular set S(f) of f, i.e., f is a singular function. Since f is an arbitrary function

every function from X into a compact Hausdorff topological space is singular. Hence the compactification

13X xec’ is a singular compactification (since ec.(x) is singular).
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