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Abstract:- In this paper we will examine the reflection and dissipation of Alfv6n waves, resulting from a

uniform vertical magnetic field, in an inviscid, resistive and isothermal atmosphere. An equation for the

damping length distance that wave can travel at Alfvn speed is derived. This equation shows that

the damping length is proportional to the wave number and the density scale height and it is valid not

only for Alfvn waves but also for any wave that travels at Alfvn speed. Moreover, it is shown that the

atmosphere may be divided into two distinct regions connected by an absorbing and reflecting transition

region. In the lower region the solution can be represented as a linear combination of two, incident and

reflected, propagating waves with the same wavelengths and the same dissipative factors. In the upper

region the effect of the resistive diffusivity and Alfvn speed is large and the solution, which satisfies the

prescribed boundary conditions, either decays with altitude or behaves as a constant. In the transition

region the reflection, dissipation and absorption of the magnetic energy of the waves take place. The

reflection coefficient, the dissipative factors, which are proportional to the damping length, are determined

and the conclusions are discussed in connection with heating of the solar atmosphere.
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1 INTRODUCTION

The main challenging goal of the theory of the formation of the solar chromosphere and corona is the

specification of the solar heating mechanism. Many models have been suggested and investigated for the

specification of the heating process of the solar atmosphere Alkahby 1993a, 1993b, 1993c, 1994a ],

Alkahby and Yanowitch 1989, 1991], Susse [1970, 1975 ], Campos 1983a, 19835] Parker [1979], Priest

[1984], Soward [1986], Webb 1980], Yanowitch [1967, 1979], Zhuzghda and Dzhlalilov [1986]). The old

idea for coronal heating was that sound waves generated in the convection zone could propagate through

the solar chromosphere steeping into shocks to give heating. The heating of the solar atmosphere by sound

waves has been ruled out because of their low group velocity, which means that they cannot supply the

necessary energy. However, this idea is still under investigation because of the coupling of the sound waves

and magnetohydrodynamic waves into slow and fast waves (see Priest [1984], Parker [1979] for references).

On the other hand the importance of the magnetic field and the dissipation of Alfvn waves in the heating
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process of the solar atmosphere is being increasingly recognized see Alkahby 1993a, 1993b, 1993c ],

Alkahby and Yanowitch 1989, 1991], Eltayeb 1970], Moffatt [197} ], Priest 1984 ], Robert [1968] Webb

[1980 ], Zhughda and Dzhalilov [1986 for references). In fact recent investigation emphasizes the influence

of the vertical magnetic field and its role in the heating process of the solar atmosphere. One of the

dissipative mechanisms of Alfvn waves, in an isothermal atmosphere, is Ohmic dissipation, which is the

subject of this paper.

In this article we will investigate upward propagating Alfvn waves, resulting from a uniform magnetic

field, in a resistive and isothermal atmosphere. It is shown that if the effect of the resistive diffusivity

dominates the oscillatory process, the atmosphere may be divided into two distinct regions. In the lower

region the effect of the resistive diffusivity and Alfvn speed is negligible and in it the solution can be

written as a linear combination of an upward and a downward propagating wave. The wavelengths and

the dissipative factors of the incident and reflected waves are equal. In the upper region the effect of

Alfvn waves and the resistive diffusivity is large and the solution, which satisfies the prescribed boundary

condition, either increases exponentially with altitude or behaves as a constant. The lower and upper

regions are connected by a transition region, which acts like a reflecting and absorbing barrier. In the

transition region reflection of Alfvn waves, dissipation of the magnetic energy and modification of the

waves, from propagating to standing, take place. The reflected wave from the transition region, will be

reflected upward again. The process of reflection and dissipation will continue until the energy of the vaves

dissipate completely. The dissipation of the energy takes place as the Alfvn waves propagate upward and

downward because the dissipative factors are functions of Ohmic electrical conductivity. An equation for

the damping length the distance that waves travel at Alfvn speed is derived. This equation indicates

that the damping length is proportional to the wave number and it is valid not only for Alfvn waves but

also for any wave that travels at Alfvn speed. As a result, the damping length is proportional to the

dissipative factor because the dissipative factor and the wave are equal. It follows that a larger damping

length means more magnetic energy will be released as the wave propagates in the solar atmosphere. The

reflection coefficient and the dissipative factors are determined. This problem is analysed in connection

with the heating of the solar atmosphere.

This problem leads to a singular perturbation problem and it is interesting mathematically because it

can be transformed to the hypergeometric equation.

2 MATHEMATICAL FORMULATION OF TIlE PROBLEM

Suppose an isothermal atmosphere, which is resistive and thermally non-conducting, and occupies the

upper half-space z > 0. It will be assumed that the gas is under the influence of a uniform vertical

magnetic field. We will investigate the problem of small oscillations about equilibrium, i.e oscillations

which depend only on time t, on the vertical coordinate z.

Let the equilibrium pressure, density, temperature and magnetic field strength be denoted by Po(z),

po(z), To, and B0= (0, 0,B0), where Po(z), po(z) and To satisfy the gas law Po(z) RTopo(z) and the

hydrostatic equation P(z) + gpo(z) 0. Here 1 is the gas constant, g 0, 0,-g) is the. gravitational

acceleration and the prime denotes differentiation of the pressure with respect to z. The equilibrium
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pressure and density,

Po(z) Po(O)ezp(-z/K), po(z) po(O)ezp(-z/K), (2.1)

where K RTo/g is the density scale height.

Let p(z,t), p(z,t), V(z,t), and h(z,t) be the perturbations quantities in the pressure, density, ve-

locity, and the magnetic field strength. The non-linear form of the equations of motion induction and

conservation of momentum equations are:

OH c
+ x(HxV)- 7 x[(4-V)vxHl, (2.2)

0---
0v # [nx(xH)] 0, ( 3),o[-- + (v.v)v] + v g +

where H(,z,t)= B0 + h(z, t), v is the differential operator (nabla), V(z,t) (U(z,t), 0, 0), and/ is the

permeability of the magnetic field. Here, c denotes the speed of light in a vacuum and a is the Ohmic

electrical conductivity.

Alfv6n waves are incompressible because they have motions transverse to the magnetic field, i.e they

do not couple with the slow or fast magnetohydrodynamics waves in an homogenous medium. As a result,

they can be described only by the induction and momentum equations and the dissipation of linear waves

is not affected by thermal conduction or radiation. The induction equation (2.2) balances magnetic field

oscillation, velocity transport along the magnetic field lines and coxnpressibility against resistive dissipation

by Ohm effect, the Hall effect being omitted. The momentum equation (2.3) balances the inertia force and

pressure gradient against weight, magnetic and viscous forces.

In this article we will consider the case where the vertical magnetic field B0 and the electrical diffusivity

r/= are constants. It follows from equation (2.1) that the Alfv6n speed can be written in the following

forln

,,(.) a(O),/, 2 .
where a.4 v/tz/4rpo(O)Bo. Moreover, the linear forms of equations (2.2)and (2.3) are:

Dthx(z,t)- BoDU(z,t)= TD2h(z,t), (2.5)

DtV(z,t) (a(z)/So)D,hx(z,t), (2.6)

where h:(z, t) denotes the x- component of the magnetic field perturbation. In addition, the magnetic field

perturbation h,(z,t) can be eliminated to obtain an equation for U(z,t) only. This can be accomplished

by differentiating equations (2.5) and (2.6) with respect to and using equation (2.6). The resulting

differential equation is

DttU(z,t) a(z)DU(z,t) la(z)Da-(z)D,U(z,t) O. (2.7)

We will consider solutions of the following forms

uC,t) u(,-)e(-), (2.9)

then the differential equation (2.7) can be simplified to the following form

[(1 ie-’/a)D + 2ie-/aD (1 + ie)ie-’/a]U(z,t) 0, (2.9)
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where

D d/dz, ag/w,i, wll2/rl, z z/K.

BOUNDAKY CONDITIONS: To complete the problem formulation certain boundary conditions must be

mposed to ensure a unique solution. Since the gas is resistive the dissipation condition will be necessary and

sufficient, as an upper boundary condition, to ensure a unique solution. The dissipation condition requires

the finiteness of the rate of the energy dissipation in an infinite column of fluid of a unit cross-section. This

implies,

olU,.(z,t)12dz
< c, (2. to)

I’hs boundary condition will not be applicable if a O, but it will be applicable only if a O. Moreover,

a boundary condition is also, required at z O, and we shall set

U(O)= 1, (2.11)

by suitably normalizing U(z, t). It will be seen that these boundary conditions will ensure a unique solution

to within a multiplicative constant.

SOLUTION OF THE PROBLEM

To solve the differential equation (2.9) it is convenient to introduce a new independent dimensionless

variable , defined by

ie-Z/,

then the differential equation (2.9) will be written in the following form

[/(1 ()D + (1 3/)D (1 + ze)]U(z,t) O,

where D (d/d(.

It is clear that the differential equation (3.2) is a special case of the hypergeometric equation

with

[((1 ()D + (c (1 + a + b)()D ab](I,([) 0,

(3.1)

(3.2)

(3.3)

c 1, a + b 2, ab (1 + if.). (3.4)

Moreover, equation (3.2) has three regular singular points, 0, 1, and [ oo. The intermediate

regular singular point correponds to the reflecting layer. Solving for the dimensionless parameters a

and b we have

a= 1-/+i/, b- l+/-i/, (3.5)

where fl . For II <I, the hypergeometric equation (3.2) has two linearly independent solutions

of the following form

() F(a,b,2,), (3.6)

1) + (n)] (3.7)I2(X)-- l(X)lw, "JI- (!)2
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where F is the hypergeometric equation and defined by

FCa, b, 2,) (a)nCb),
=o (c). n!

r(,:) r(,, + n)r(b+n) (" (3.)
r(,lr(t,) r(,: +,.,1 ’j

For I1 > and laTg(-)l < , the solution of equation (3.2) can be written in the following form

,baCOn) (- )-a F(a, c + a, b + a, -1), 3, 9)

’bb() (-)-bF(b, c + b, a + b,-). (3.10)

The second solution ’I’2() will be eliminated by the boundary condition (2.10) because it increases to

tnfinity as z oo. As a result, the solution of the differential equation (3.2), which satisfies the dissipation

condition, is a multiple of (bl() i.e

,() C’i(() CF(a,b,c,(), (3.!)

where C is a constant which can be determined from the boundary condition (2.11). For I1 > , larg(-)l <

7r, the analytic continuation of the solution of the differential equation (3.2) can be written in the following

form
r()r(- ),() c[ r(t,)r(,: ) (-)-)f(, + , + , -’) 3. )

r()r(=- )+

_
b)(-()-bF(b, c + b, a + b,(-)].

For > and larg(-)l < r the asymptotic behaviour of the solution, defined in equation (3.12), as

0 can be obtained by retaining the most significant terms in equation (3.12), the resulting equation is

cr()r(t ) r()r( ) .
(()

r()r( )
(-)-" + r(=)r( )(-)-1

4 MAGNITUDE OF THE REFLECTION COEFFICIENT

Introducing the variable z by mean of (3.1) and retaining the significant terms in equation (3.13) we have

v(.) c r(’::)r(t’ a),=r,[(’,, +
r(,)r(,:: ,,) [,,:r,[C:t + ,),.l + ,=[(. + it),ll ca.,)

where R., the ratio of the amplitudes of the reflected to the incident waves, denotes the reflection coefficient,

which is defined by

r(a )rc)r(, )=[(9.Z(to + =) + (=r(a)r(- a)r(a )
The constant C can be determined by using the boundary condition (2.11). It follows

r()r(- ) / + to)a]C
rc)r( f R)[-(

and the solution can be written in the following form

U(z) + R [ezp[(1 + i)z] + R ezp[(1 + ifl)zl].

finMly the magnitude of the reflection coefficient is

r(a )r()r(- )IRI r(a)r( )r( )[(Z(to + )].

(4.2)

(4.4)

(4.5)
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5 DISCUSSION AND CONCLUSIONS

It . well known that the solar atmosphere is extremely hot; typical temperatures are 10K, compared with

5xl0a at the photosphere. Thermal energy must be continually supplied to maintain this temperature

against radiative cooling timescale- 1day) In fact, recent investigation enphazises the influence of

the vertical nagnctic field in generation, propagation and dssipation of the waves that may heat the

ciromosphcre and corona. Many models have been established to answer the following two questions: how

is magnetic energy supplied to the corona, and how is it &ssipated As a further dichotomy, most heating

theories can be classified as either wave theories, where Alfvn waves carry energy into the corona; or

current dssipation theories, where energy is released from the background magnetic field. Furthermore,

the corona s a low-beta plasma. This means that magnetic forces dominate over fluid pressure. The

opposite holds below the photosphere, where beta is high and knetic forces dominate. Moreover, field

lines do not pass through each other, coronal motions preserve the topology of the field.

In this article we are interested in the Ohmic dissipation of Alfvn waves and it is important to have

some informatons about the time and the length of the dissipation. For a wave with ) wavelength the

time scale for Ohmic dissipation is 7" A/, where /is the magnetic diffusivity. As a result, the distance

that a wave can tavel at Alfvn speed, before it dssipates called damping length is

Ld aA=/7- 5.

In terms of the frequency of the wave v the damping length can be written like

Ld os/z/w:. (5.2)

Let vaH then in terms of the wave number f we have

: ./2 (waHS)/(2H) Ld/2U. (5.3)

It follows that the damping length can be written in the following form

L 2,H. (5.4)

Equation (5.4) shows that the damping length is proportional to the wave number. It is also proportional

to the dissipative factor, because the dissipative factor and the wave number are equal. Furthermore, the

damping length is valid not only for Alfv4n waves but also for any waves that travel with Alfvn speed.

As a consequence of the above results and discussion we have the following conclusions:-

A Equation 4.1 represents the behaviour of the solution of the boundary value problem, defined

by the differential equation 2.9 ), in the lower region. The first term on the right represents an upward

propagating wave decaying like exp(-z) and the second term represents a downward propagating wave

decaying at the same rate. In the upper region the solution that satisfies the prescribed boundary conditions

of the problem will decay exponentially with altitude. It is clear that the solution is a linear combination

of an incident and a reflected wave with the same wavelength and the same dissipative factors.
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B The upper and the lower regions are connected by a transition regi.on in which the dissipation of

the magnetic energy and the reflection of Alfvdn waves take place. Also the electric diffusivity and Alfvdn

speed change from small to large values.

C It is clear that the dissipative factors are functions of a and the damping length depends on the wave

number 3. As a result, Alfvdn waves or any wave travels at Alfvdn speed, travels long distances for large/3

and dissipates part of the energy in the lower region. This indicates that the energy of the wave dissipates

not only in the transition region but also in the lower region as the wave propagates.

D The reflected wave, from the transition region, will be reflected upward at z 0. The reflection and

dissipations of the waves will continue until the energy of the wave dissipates completely. The dissipated

magnetic energy may contribute to the heating of the solar atmosphere.

E The dependence of the damping length and the dissipative factors on the electrical diffusivity indicates

the importance of the resistive dissipation of Alfvdn waves that may heat the chromosphere and corona.
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