ASYMPTOTIC TRACTS OF HARMONIC FUNCTIONS III

KARL F. BARTH
Department of Mathematics
Syracuse University
Syracuse, NY 13244, USA
e-mail: kfbarth@mailbox.syr.edu
DAVID A. BRANNAN
The Open University Department of Pure Mathematics Milton Keynes MK7 6AA, United Kingdom e-mail: D.A.Brannan@open.ac.uk

(Received June 30, 1995)

Abstract

A tract (or asymptotuc tract) of a real function u harmonic and nonconstant in the complex plane \mathcal{C} is one of the n_{c} components of the set $\{z: u(z) \neq c\}$, and the order of a tract is the number of non-homotopic curves from any given point to ∞ in the tract. The authors prove that if $u(z)$ is an entire harmonic polynomial of degree n, if the critical points of any of its analytic completions f lie on the level sets $\tau_{\jmath}=\left\{z: u(z)=c_{\jmath}\right\}$, where $1 \leq \jmath \leq p$ and $p \leq n-1$, and if the total order of all the critical points of f on τ_{j} is denoted by σ_{j}, then $$
\left\{n_{c}: c \in \Re\right\}=\{n+1\} \cup\left\{n+1+\sigma_{\jmath}: 1 \leq \jmath \leq p\right\}
$$

KEY WORDS AND PHRASES: Asymptotic tracts, harmonic functions. 1991 SUBJECT CLASSIFICATION CODES: Primary: 31A05; Secondary: 30C35.

1. Introduction

This paper continues a study, begun in [1] and [2], of the asymptotic tracts of functions harmonic in \mathcal{C} (entire harmonic functions).

Definition 1. An asymptotic tract (or tract) of a real function $u(z)$ harmonic and nonconstant in \mathcal{C} is a component of the set $\{z: u(z) \neq c\}$ for some real number c.

It was shown in [1] that each tract T is necessarily simply-connected and unbounded, and that u is necessarily unbounded in each tract T; in addition, ∞ is an accessible boundary point (in \mathcal{C}) of each $\operatorname{tract} T$. The local mapping properties of analytic functions show that the set $\{z: u(z) \neq c\}$ consists of a finite or countable number of curves which are locally analytic, except at the zeros of $f^{\prime}(z)$ (where f^{\prime} is any analytic completion of u)-where the set $\{z: u(z)=c\}$ branches. Observe that the angle between the 'branches' must be equal to $2 \pi / n$ for some $n \geq 1$.

We continue the study of harmonic polynomials in the plane initiated in [3], where it was shown that, if $u(z)$ is a harmonic polynomial in \mathcal{C} of degree n, then the number, k, of tracts of u satisfies the sharp inequality

$$
\begin{equation*}
n+1 \leq k \leq 2 n \tag{1}
\end{equation*}
$$

A special case of our results, putting Example 2 together with Theorem 1, shows that, given any pair of positive integers n and k that satisfy the inequality (1) there is a harmonic polynomial $u(z)$ of degree n with k tracts. This is stronger than [3, Theorem 3] where it was shown that there exists a harmonic polynomial of degree n that has $2 n$ tracts for the case $c=0$. We also discover a restriction, for each given harmonic polynomial $u(z)$ in \mathcal{C}, on the number of tracts of $u(z)-c$, as the constant c varies over \Re.
Definition 2. An unbounded simply-connected domain T in C is saıd to be branched of order n_{T} (possibly $n_{T}=+\infty$) if th has the following property: There exsts a famıly \mathcal{T}_{T} of n_{T} nonhomotopic (in T) and disjoint (except for the end-point z_{T}) Jordan curves in T connecting some fixed point in T, z_{T} say, to ∞; in addition, any Jordan curve in T joining z_{T} to ∞ is homotopic
(in T) to one of the elements of \mathcal{T}_{T}. If $n_{T}=1$, we say that T is unbranched; if $n_{T}<+\infty$, we say that T is finitely branched; if $n_{T}=+\infty$, we say that T is infinitely-branched.

2. NUMBERS OF TRACTS

Let $u(z)$ be an entıre harmonic polynomial of degree n. Then, if $z=r e^{2 \theta}$, we have that

$$
\begin{equation*}
u(z)=a_{n} r^{n} \cos \left(n \theta+\theta_{n}\right)+O\left(r^{n-1}\right), \text { where } a_{n} \neq 0 \tag{2}
\end{equation*}
$$

It follows that near ∞ there must be on $\{z .|z|=r\}$ at least n arcs (each of angular length about π / n) on which $u(z)>0$, and at least n arcs (each of angular length about π / n) on which $u(z)<0$. Since u is a polynomial of degree n and so can have at most $2 n$ zeros on $\{z:|z|=r\}$, it follows that for sufficiently large r there are precisely n arcs of each type. Also, it is easy to prove that the boundaries separating the $2 n$ regions comprising $\{z:|z|=r, u(z) \neq 0\}$ tend to radial lines of angular separation π / n as $r \rightarrow+\infty$.

We will denote by n_{c} the number of components of the set $\{z: u(z)-c \neq 0\}$. It will be useful to examine how n_{c} varies with c. For sufficiently large r, the set $\{z:|z|>R\} \cap\{z: u(z) \neq 0\}$ consists of precisely $2 n$ unbounded disjoint domains. Then, for such an r, we define

$$
\begin{equation*}
M=1+\max \{u(z):|z| \leq r\} \tag{3}
\end{equation*}
$$

It follows that the set $\{z: u(z)-M \neq 0\}$ has exactly n components in which $\{z: u(z)-M>0\}$ and exactly one component in which $\{z: u(z)-M<0\}$. Thus $n_{M}=n+1$. Also, it follows from the Phragmen-Lindelörf Principle that $n_{c}=n+1$ when $c>M$. We now look at how n_{c} varies as c decreases from the value M. The components (tracts) of $\{z: u(z)-c \neq 0\}$ vary continuously with c, in terms of kernel convergence. Hence, as c decreases, n_{c} is an integer and varies continuously with c (hence remains constant)- except at those values of c for which a critical point of the analytic completion of u lies on the set $\{z: u(z)=c\}$.

Now two tracts of $u(z)-c$ in which $u(z)-c$ has opposite signs can never lie in a single tract of $u(z)-c_{1}$, for $c_{1} \neq c$, since u is unbounded in any tract; however their boundaries may meet in a point or in an arc. No two tracts of $u(z)-c$ can have the property that their boundaries meet in a set with more than one component: for, if they did, then there would be a bounded (non-empty) domain on whose boundary $u(z)=c$, and so we would have $u(z) \equiv c$ in \mathcal{C}.

Suppose that T_{1} and T_{2} are two tracts of $u(z)-c$ in which $u(z)-c>0$; we will call such tracts upper tracts (for the value c). (Lower tracts are defined similarly.) It may be that $\partial T_{1} \cap \partial T_{2}=\emptyset$. However we cannot have a situation where $\partial T_{1} \cap \partial T_{2}$ contains an arc in \mathcal{C}, by the Maximum Principle. It follows, then, that, if ∂T_{1} meets ∂T_{2}, the set $\partial T_{1} \cap \partial T_{2}$ must be a singleton.
If T_{1} and T_{2} are both upper tracts or both lower tracts for which $\partial T_{1} \cap \partial T_{2}=\left\{z_{0}\right\}$, then there must exist an equal number of upper and lower tracts whose boundaries contain z_{0}. Since z_{0} must thus be a critical point of any analytic completion of u, there can be at most $(n-1)$ such points z_{0} (since u is a polynomial of degree n). Note also that, as c decreases, the upper tracts individually increase in size. Hence their total number must decrease as c decreases.

Our main result in this Section is the following.
Theorem 1. Let $u(z)$ be an enture harmonic polynomial of degree n. Let the critıcal points of any of \imath ts analytıc completıons f lie on the level sets $\tau_{\jmath}=\left\{z: u(z)=c_{\jmath}\right\}$, where $1 \leq \jmath \leq p$ and $p \leq n-1$, and let the total order of all the critucal pornts of f on τ_{j} be denoted by σ_{\jmath}. (In partıcular, $\sum_{\jmath=1}^{p} \sigma_{\jmath}=n-1$.) Then $\left\{n_{c}: c \in \Re\right\}=\{n+1\} \cup\left\{n+1+\sigma_{\jmath}: 1 \leq \jmath \leq p\right\}$.
Proof. Let f be any analytic completion of u.
Case 1. All the critical points of f lie on different level sets for u.
Assume first that all the critical points of f are simple; then we may choose our notation so that they lie on the level sets $\tau_{\jmath}=\left\{z: u(z)=c_{\jmath}\right\}, 1 \leq \jmath \leq n-1$, where $c_{1}>c_{2}>\ldots>c_{n-1}$. Then, by the previous comments, for $c>c_{1}$ (for example, when $c=M$ (see (3)), we have $n_{c}=n+1$ and there are n upper tracts of u and one lower tract. Next, $n_{c_{1}}=n+2$ and there are, for the value $c=c_{1}, n$ upper tracts and two lower tracts (the lower tract has 'split' in two). Finally, for $c_{1}>c>c_{2}$, we have $n_{c}=n+1$, and there are $(n-1)$ upper tracts (two upper tracts have 'combined') and 2 lower tracts.

As c decreases further, a similar argument holds for each c_{\jmath} in turn, $2 \leq \jmath \leq n-1$. For $c_{\jmath-1}>c>c_{\jmath}$, we have $n_{c}=n+1$ and there are $(n+1-\jmath)$ upper tracts and \jmath lower tracts; when $c=c_{\jmath}$, we have $n_{c_{\jmath}}=n+2$ and there are $(n+1-\jmath)$ upper tracts and $(\jmath+1)$ lower tracts; and, for $c_{\jmath}>c>c_{\jmath+1}$ (with the convention that $\left.c_{n}=-\infty\right)$, we have $n_{c}=n+1$ and there are $(n-\jmath)$ upper tracts and $(\jmath+1)$ lower tracts.

Assume next that the critical points of f are not necessarily simple. First, suppose that the level set $\left\{z: u(z)=c_{\jmath}\right\}$, for some particular value of \jmath, contains a critical point of f (at z_{j} where f^{\prime} has a zero of order b_{\jmath}). Let I be an open interval of \Re that contains $c_{,}$, but contains no other c 's corresponding to critical points of f Then, for a sufficiently small neighborhood \mathcal{U} of $z_{\text {, there }}$ are $\left(2 b_{j}+2\right)$ tracts of $u(z)-c_{\text {, that meet }} \mathcal{U}$, namely $\left(b_{j}+1\right)$ upper tracts and $\left(b_{j}+1\right)$ lower tracts. However, when $c>c_{j}, c \in I$ and $c-c_{\jmath}$ is sufficiently small, there are only $\left(b_{j}+2\right)$ tracts of $u(z)-c$ that meet \mathcal{U}, namely $\left(b_{j}+1\right)$ upper tracts and 1 lower tract; similarly, when $c<c_{\jmath}, c \in I$ and $c_{\jmath}-c$ is sufficiently small, there are $\left(b_{\jmath}+2\right)$ tracts of $u(z)-c$ that meet \mathcal{U}, namely $(b,+1)$ lower tracts and 1 upper tract.

Now consider the level set $\{z: u(z)=c\}$ for an arbitrary c. Since, except for values of c corresponding to critical points of f (and even then locally only in small neighborhoods of the critical points themselves) the tracts vary continuously with c (in the sense of kernel convergence), it follows from the above argument that there is some number N such that, for $\left|c-c_{\rho}\right|$ sufficiently small and non-zero, we have $n_{c}=N+1$ whereas $n_{c_{j}}=N+1+b_{j}$. But $n_{M}=n+1$, so that we must have $N=n$. This completes the proof of Case 1 of the theorem.

Case 2. More than one critical point of f lies on a given level set for u.
Assume first that, for some c_{j}, the level set $\left\{z: u(z)=c_{\jmath}\right\}$ contains just two branch points, z_{1} and z_{2}, of orders b_{1} and b_{2} respectively, and that z_{1} and z_{2} lie on different components, C_{1} and C_{2} respectively, of $\left\{z: u(z)=c_{\jmath}\right\}$; thus $C_{1} \cap C_{2}=\emptyset$. It follows that there exists some Jordan curve from ∞ to ∞ that separates C_{1} from C_{2}; this curve can be chosen to lie either in a single component of $\left\{z: u(z)>c_{\jmath}\right\}$ or in a single component of $\left\{z: u(z)<c_{\jmath}\right\}$. By considering the local behavior of u near z_{1} and z_{2}, and by using the fact that components of $\{z: u(z)-d \neq 0\}$ vary continuously with d (except when their boundaries coalesce), it follows that, when $\left|d-c_{\jmath}\right|$ is sufficiently small, we have $n_{d}=n+1$ and $n_{c_{j}}=(n+1)+b_{1}+b_{2}$. A similar argument works in the case of more than two branch points on a single level set of u, so long as each such branch point lies on a different component of that level set.

Assume next that, for some c_{\jmath}, the level set $\left\{z: u(z)=c_{\jmath}\right\}$ contains just two branch points, z_{1} and z_{2}, of orders b_{1} and b_{2} respectively (corresponding to zeros of f^{\prime} of these orders), and that z_{1} and z_{2} lie on the same component, C, of $\left\{z: u(z)=c_{\jmath}\right\}$. Then there is a Jordan subarc Γ of C joining z_{1} to z_{2}; let z^{\prime} be any interior point of this subarc. Since C cannot contain any closed Jordan curves, it follows that there are precisely two tracts, T_{1} and T_{2}, say, of $u(z)-c_{\jmath}$ that have $\Gamma-\left\{z_{1}, z_{2}\right\}$ as part of their boundaries; we may assume that $u(z)>c_{3}$ in T_{1} and so that $u(z)<c_{\jmath}$ in T_{2}. Similar considerations also show that there is a Jordan curve J_{1} in $T_{1} \cup\left\{z^{\prime}\right\}$ that joins z^{\prime} to ∞ inside T_{1}, and a Jordan curve J_{2} in $T_{2} \cup\left\{z^{\prime}\right\}$ that joins z^{\prime} to ∞ inside T_{2}.

We define $J^{\prime}=J_{1} \cup J_{2}$. Then J^{\prime} plays the same role as J did earlier (when it separated C_{1} from C_{2}), and a similar argument to the previous one shows that

$$
n_{d}= \begin{cases}n+1, & \text { if } d \neq c_{\jmath}, \text { and }\left|d-c_{\jmath}\right| \text { sufficiently small, } \tag{4}\\ n+1+\left(b_{1}+b_{2}\right), & \text { if } d=c_{\jmath} .\end{cases}
$$

Again a similar argument can be used even when there are more than two branch points on the same component of the level set.

The result of this theorem is stronger than [3, Theorem 1], where it was shown that $\left\{n_{c}: c \in \Re\right\}$ is a subset of $\{n+1, n+2, \ldots, 2 n\}$.

Notice that for the function $u_{1}(z)=\operatorname{Re}\left(z^{n}\right)$ we have $n_{0}=2 n$ and $n_{1}=n+1$, and that in fact $\left\{n_{c}: c \in \Re\right\}=\{n+1,2 n\}$. The next two examples show that, while this particular function u_{1} is extremal in a certain sense, the conclusion of Theorem 1 concerning the range of possible values of n_{c} (as c varies) is best-possible.
Example 1. There exists a harmoncc polynomaal u of degree n for which $\left\{n_{c}: c \in \Re\right\}=$ $\{n+1, n+2\}$, and all the critical points of any analytic completion f of u are simple and lie on different level sets of u.

Let $u(z)=\operatorname{Re}\left(z^{n}-A z\right)$, for a complex number A yet to be specafied. The analytic completion $f(z) \equiv z^{n}-A z$ of u has critical points where $n z^{n-1}-A=0$; that is, where

$$
\begin{equation*}
z=z_{k}=\left(\frac{A}{n}\right)^{\frac{1}{n-1}} \exp \left(\frac{2 \pi i k}{n-1}\right), \quad 1 \leq k \leq n-1 . \tag{5}
\end{equation*}
$$

Now $u\left(z_{k}\right)=\operatorname{Re}\left(\frac{z_{k} A(1-n)}{n}\right)$;and it follows that, if A is chosen with $|A|=1$ and with $\arg A$ not a rational multiple of 2π, then all the values of $\left\{u\left(z_{k}\right)\right\}_{1}^{n-1}$ are distinct. Thus u has the desired properties.

Example 2. Let p be an integer, such that $1 \leq p \leq n-1$, and let $b_{1}, b_{2}, . ., b_{p}$ be any integers in $[1, n-2]$ for which $\sum_{j=1}^{p} b_{j}=n-1$. There exists a harmonvc polynomial $u(z)$ of degree n with the propertıes that any analytıc completıon f of u has critıcal points of orders $b_{1}, b_{2}, ., b_{p}$, and that all these critical points lue on different level sets of u. Hence (from Theorem 1)

$$
\left\{n_{c}: c \in \Re\right\}=\{n+1\} \cup\left\{n+1+b_{\jmath}: 1 \leq \jmath \leq p\right\} .
$$

First, let f_{1} be the polynomial given by $f_{1}(0)=0$ and

$$
\begin{equation*}
f_{1}^{\prime}(z)=(z-1)^{b_{1}}\left(z-a_{2}\right)^{b_{2}} z^{(n-1)-\left(b_{1}+b_{2}\right)} \tag{6}
\end{equation*}
$$

where a_{2} is chosen to be either $\frac{1}{2}$ or to be very close to $\frac{1}{2}$; in particular, we make our choice of a_{2} to ensure that $u_{1}(1) \neq 0$, where $u_{1}(z) \equiv \operatorname{Re} f_{1}(z)$. It follows from Rolle's Theorem that the points 1 and a_{2} lie on different level sets of u_{1}.

Next, let f_{2} be the polynomial given by $f_{2}(0)=0$ and

$$
\begin{equation*}
f_{2}^{\prime}(z)=(z-1)^{b_{1}}\left(z-a_{2}\right)^{b_{2}}\left(z-a_{3}\right)^{b_{3}} z^{(n-1)-\left(b_{1}+b_{2}+b_{3}\right)} \tag{7}
\end{equation*}
$$

where a_{3} is positive but small. By continuity arguments (on f) we see that we may choose a_{3} sufficiently near to 0 that 1 and a_{2} lie on different level sets of $u_{2}(z) \equiv \operatorname{Re} f_{2}(z)$.

We have to check that a_{3} can be chosen so that a_{3} lies on a different level set of u_{2} from those that contain either 1 or a_{2}. But, if a_{3} is sufficiently small, we have that

$$
\begin{align*}
u_{2}(1) & \approx \int_{0}^{1}(t-1)^{b_{1}}\left(t-a_{2}\right)^{b_{2}} t^{(n-1)-\left(b_{1}+b_{2}\right)} d t \tag{8}\\
u_{2}\left(a_{2}\right) & \approx \int_{0}^{a_{2}}(t-1)^{b_{1}}\left(t-a_{2}\right)^{b_{2}} t^{(n-1)-\left(b_{1}+b_{2}\right)} d t \tag{9}
\end{align*}
$$

and

$$
u_{2}\left(a_{3}\right) \approx(-1)^{b_{1}+b_{2}+b_{3}}\left(a_{2}\right)^{b_{2}}\left(a_{3}\right)^{\left(n-\left(b_{1}+b_{2}\right)\right)} \int_{0}^{1}(1-x)^{b_{3}} x^{(n-1)-\left(b_{1}+b_{2}+b_{3}\right)} d x
$$

hence, for all sufficiently small a_{3}, the values of $u_{2}(1), u_{2}\left(a_{2}\right)$ and $u_{2}\left(a_{3}\right)$ are all distinct.
A similar argument shows, after a further $(p-3)$ steps, that the polynomial $u(z) \equiv \operatorname{Re} f(z)$, where $f(0)=0$ and

$$
\begin{equation*}
f^{\prime}(z)=(z-1)^{b_{1}}\left(z-a_{2}\right)^{b_{2}}\left(z-a_{3}\right)^{b_{3}}\left(z-a_{4}\right)^{b_{4}} \ldots\left(z-a_{p}\right)^{b_{p}} \tag{10}
\end{equation*}
$$

and the sequence $\left\{a_{j}\right\}_{j=3}^{p}$ decreases to 0 sufficiently quickly, has the desired properties.
Finally, as was mentioned in the Introduction, suppose n and k are positive integers such that $n+1 \leq k \leq 2 n$. If $k=n+1$, we see from Example 1 that there exists a harmonic polynomial $u(z)$ such that $n_{c}=\{n+1, n+2\}$. If $n+1<k \leq 2 n$ and we set $b_{1}=k-(n+1)$ and $b_{2}=2 n-k$, Example 2 shows that there exists a harmonic polynomial $u(z)$ such that

$$
\left\{n_{c}\right\}=\left\{n+1, n+1+b_{1}, n+1+b_{2}\right\}=\{n+1, k, 3 n+1-k\}
$$

ACKNOWLEDGMENT. The first author gratefully acknowledges support from the Science and Engineering Research Council of the United Kingdom.

References

1. K. F. Barth and D. A. Brannan, Asymptotic tracts of harmonic functıons I, Acad. Sci. Fenn. Series A. I. Math. 11 (1986), 215-232.
2. \qquad , Asymptotıc tracts of harmonic functıons II, Proc. Edinburgh Math. Soc. 38 (1995), 35-52.
3. W. K. Hayman D. A. Brannan, W. H. J. Fuchs and Ü. Kuran, A characterısatıon of harmonic polynomıals in the plane, Proc. London Math. Soc. (3) 32 (1976), 213-229.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

