RESEARCH NOTES

ON THE RICCI TENSOR OF REAL HYPERSURFACES OF QUATERNIONIC PROJECTIVE SPACE

JUAN DE DIOS PEREZ

Departamento de Geometria y Topologia Facultad de Ciencias, Universidad de Granada 18071-Granada, Spain

(Received June 2, 1992 and in revised form June 20, 1994)

ABSTRACT. We study some conditions on the Ricci tensor of real hypersurfaces of quaternionic projective space obtaining among other results an improvement of the main theorem in [9].

KEY WORDS AND PHRASES. Quaternionic projective space, real hypersurface, Ricci tensor. **1991 AMS SUBJECT CLASSIFICATION CODE(S).** 53C25, 53C40.

1. INTRODUCTION.

Let M be a real hypersurface, which in the following we shall always consider connected, of a quaternionic projective space QP^m , $m \ge 2$, with metric g of constant quaternionic sectional curvature 4. Let ζ be the unit normal vector field on M and $\{J_1, J_2, J_3\}$ a local basis of the quaternionic structure of QP^m , see [2]. Then $U_1 = -J_1\zeta$, i = 1, 2, 3, are tangent to M. Let S be the Ricci tensor of M.

In [6] we studied pseudo-Einstein real hypersurfaces of QP^m . These are real hypersurfaces satisfying

$$SX = aX + b\Sigma_{i=1}^{3} g(X, U_i)U_i$$
(1.1)

for any X tangent to M, where a and b are constant. If $m \ge 3$ we obtained that M is pseudo-Einstein if it is an open subset of either a geodesic hypersphere or of a tube of radius r over QP^k , $0 < k < m - 1, 0 < r < \Pi/2$ and $\cot^2 r = (4k + 2)/(4m - 4k - 2)$.

As a corollary we also obtained that the unique Einstein real hypersurfaces of QP^m , $m \ge 2$, are open subsets of geodesic hyperspheres of QP^m of radius r such that $cot^2r = 1/2m$.

The purpose of the present paper is to study several conditions on the Ricci tensor of M. Concretely in 3 we prove the following result: if X is tangent to M we shall write $J_iX = \Phi_iX + f_i(X)\zeta$, i = 1, 2, 3, where Φ_iX denotes the tangent component of J_iX and $f_i(X) = g(X, U_i)$. Then

THEOREM 1. Let M be a real hypersurface of QP^m , $m \ge 3$, such that $\Phi_i S = S\Phi_i$, i = 1, 2, 3. Then M is an open subset of a tube of radius r, $0 < r < \Pi/2$, over QP^k , $k \in \{0, \dots, m-1\}$.

This theorem generalizes results obtained by Pak in [7].

In [9] we studied real hypersurfaces of QP^m with harmonic curvature for which U_i , i=1,2,3, are eigenvectors of the Weingarten endomorphism of M with the same principal curvature. A real hypersurface has harmonic curvature if

$$(\bigtriangledown_X S)Y = (\bigtriangledown_Y S)X \tag{1.2}$$

for any X, Y tangent to M, where ∇ denotes the covariant differentiation of M In 4 we shall improve the result of [9] showing that the condition about principality of U_i , i = 1, 2, 3, is unnecessary Concretely we obtain

THEOREM 2. A real hypersurface of $QP^m, m \ge 2$, has harmonic curvature if and only if it is Einstein

As a consequence we can classify Ricci-parallel real hypersurfaces of QP^m , that is, real hypersurfaces such that $\nabla_X S = 0$ for any X tangent to M. We get

COROLLARY 3. The unique Ricci-parallel real hypersurfaces of QP^m , $m \ge 2$, are open subsets of geodesic hyperspheres of radius r, $0 < r < \pi/2$, such that $cot^2r = 1/2m$.

From this result we introduce in 5 a condition that generalize Ricci-parallel real hypersurfaces We shall say that a real hypersurface of QP^m is pseudo Ricci-parallel if it satisfies

$$(\nabla_X S)Y = c \sum_{i=1}^{3} \{g(\Phi_i X, Y)U_i + f_i(Y)\Phi_i X\}$$
 (1.3)

for any X, Y tangent to M, c being a nonnull constant We obtain

THEOREM 4. M is a pseudo Ricci-parallel real hypersurface of QP^m , $m \ge 2$, if and only if it is an open subset of a geodesic hypersphere.

Finally, we characterize pseudo-Einstein real hypersurfaces of QP^m by the following

THEOREM 5. Let M be a real hypersurface of QP^m , $m \ge 3$, then

$$||S||^2 \ge \sum_{i=1}^3 (f_i(SU_i))^2 + (\rho - \sum_{i=1}^3 f_i(SU_i))^2 / 4(m-1)$$
 (1.4)

where ρ denotes the scalar curvature of M. The equality holds if and only if M is pseudo-Einstein.

2. PRELIMINARIES.

Let us call $\mathbb{D}^{\perp} = \operatorname{Span}\{U_1, U_2, U_3\}$ and \mathbb{D} its orthogonal complement in TM. Let X, Y be vector fields tangent to M. Then, [6], we have

$$\Phi_{i}^{2}X = -X + f_{i}(X)U_{i} \tag{2.1}$$

$$g(\Phi_{i}X,Y) + g(X,\Phi_{i}Y) = 0, \Phi_{i}U_{i} = 0, \Phi_{j}U_{k} = -\Phi_{k}U_{j} = U_{t}$$
(2.2)

where i = 1, 2, 3 and (j, k, t) is a circular permutation of (1,2,3).

From the expression of the curvature tensor of QP^m , [2], the Ricci tensor of M is given by

$$SX = (4m+7)X - 3\Sigma_{i=1}^{3} f_{i}(X)U_{i} + hAX - A^{2}X$$
 (2.3)

for any X tangent to M, where h = trace(A). Moreover, [6],

$$\nabla_X U_i = q_k(X)U_1 - q_i(X)U_k + \phi_i AX \tag{2.4}$$

for any X tangent to M, (i, j, k) being a circular permutation of (1, 2, 3) and q_i , i = 1, 2, 3, certain local 1-forms on M (see [2]). Finally the equation of Codazzi is given by

$$(\nabla_X A)Y - (\nabla_Y A)X = \sum_{i=1}^3 \{f_i(X)\Phi_i Y - f_i(Y)\Phi_i X + 2g(X, \Phi_i Y)U_i\}$$
 (2.5)

3. PROOF OF THEOREM 1.

Let us call $H = A^2 - fA$, f being a differentiable function on M

If we suppose that $H\Phi_1=\Phi_iH$, i=1,2,3, from (2.2) $H\Phi_1U_1=0=\Phi_1HU_1$. This implies $0=\Phi_1^2HU_1=-HU_1+f_1(HU_1)U_1$. That is, U_1 is an eigenvector of H. Similarly, U_2 and U_3 are also eigenvectors of H. Let us consider $T_rM=H(\alpha_1)\oplus H(\alpha_2)\oplus \cdots \oplus H(\alpha_p)$, where $H(\alpha_1)=\{X\in T_rM/HX=\alpha_JX\}$. Suppose that $U_i\in H(\alpha_i), i=1,2,3$.

If $X \in \mathbb{D}$ is such that $X \in H(\alpha_i)$, $H\Phi_j X = \Phi_j H X = \alpha_i \Phi_j X$, that is, $\Phi_j X \in H(\alpha_i)$, j=1,2,3. Moreover $H\Phi_j U_1 = \Phi_j H U_1 = \alpha_1 \Phi_j U_1$, j=1,2,3. If j=2, we obtain that $HU_3 = \alpha_1 U_3$. If j=3 we obtain $HU_2 = \alpha_1 U_2$. Thus $\alpha_1 = \alpha_2 = \alpha_3$. Then $H(\alpha_1)$ is odd-dimensional and from (2.5) the proof of Theorem 6.1 in [6] implies that U_i , i=1,2,3, are eigenvectors of A

If we now consider a real hypersurface of $QP^m, m \geq 3$, such that $\Phi_i S = S\Phi_i$, i=1,2,3, from (2 3) we obtain that $\Phi_i H = H\Phi_i, i=1,2,3$, for f=-h. Thus $U_i, i=1,2,3$, are eigenvectors of A. Thus, [1], M is an open subset of either a tube of radius r, $0 < r < \Pi/2$, over $QP^k, k \in \{0, \cdots, m-1\}$ or of a tube of radius $r, 0 < r < \Pi/4$, over CP^m

Let us consider the second case The eigenvalues of A are cot(r) with multiplicity 2(m-1), -tan(r) with multiplicity 2(m-1), 2cot(2r) with multiplicity 1 and -2tan(2r) with multiplicity 2. Let X be a unit vector field such that AX = cot(r)X. Then $\Phi_2 SX = (4m+7+hcot(r)-cot^2(r))\Phi_2 X$ and $S\Phi_2 X = (4m+7-htan(r)-tan^2(r))\Phi_2 X$. From this we have $h(cot(r)+tan(r))+tan^2(r)-cot^2(r)=0$. Thus either cot(r)+tan(r)=0 and this implies $cot^2(r)=-1$ which is impossible or h+tan(r)-cot(r)=0. As h=2(m-1)(cot(r)-tan(r))+2cot(2r)-4tan(2r) it is easy to see that $tan^2(2r)=m-1$.

On the other hand, $\Phi_2SU_1=(4m+4+2hcot(2r)-4cot^2(2r))U_3$ and $S\Phi_2U_1=-SU_3=4m+4-2htan(2r)-4tan^2(2r))U_3$. This implies $h(cot(2r)+tan(2r))-2(cot^2(2r)-tan^2(2r))=0$. Thus either cot(2r)+tan(2r)=0 which implies $cot^2(2r)=-1$ which is impossible or h-2(cot(2r)-tan(2r))=0. This implies $tan^2(2r)=2(m-1)$. Thus m-1=2(m-1). Then m=1 which is impossible. This finishes the proof

4. PROOF OF THEOREM 2.

As M has harmonic curvature for any X, Y tangent to M we get

$$\nabla_X SY - \nabla_Y SX = S([X, Y]) \tag{4.1}$$

Then for any X, Y, Z tangent to M we obtain

$$R(Z,X)SY = \bigtriangledown_{Z} \bigtriangledown_{X}SY - \bigtriangledown_{X} \bigtriangledown_{Z}SY - \bigtriangledown_{[Z,X]}SY =$$

$$= S(R(Z,X)Y) + \bigtriangledown_{Z}(\bigtriangledown_{Y}S)X + (\bigtriangledown_{Z}S)(\bigtriangledown_{X}Y) -$$

$$- \bigtriangledown_{X}(\bigtriangledown_{Y}S)Z - (\bigtriangledown_{X}S)(\bigtriangledown_{Z}Y) - (\bigtriangledown_{[Z,X]}S)Y$$
(4.2)

where R denotes the curvature tensor of M.

From (4.2), (1.2) and the first identity of Bianchi we get

$$\sigma(R(X,Y)SZ) = 0 \tag{4.3}$$

for any X, Y, Z tangent to M, where σ denotes the cyclic sum. The result now follows from the main theorem of [8].

5. PROOFS OF THEOREMS 4 AND 5.

Firstly, let us suppose that M is pseudo Ricci-parallel Then applying (1 3) and (2 4) we have $\nabla_W(\nabla_X S)Y - (\nabla_{\nabla_{i} X} S)Y = c \sum_{i=1}^3 \{g(\Phi_i X, Y)\Phi_i AW + g(Y, \Phi_i AW)\Phi_i X + g(Y, \Phi_i AW)\}$

$$+ f_{i}(X)g(AW,Y)U_{i} - 2f_{i}(Y)g(AX,W)U_{i} + f_{i}(Y)f_{i}(X)AW$$
 (51)

for any X, Y, W tangent to M If in (5 1) we exchange X and W we get

$$(R(W,X)S)Y = c\sum_{i=1}^{3} \{f_i(X)g(AW,Y)U_i - f_i(W)g(AX,Y)U_i + g(\Phi_iX,Y)\Phi_iAW - (52)\}$$

$$-g(\Phi_iW,Y)\Phi_iAX + g(\Phi_iAW,Y)\Phi_iX - g(\Phi_iAX,Y)\Phi_iW + f_i(Y)f_i(X)AW - f_i(Y)f_i(W)AX\}$$

Taking a local orthonormal frame $\{E_1, \dots, E_{4m-1}\}\$ of TM, from (5.2), (2.1) and (2.2) we have

$$\Sigma_{i=1}^{4m-1}g((R(E_{j},X)S)Y,E_{j}) = c\Sigma_{i=1}^{3}\{f_{i}(X)f_{i}(AY) - g(\Phi_{i}X,Y)trace(A\Phi_{i}) - 2f_{i}(Y)f_{i}(AX) - 2f_{i}(Y)f_{i}(AX)\} = c\Sigma_{i=1}^{4m-1}g((R(E_{j},X)S)Y,E_{j}) = c\Sigma_{i=1}^{4m-1}$$

$$- q(A\Phi_{1}Y, \Phi_{2}X) + hf_{1}(Y)f_{1}(X)$$
 (5 3)

Now the left hand side of (5 3) is symmetric with respect to X, Y (see [4]) Thus (5 3) gives

$$3c\sum_{i=1}^{3} f_{i}(X)f_{i}(AY) = 3c\sum_{i=1}^{3} f_{i}(Y)f_{i}(AX) - 2c\sum_{i=1}^{3} trace(A\Phi_{i})g(\Phi_{i}Y, X)$$
 (5 4)

But $trace(A\Phi_1)$ is easily seen to be 0 and bearing in mind that c is nonzero, (5.4) can be written as

$$\Sigma_{i=1}^{3} f_{i}(X) f_{i}(AY) = \Sigma_{i=1}^{3} f_{i}(Y) f_{i}(AX)$$
 (5.5)

for any X, Y tangent to M.

We know, [1], that if $g(A\mathbb{D}, \mathbb{D}^{\perp}) = \{0\}, U_i$, i = 1, 2, 3 are principal for A. Let us suppose that $g(A\mathbb{D}, D^{\perp}) \neq \{0\}$ We shall distinguish the following cases where $X^{\mathbb{D}}$ denotes the \mathbb{D} -component of X.

- (i) $(AU_2)^{\mathbb{D}} = (AU_3)^{\mathbb{D}} = 0$ and $(AU_1)^{\mathbb{D}} \neq 0$. Then we write $AU_1 = \alpha X_1 + \beta Y_1$ where $X_1 \in \mathbb{D}$ and $Y_1 \in \mathbb{D}^{\perp}$ are unit. If we take in (5.5) $X = X_1$ and $Y = U_1$ we have $0 = \sum_{i=1}^3 f_i(Y_1) f_i(AX_1) = g(AU_1, X_1) = \alpha$. Then $g(A\mathbb{D}, \mathbb{D}^{\perp}) = \{0\}$.
- (ii) $(AU_3)^{\mathbb{D}} = 0$ and $(AU_1)^{\mathbb{D}}$, $(AU_2)^{\mathbb{D}}$ are linearly dependent. We write $AU_1 = \alpha_1 X_1 + \beta_1 U_1 + \beta_2 U_2 + \beta_3 U_3$ and $AU_2 = \alpha_2 X_1 + \beta_2 U_1 + \gamma_2 U_2 + \gamma_3 U_3$ where $X_1 \in \mathbb{D}$ is unit. If in (5.5) we take $X = X_1, Y = U_1$ we obtain $0 = g(AU_1, X_1) = \alpha_1$. Now we have case (i).

It is easy to see that the rest of cases (if $(AU_3)^{\mathbb{D}}=0$ and $(AU_1)^{\mathbb{D}}$, $(AU_2)^{\mathbb{D}}$ are linear independent or if $(AU_1)\mathbb{D}\neq 0, i=1,2,3$) are similar. That is, $g(A\mathbb{D},\mathbb{D}^\perp)=\{0\}$. Thus M, [1], is an open subset of a geodesic hypersphere or of a tube of radius $r,0< r<\Pi/2$, over $QP^k,k\in\{1,\cdots,m-2\}$ or of a tube of radius $r,0< r<\Pi/4$, over CP^m .

In the second case, M has 3 distinct principal curvatures $\lambda_1 = cot(r)$ with multiplicity $4(m-k-1), \lambda_2 = -tan(r)$ with multiplicity 4k and $\alpha = 2cot(2r)$ with multiplicity 3

Let us take a unit X such that $AX=\lambda_1X$. If we develop $g((\bigtriangledown_XS)\Phi_1X,U_1)$ we obtain $c=-(hcot(r)-cot^2(r)+3-2hcot(2r)+4cot^2(2r))cot(r)$. If we take a unit Y such that $AY=\lambda_2Y$ and develop $g((\bigtriangledown_YS)\Phi_1Y,U_1)$ we get $c=(-htan(r)-tan^2(r)+3-2hcot(2r)+4cot^2(2r))tan(r)$. From this we get $tan^2(r)=-1$ which is impossible

The same result is obtained if M is an open subset of a tube of radius r, $0 < r < \Pi/4$, over $\mathbb{C}P^m$

On the other hand, if M is an open subset of a geodesic hypersphere M has two distinct principal curvatures, $\lambda = cot(r)$ with multiplicity 4(m-1) and $\alpha = 2cot(2r)$ with multiplicity 3. Then it is easy to see that such an M satisfies (1.3) and this finishes the proof

Finally, the fact of a real hypersurface M of QP^m , $m \geq 3$, being pseudo-Einstein is equivalent to the fact that g(SX,Y) = ag(X,Y) for any $X,Y \in \mathbb{D}$ and that $U_i, i=1,2,3$, are eigenvectors of S. This is equivalent to $g(SX,Y) = \rho_0 g(X,Y)$ for any $X,Y \in \mathbb{D}$ and $\rho_0 = (\rho - \sum_{i=1}^3 g(SU_i,U_i))/4(m-1)$. This is equivalent to $SX - \sum_{i=1}^3 f_i(X)SU_i - \rho_0 X - \sum_{i=1}^3 g(SX,U_i)U_i + \sum_{i=1}^3 f_i(X)g(SU_i,U_i)U_i + \rho_0 \sum_{i=1}^3 f_i(X)U_i = 0$. If we define the tensor P as $P(X,Y) = g(SX,Y) - \rho_0 g(X,Y) + \rho_0 \sum_{i=1}^3 f_i(X)f_i(Y) + \sum_{i=1}^3 \{f_i(SU_i)f_i(X)f_i(Y) - f_i(X)f_i(SY) - f_i(SX)f_i(Y)\}$ for any X,Y tangent to M and compute its length we obtain

$$||P||^{2} = ||S||^{2} - 4(m-1)\rho_{0}^{2} - 2\Sigma_{i,1}^{3} ||SU_{i}||^{2} + \Sigma_{i=1}^{3} (f_{i}(SU_{i}))^{2}$$
(5.6)

But it is easy to see that for any real hypersurface M

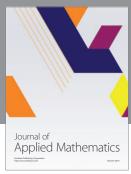
$$\sum_{i=1}^{3} g(SU_{i}, SU_{i}) \ge \sum_{i=1}^{3} (g(SU_{i}, U_{i}))^{2}$$
(5.7)

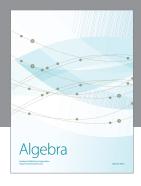
Then (14) follows from (56), (57) and the expression of ρ_0 Moreover if U_i , i = 1, 2, 3, are eigenvectors of S we obtain the equality in (14) Thus we have finished the proof of Theorem 5

ACKNOWLEDGEMENT. This research has been partially supported by DGICYT Grant PB90-0014-C03-02

REFERENCES

- 1. BERNDT, J, Real hypersurfaces in quaternion space forms, J. reine angew. Math. 419 (1991), 9-26
- 2 ISHIHARA, S, Quaternion Kählerian manifolds, J. Differential Geom. 9 (1974), 483-500
- 3. KIMURA, M, Some real hypersurfaces of a complex projective space, Saitama Math. J. 5 (1987), 1-5
- 4 KIMURA, M., and MAEDA, S, Characterizations of geodesic hyperspheres in a complex projective space in terms of Ricci tensors, *Yokohama Math. J.*, 40 (1992), 35-43
- KWON, J.H. and NAKAGAWA, H, A note on real hypersurfaces of a complex projective space, J. Austral. Math. Soc., Series A, 47 (1989), 108-113
- 6 MARTINEZ, A and PEREZ, JD, Real hypersurfaces in quaternionic projective space, Ann. di Mat., 145 (1986), 355-384
- 7. PAK, J.S., Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Q-sectional curvature, Kodai Math. Sem. Rep., 27 (1977), 22-61.
- 8. PEREZ, J D, On certain real hypersurfaces of quaternionic projective space II, *Alg. Groups Geom.*, 10 (1993), 13-24.
- 9. PEREZ, J.D and SANTOS, F G, On real hypersurfaces with harmonic curvature of a quaternionic projective space, J. Geometry 40 (1991), 165-169







Submit your manuscripts at http://www.hindawi.com

