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ABSTRACT. The purpose of this paper is to derive some interesting asymptotic formulae for
spectra of arbitrary multiply connected bounded domains in two or three dimensions, linked with
"variation of positive distinct functions entering the boundary conditions, using the spectral function
i{pk(al, ...y0n) + P} 2 as P — co. Further results may be obtained.
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1. INTRODUCTION.

The underlying inverse eigenvalue problem (1.1)-(1.2) has been discussed recently by Zayed [1]
and has shown that some geometric quantities associated with a bounded domain can be found from a
complete knowledge of the eigenvalues {u, ()}, for the negative Laplacian — A, = — 3 (-‘.,%)2 in
i=1

R"(n=2or3). .
Let € be a simply connected bounded domain in R™ with a smooth boundary 92 in the case n = 2
(or a smooth bounding surface S in the case n = 3). Consider the impedance problem

-Apu=Au in Q, (1.1

(i + a)u =0 on an (orS), (1.2)
on

where a% denotes differentiation along the inward pointing normal to 89 or S, and o is a positive

function.
Denote its eigenvalues, counted according to multiplicity, by

0<p(0) Spg(0) <. Spyo)<iom00  as  k—oo. (1.3)

It is well known [2] that in the case n = 2
pi(o) ~ (%)k as k— oo, (1.4)

while in the case n = 3
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62\
(o) ~ (%k) as k— o0, (1.5)
where || and V' are respectively the area and the volume of .

The purpose of this paper is to discuss the following more general inverse problem: Let 2 be an
arbitrary multiply connected bounded domain in R"(n = 2 or 3) which is surrounded internally by simply
connected bounded domains 2, with smooth boundaries 912, in the case n = 2 (or smooth bounding
surfaces S, in the case n = 3) where i = 1,2,...,m — 1, and externally by a simply connected bounded
domain Q,, with a smooth boundary Q,, in the case n = 2 (or a smooth bounding surface S, in the
case n = 3). Suppose that the eigenvalues

0 < py(01y-s0m) < po(01, 0, 0m) < oo. < (01, ey Om) < ... —> 00 as k — o0 (1.6)

are known exactly for the impedance problem
—Apu=Au in Q, (1.7

(% + a,)u =0 on 0% (orS, .8

where 8%. denote differentiations along the inward pointing normals to 89, or S; respectively and o; are
positive functions (i = 1, ...,m).

In Theorem 2.1, we determine some geometric quantities associated with the multiply connected
domain 2 from the complete knowledge of the eigenvalues (1.6) for the problem (1.7)-(1.8) using the
asymptotic expansion of the spectral function

) 1
& (o1, -y0m) + PP

P — o0, (1.9

where P is a positive constant, while o; are positive functions defined on 8Q; or S; (i = 1, ...,m) and
satisfying the Lipschitz condition.

In Theorem 2.2, we show that the asymptotic expansion of (1.9) as P — oo plays an important
role in establishing a method to study the asymptotic behavior of the difference

elar, yom) = p(Bys s B)] @8 A —o00, (1.10)

0<p(01,ee,0m) <A

where 0,(Q), a(Q), B(Q) QeI (or QES;), (i=1,..,m) are, generally speaking, distinct
functions and satisfying the Lipschitz condition and the summation is taken over all values of k for which
(0150 Tm) < A

Note that theorems and corollaries of this paper contain further results similar to those obtained
recently by Zayed and Younis [2].
2. STATEMENT OF RESULTS

Using methods similar to those obtained in [1], [2], we can easily prove the following theorems:

THEOREM 2.1. If the functions 0,(Q), Q € 9, (or Q € S,), (i = 1, ..., m) satisfy the Lipschitz
condition, then in the case n = 2
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1 jlel
Z luw(oy,. . ou0 + P)? = 4nP (ZL) /16P‘
1 - m "
tep: {@— Z / dQ~2Z; ./‘m g,(Q)dQH

N,
* e /m {K%(Q)— 2 @K@

—207’(Q)]}dQ+O<P¥) as P — oo, @2

where L, and K,(Q) (x = 1,...,m) are respectively the total lengths and the curvatures of 89, at the
point Q, while in the case n = 3 we deduce that

kZ] [#k(ol,‘..,lame] 8n pn 7 (ZIS l)/lﬁﬂP
+ WZ]: [ [H.(Q) - 30,(Q))dQ
* 1281P? 2—; /3 {[HI(Q) - 30,(QF
- @ -Fon@+ @]}

39 & ,
+ S0 3 (1@ ~32.@)'4Q

+0<1> as P — oo, 22)

P3

where |S,|, H,(Q) and N,(Q) are respectively the surface areas, mean curvatures and Gaussian
curvatures of the bounding surfaces S,(i = 1, ..,m)

Formulae (2 1) and (2 2) can be considered as a generalization of the formula (2 3) obtained by
Zayed [3] and the formula (2 3) obtained by Zayed [4] respectively
THEOREM 2.2. If the functions 0,(Q), o (Q), B.(Q), Q€ R, (or Q€ S,) (i=1,...,m) are
distinct and satisfy the Lipschitz condition, then we deduce for A — oo that

a) .
[— + o(l)])\ inthecase n =2, (23)
5 pinos-sinn-{

Hx(o1, am) <A 3

+ (I)J X372 in the case n = 3, 24

where
@ =2 /m (@) - A(@Q- Y /m [4(@) — B.(Q))dQ |

and

= /5 0@ - AQHQ
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3. FURTHER RESULTS
COROLLARY 3.1. Using formulae (1 4) and (1.5), we deduce as M — oo that

y [lz_g—i +o(1)JM in the case n = 2, (€N))]
[pk(al, ...,am) - /Jk(ﬂlv vﬁm)] =
él 2b, . _ (3.2
i +0(1)|M inthecase n =3,

Using Theorem 2.2, we easily prove the following theorems:

THEOREM 3.1. Let the functions 0,(Q), a,(Q), B(Q), Q€ N, (i=1,....,m) and the
quantity a; # 0 be the same as in (2.3) Furthermore, on the half-axis [c, + oco) let a function f(\) of
constant sign be given which is absolutely continuous on each interval [c, d], d < oo; further we assume
that the expression Af’(A)/ f()) is bounded almost everywhere. Then
() If ™ f(A)dX = oo, we deduce for A — oo that

Y. Oy om) (e, - am) = (B, s B}

0<py(01,0-.0m) <A
A
= [;—; +o(1)] / fodt . 33)

kii) If/\lim f(A) = oo, we deduce for A — oo that
—00

a
> Ulmeran)] = [ B} = [ + 0] £ - G4
0<py(01,...0m) <A 4
THEOREM 3.2. Let the functions 0,(Q), &,(Q), B.(Q), Q € S, (i =1, ...,m) and the quantity
by # 0 be the same as in (2.4). Furthermore, on the half-axis [c, + co) let a function f(\) of constant
sign be given which is absolutely continuous on each interval [c,d], d < oo; further we assume that the

expression Af'(A)/ f()) is bounded almost everywhere. Then
() If [ AV2f(A)dA = oo, we deduce for A — oo that

Z fle(or, -y om)lpk(ar, - m) = i (Byy -y B}

0<pi(01,es0m) <A

A
- ["—‘2 + o(1)} / 2 £ ()dt . 3.5)
2 e
() If [°AV2f'(A)dX = oo, we deduce for A — oo that

Yo Ul am)] = (B B}

0<p(01,.0s0m) <A

= [ﬂ— + o(l)] / ’ 825" (t)dt . (3.6

2m2
COROLLARY 3.2. Assuming that f(\) of Theorem 3.1(i) has the form f(A) = M, (j > —1)
then we deduce as A — oo that

Z IJi(Ul, ey om){uk(als ~--vam) - /‘k(ﬁl’ weey ﬁm)}

0<p(01y00ei0m) <A

(] 741 . . _
B [_—27r(j+1)+o(1)]'\ if 7> -1, 3.7

[a—‘ +o(1)]lm\ if j= -1 (.8)
27
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COROLLARY 3.3. Assuming that f(A) of Theorem 3 2(i) has the form f(A\) = X, (3 > —
then we deduce as A — oo that

(PP

Z /[I}c(al LR om){/uk (al 1 am) - :uk(/gl‘ seey ﬁm)}

0 jpio . wa)<A

b 343 X 3
[w2(2]+3 +o(1)J/\ I I 5 39

b 3
if j= -2 (3 10)

[2 3 +o(1)]ln)\ if 3 5

COROLLARY 3.4. Assuming that f(\) of Theorem 3 1(ii) has the form f(A) = A/, (3 > 0) then
we deduce as A — oo that

Z [ki(ar, .y am) = ui(Br, s B ]-[ +o(1)] 311

O<pkloy., om)<A

COROLLARY 3.5. Assuming that f(A) of Theorem 3 2(ii) has the form f(A) = M, (3 > — .%)
then we deduce as A — oo that

Z [#i(alvvam)_ui(ﬁlrrﬁm)]

0<pk(or, om)<A

]b| ]+l . . _ l
[__w2(2j+ ) +o(1)})\ 2 if 5> 2’ 3 12)

- b
4n?

COROLLARY 3.6. If pi(fB,...,0m) #0 we deduce from Corollaries 3 1 and 3 3 that as
M — oo

(3.13)

P 1
)]]n/\ if j= ~ 3

v
M |l if n=2,
Z e nam) | e+t )]1:(|Q| ) nr (G 14)
/‘k(ﬁlr vﬂm) M+ [bl(ﬂTs‘;) +0(1)] Ml/3 if n=3. (3 15)

THEOREM 3.3. Let the functions 0,(Q), &,(Q), B.(Q) Q €9, (i=1,..,m) and the
quantity a; # O be the same as in (3 11). Furthermore, on the half-axis [c + co) let a function f()) of
constant sign be given which is absolutely continuous on each interval [c,d], d < oo, further we assume
that the expression A f'(A)/f(A) is bounded almost everywhere and fc"'°° M7TF(A)dA = oo(3 > 0)
Thenas A — oo

> fluor o) {uhlan o am) = (B )}

O<pi(or, ,0m)<A
A
= [§hi+ow] [ i st (3 16)

THEOREM 3.4. Let the functions 0,(Q), &.(Q), £(Q) Q € S,, (i = 1,...,m) and the quantity
by # 0 be the same as in (3.12) Furthermore, on the half-axis [c, + 00) let a function f(\) of constant
sign be given which is absolutely continuous on each interval [c,d], d < oo, further we assume that the
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expression Af'(A)/f()) is bounded almost everywhere and fc+°° N f (A)dA =00 (j > — }). Thenas

A — o0

> Ao {Ehen s am) — BB B}

0< (01,0 0m) <A
= [3‘— '+o(1)] /A It f()at (317
- 27!'2] c . l

COROLLARY 3.7. Assuming that f(\) of Theorem 3.3 has the form f(\) = A", where r is a
real number. Then as A — oo we get

Z Er(oy a,,,){ui(al, e @m) — LBy, ooy ,Bm)}

0<pk(01,0010m) <A

Jjay rty )
[———27((1_ +7) + 0(1)],\ if r+35>0, (3.18)
22+ 0(1)]inA if r4j=0. (3.19)
27

COROLLARY 3.8. Assuming that f()) of Theorem 3.4 has the form f(\) = A", where r is a
real number. Then as A — oo we get

> HOn o am) — i B )}

0<ptp(01,00-0m) <A

Jb r+34+1/2 . 1
—L o)A f -z,
[1r2(1+27+2j) ol )] >3 (3.20)
b 1
[57%]'+o(1)]1n)\ if rj= -2 (21

COROLLARY 3.9. If p.(B,...,5,) #0 we deduce from Corollaries 3.7 and 3.8 that as
M — oo

ap ., 4 .
" [l i+ Gt () i 62
7 a.l = 1/3
= LBy - B) M+ [h(;i;) j+o(1)] MY i n=3. (3.23)
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