TOTALLY REAL SUBMANIFOLDS OF A COMPLEX SPACE FORM

U-HANG KI and YOUNG HO KIM

Department of Mathematics
Kyungpook National University
Teacher's College
Taegu 702-701
KOREA
(Received January 11, 1994)

Abstract

Totally real submanifolds of a complex space form are studied. In particular, totally real submanifolds of a complex number space with parallel mean curvature vector are classified.

KEY WORDS AND PHRASES. Totally real submanifolds, isoperimetric section and complex space form.
1991 AMS SUBJECT CLASSIFICATION CODE(S). Primary 53C40, Secondary 53B25.

0. INTRODUCTION.

Totally real submanifolds of a Kaehler manifold are very typical submanifolds of a Kaehler manifold introduced by Chen and Ogiue [2] and Yau [9]. In particular Chen, Houh and Lue [1] pointed out that it is interesting to study totally real submanifolds of the complex number space C^{m} with parallel isoperimetric section and they classified compact totally real submanifolds with nonnegative sectional curvature in C^{m}. In 1987, Urbano [7] studied compact totally real submanifold with non-vanishing parallel mean curvature vector.

In this paper, we shall study m-dimensional complete totally real submanifolds of a complex space form $M^{m}(c)$ and obtain some classification theorems.

1. PRELIMINARIES.

Let \widetilde{M} be a Kaehler manifold of real dimension $2 m$ with almost complex structure J and metric tensor g. We then have $J^{2}=-I$ and $g(J X, J Y)=g(X, Y)$ for any vector fields. X and Y on \tilde{M}, where I denotes the identity transformation on the tangent bundle. Let $\widetilde{\nabla}$ be the Levi-Civita connection of \widetilde{M} satisfying $\widetilde{\nabla} J=0$. Let M be an n-dimensional Riemannian manifold isometrically immersed in \widetilde{M} by the immersion $i: M \rightarrow \widetilde{M}$. We then obtain the induced metric on M which will be represented the same notation g. We also identify X with $i_{*}(X)$ and M with $i(M)$.

Let ∇ be the induced Levi-Civita connection on M. Then the equations of Gauss and Weingarten are respectively given by $\widetilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y)$ and $\widetilde{\nabla}_{X} \xi=-A_{\xi} X+\nabla_{X}^{1} \xi$, where h is the second fundamental form, A_{ξ} the Weingarten map associated to the normal vector field ξ satisfying $g(h(X, Y), \xi)=g\left(A_{\xi} X, Y\right)$ and ∇^{\perp} the connection in the normal bundle $T^{\perp} M$ of M. The mean curvature vector H is then given by $H=\frac{1}{n} \operatorname{Tr} h$. An n-dimensional submanifold M in a Kaehler
manifold \tilde{M} is called totally real if $J\left(T_{P} M\right) \subset T_{P}^{\perp} M$ for each P in M, where $T_{P} M$ is the tangent space of M at P and $T_{P}^{\perp} M$ the normal space of M at P.

Since J has the maximal rank, $m \geq n$. Let $N_{P}(M)$ be the orthogonal complement of $J\left(T_{P} M\right)$ in $T_{P}^{\perp} M$. Then we get the decomposition $T_{P}^{\perp} M=J\left(T_{P} M\right) \oplus N_{P}(M)$. It follows that the space $N_{P}(M)$ is invariant under the action of J.

We now consider an m-dimensional totally real submanifold M of $2 m$-dimensional Kaehler manifold \tilde{M}. Then we may set

$$
\begin{align*}
& J X=\theta(X) \tag{1.1}\\
& J \xi=-U_{\xi} \tag{1.2}
\end{align*}
$$

where X is a vector field tangent to $M, \theta(X)$ a normal vector valued 1 -form, ξ a normal vector field and U_{ξ} a vector field on M satisfying $g\left(U_{\xi}, X\right)=g(\theta(X), \xi)$. Applying J to (1.1) and (1.2), we have

$$
\begin{equation*}
X=U_{\theta(X)} \text { and } \theta\left(U_{\xi}\right)=\xi \tag{1.3}
\end{equation*}
$$

Differentiating (11) and (1.2) covariantly and making use of the equations of Gauss and Weingarten, we get

$$
\begin{gather*}
U_{h(X, Y)}=A_{\theta(X)} Y \tag{1.4}\\
\theta\left(\nabla_{X} Y\right)=\nabla_{X}^{\frac{1}{X}} \theta(X), \tag{1.5}\\
\nabla{ }_{X} U_{\xi}=U_{\nabla_{x}^{\frac{1}{x}}} \xi \tag{1.6}\\
\theta\left(A_{\xi} X\right)=h\left(X, U_{\xi}\right) \tag{1.7}
\end{gather*}
$$

where X and Y are vector fields tangent to M and ξ a vector field normal to M.
We now assume that the ambient manifold \widetilde{M} is of constant holomorphic sectional curvature $4 c$, which is called a complex space form and it is denoted by $M(c)$. Then the Riemann Christoffel curvature tensor \widetilde{R} of $M(c)$ has the form

$$
\begin{aligned}
g(\widetilde{R}(X, Y) Z, W)=c(g(X, W) g(Y, Z) & -g(Y, W) g(X, Z)+g(J X, W) g(J Y, Z) \\
& -g(J Y, W) g(J X, Z)-2 g(J X, Y) g(J Z, W))
\end{aligned}
$$

Since the manifold M is totally real, it follows from equations(1.1)-(1.7) that the equations of Gauss, Codazzi and Ricci for M are respectively obtained

$$
\begin{gather*}
g(R(X, Y) Z, W)=c(g(X, W) g(Y, Z)-g(Y, W) g(X, Z)) \\
+g(h(X, W), h(Y, Z))-g(h(Y, W), h(X, Z)) \tag{1.8}\\
 \tag{1.9}\\
\quad\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{Y} h\right)(X, Z) \\
\begin{aligned}
g\left(R^{\perp}(X, Y) \xi, \eta\right)=c(g(\theta(X), \eta) g(\theta(Y), \xi) & -g(\theta(Y), \eta) g(\theta(X), \xi)) \\
& +g\left(\left[A_{\xi}, A_{\eta}\right] X, Y\right)
\end{aligned}
\end{gather*}
$$

where $\bar{\nabla}$ is the covariant derivative on $T(M) \oplus T^{\perp}(M)$ defined by $\left(\bar{\nabla}_{X} h\right)(Y, Z)=\nabla_{X}^{\frac{1}{X}} h(Y, Z)$ $-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{x} Z\right), R$ and R^{\perp} are the Riemann curvature tensor of M and that in the normal bundle respectively and $\left[A_{\xi}, A_{\eta}\right]=A_{\xi} A_{\eta}-A_{\eta} A_{\xi}$.

2. FUNDAMENTAL LEMMAS.

In this section, we assume that M is an m-dimensional totally real submanifold of a complex space form $M(c)$ of real dimension $2 m$ A normal vector field ξ is said to be parallel if $\nabla \frac{1}{X} \xi=0$ for any vector field X on M and ξ is called an isoperimetric sectıon if $\operatorname{Tr} A_{\xi}$ is non-zero constant

LEMMA 1. Let M be an m-dimensional totally real submanifold of $M(c)$ with parallel isoperimetric section ξ If A_{ξ} has no simple eigenvalues, then $M(c)$ is flat

PROOF. Since A_{ξ} is self-adjoint with respect to g, there exists an orthonormal basis $\left\{e_{1}, e_{2}, \cdots, e_{m}\right\}$ for $T_{P} M$ such that $g\left(A_{\xi} e_{\imath}, e_{\imath}\right)=\lambda_{2} \delta_{\imath}$, where $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}$ are eigenvalues of A_{ξ}. Since ξ is parallel, we see that

$$
\begin{aligned}
g\left(\left[A_{\xi}, A_{\eta}\right] e_{2}, e_{\jmath}\right) & =\left(\lambda_{2}-\lambda_{\jmath}\right) g\left(A_{\eta} e_{2}, e_{\jmath}\right) \\
& =c\left(g\left(\theta\left(e_{2}\right), \eta\right) g\left(\theta\left(e_{\jmath}\right), \xi\right)-g\left(\theta\left(e_{\jmath}\right), \eta\right) g\left(\theta\left(e_{2}\right), \xi\right)\right)
\end{aligned}
$$

for any normal vector field η because of (1.10). Since A_{ξ} has no simple eigenvalues, for each $i \in\{1,2, \cdots, m\}$ there is $j \neq i$ such that

$$
c\left(g\left(\theta\left(e_{\imath}\right), \eta\right) g\left(\theta\left(e_{\jmath}\right), \xi\right)-g\left(\theta\left(e_{\jmath}\right), \eta\right) g\left(\theta\left(e_{\imath}\right), \xi\right)\right)=0
$$

Choosing η as $\theta\left(e_{2}\right)$, we get $\operatorname{cg}\left(\theta\left(e_{2}\right), \xi\right)=0 \quad \mathrm{By}(11)$, we see that $\left\{\theta\left(e_{2}\right) \mid i=1,2, \cdots, m\right\}$ forms an orthonormal basis for $T_{P}^{\perp} M$. It follows that $M(c)$ is flat. (Q.E.D.)

REMARK 1. Let M be an m-dimensional totally real submanifold of $M(c)(c \neq 0)$. If M has an isoperimetric section ξ, then A_{ξ} has simple eigenvalues

Let H be the mean curvature vector field defined by $H=\frac{1}{n} \operatorname{Trh}$. We now assume that H is nonvanishing parallel in the normal bundle. We choose an orthonormal frame $\left\{\xi_{1}, \xi_{2}, \cdots, \xi_{m}\right\}$ in the normal bundle in such a way that $\xi_{1}=H /\|H\|$. It follows that $\operatorname{Tr} A_{2}=0$ for $i \geq 2$, where $A_{2}=A_{\xi_{2}}$ and $U_{1}, U_{2}, \cdots U_{m}$ form an orthonormal basis for $T_{P} M$ because of (1.2), where $U_{2}=U_{\xi_{1}}$. Then (1.3) and (1.4) imply

$$
\begin{equation*}
A_{2} U_{j}=U_{h\left(U_{2}, U_{j}\right)} \tag{2.1}
\end{equation*}
$$

which shows that

$$
A_{2} U_{j}=A_{j} U_{2} .
$$

Taking the scalar product with ξ_{k} and making use of (1.3), (1.7) and (2.1), we may set

$$
\begin{equation*}
A_{i} U_{j}=\sum_{k} P_{\imath j k} U_{k} \tag{2.2}
\end{equation*}
$$

where $P_{\imath j k}=g\left(\theta\left(A_{\imath} U_{j}\right), \xi_{k}\right)$. Because A_{\imath} is a symmetric operator and h is a symmetric bilinear form, $P_{i j k}$ is symmetric with respect to all indices i, j and k.

On the other hand, (2.2) implies

$$
h\left(U_{\imath}, U_{\jmath}\right)=\theta\left(A_{2} U_{\jmath}\right)=\sum_{k} P_{\imath j} \xi_{k}
$$

Since any vector field X on M can be expressed as $X=\sum_{k}{ }^{k} g\left(X, U_{k}\right) U_{k}, h$ can be written by
which implies

$$
\begin{equation*}
h(X, Y)=\sum_{\imath, j, k} P_{i j k} g\left(\theta(X), \xi_{\imath}\right) g\left(\theta(Y), \xi_{\jmath}\right) \xi_{k} \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Trh}=\sum_{k} P_{k} \xi_{k} \tag{2.4}
\end{equation*}
$$

where $P_{k}=\sum_{2} P_{\text {rik }}$. Since ξ_{1} is parallel in the normal bundle, (110) gives

$$
\begin{equation*}
g\left(\left[A_{2}, A_{1}\right] X, Y\right)=c\left(g\left(\theta(Y), \xi_{1}\right) g\left(\theta(X), \xi_{2}\right)-g\left(\theta(X), \xi_{1}\right) g\left(\theta(Y), \xi_{2}\right)\right. \tag{2.5}
\end{equation*}
$$

for all vector fields X and Y on M. (2.5) together with (2.3) yields

$$
\begin{equation*}
\sum_{\imath, j} P_{k, n} P_{1 \Omega}-\left(\operatorname{Tr} A_{1}\right) P_{11 k}=c(m-1) \delta_{1 k} \tag{2.6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{\imath, j}\left(P_{1 \jmath}\right)^{2}=\left(\operatorname{Tr} A_{1}\right) P+c(m-1) \tag{2.7}
\end{equation*}
$$

where $P=P_{111}$.
We now prove
LEMMA 2. Let M be an m-dimensional totally real submanifold of a complex space form $M(c)$ with nonvanishing parallel mean curvature vector H. Then A_{H} is parallel.

PROOF. Let $\left\{e_{1}, e_{2}, \cdots, e_{m}, \xi_{1}, \xi_{2}, \cdots, \xi_{m}\right)$ be an orthonormal frame of $M(c)$ at a point P of M such that $e_{1}, e_{2}, \cdots, e_{m}$ are tangent to M and $\xi_{1}, \xi_{2}, \cdots, \xi_{m}$ are normal to M, where $\xi_{1}=H /\|H\|$. Then we get

$$
\begin{equation*}
\frac{1}{2} \Delta \operatorname{Tr} A_{1}^{2}=g\left(\Delta^{\prime} A_{1}, A_{1}\right)+\left\|\nabla A_{1}\right\|^{2} \tag{2.8}
\end{equation*}
$$

where Δ is the Laplacian operator and $\Delta^{\prime} A_{1}$ denotes the restricted Laplacian Δ^{\prime} of A_{1} is given by

$$
\left(\Delta^{\prime} A_{1}\right) X=\sum_{i}\left[R\left(e_{i}, X\right), A_{1}\right] e_{i}
$$

(see [6] for detail). Making use of (1.8) of Gauss and the fact that M is totally real, we have

$$
\begin{align*}
\Delta^{\prime} A_{1}=c(m-1) A_{1}-c\left(T r A_{1}\right)\left(I-U_{1} \otimes U_{1}\right) & +\left(\operatorname{Tr} A_{1}\right) \sum_{i, j, k} P_{i j 1} P_{j k 1} U_{j} \otimes U_{k} \\
& -\sum_{i, j, k} P_{2 j k} P_{i j 1} A_{k} \tag{2.9}
\end{align*}
$$

with the help of (2.3), (2.4) and (2.5). If we use (2.5) and (2.6), we obtain

$$
\begin{equation*}
g\left(\Delta^{\prime} A_{1}, A_{1}\right)=0 \tag{2.10}
\end{equation*}
$$

On the other hand, we can put

$$
\begin{equation*}
A_{1} X=\sum_{i, j} P_{i j 1} g\left(U_{i}, X\right) U_{j} \tag{2.11}
\end{equation*}
$$

because of (2.3). We now extend $\xi_{1}, \xi_{2}, \cdots, \xi_{m}$ to differentiable orthonormal normal vector fields defined on a normal neighborhood O of P by parallel translation with respect to normal connection along geodesics in M. Then we get

$$
\begin{equation*}
\left(\nabla_{Y} A_{1}\right) X=\sum_{i, j}\left(\nabla Y P_{i j 1}\right) g\left(U_{i}, X\right) U_{j} \text { at } P \tag{2.12}
\end{equation*}
$$

because of (1.6). Therefore, $\Delta^{\prime} A_{1}$ is reduced to

$$
\begin{equation*}
\Delta^{\prime} A_{1}=\sum_{i, j}\left(\nabla_{Y} P_{\imath 11}\right) U_{\imath} \otimes U_{\jmath} \tag{2.13}
\end{equation*}
$$

If we use (2.9), then we have

$$
g\left(\left(\Delta^{\prime} A_{1}\right) U_{1}, U_{1}\right)=c(m-1) P+\left(\operatorname{Tr} A_{1}\right) \sum_{i}\left(P_{i 11}\right)^{2}-\sum_{i, j, k} P_{i j k} P_{i j 1} P_{k 11}
$$

Making use of (2.6), we obtain

$$
g\left(\left(\Delta^{\prime} A_{1}\right) U_{1}, U_{1}\right)=0
$$

Thus (2 13) implies

$$
\begin{equation*}
\Delta P=0 \tag{2.14}
\end{equation*}
$$

Since $\operatorname{Tr} A_{1}^{2}=\sum_{\imath} g\left(A_{1} U_{\imath}, A_{1} U_{\imath}\right)=\sum_{\imath, \jmath}\left(P_{\imath 1}\right)^{2}=\left(\operatorname{Tr} A_{1}\right) P+c(m-1)$, we see that

$$
\frac{1}{2} \Delta\left(\operatorname{Tr} A_{1}^{2}\right)=\left(\operatorname{Tr} A_{1}\right) \Delta P=0
$$

Combining (2.8), (2.10) and the last equation, we get the result (Q.E.D)

3. MAIN THEOREMS.

Let M be an m-dimensional totally real submanifold of a complex space form $M(c)$ with nonvanishing parallel mean curvature vector. By lemma 2, we know that A_{H} is parallel. We now define a function h_{n} for any integer $n \geq 1$ by $h_{n}=\operatorname{Tr}\left(A_{H}^{n}\right)$. Then h_{n} is constant on M for any integer n since A_{H} is parallel. This implies that each eigenvalue λ_{j} of A_{H} is constant on M. Let $\mu_{1}, \mu_{2}, \cdots, \mu_{\alpha}$ be mutually distinct eigenvalues of A_{H} and $n_{1}, n_{2}, \cdots, n_{\alpha}$ their multiplicities. So the smooth distributions T_{β} consisting of all eigenvectors corresponding to μ_{β} are defined and orthogonal each other.

Since A_{H} is parallel, T_{β} are parallel and completely integrable. By the de Rham decomposition theorem [4], the submanifold M is a product manifold $M_{1} \times M_{2} \times \cdots \times M_{\alpha}$, where the tangent bundle of M_{β} corresponds to T_{β}. We now assume that the ambient manifold is flat, that is, a complex number space C^{m} and M is embedded in C^{m}. Then as in [1] we can choose an orthonormal basis $e_{1}, e_{2}, \cdots, e_{m}$ for $T_{p} M$ as eigenvectors of A_{H} and $J_{e_{1}}, J_{e_{2}}, \cdots, J_{e_{m}}$ for $J\left(T_{P} M\right)$ in such a way that $h_{j i}^{k}=h_{j k}^{2}=h_{i k}^{\jmath}$, where $h_{j i}^{k}=g\left(A_{J_{e_{k}}} e_{\imath}, e_{\jmath}\right)$ and $h_{j i}^{k}=0$ for $e_{\jmath} \in\left[\mu_{\beta}\right], e_{\imath} \in\left[\mu_{\gamma}\right], \beta \neq \gamma$, where $\left[\mu_{\beta}\right]$ is the eigenspace corresponding to the eigenvalue μ_{β}.

Let $\pi_{\beta}(H)$ be the component of H in the subspace $C^{v \beta}$. Then $\pi_{\beta}(H)$ is a parallel normal section of M_{β} in $C^{v \beta}$ and M_{β} is umbilical with respect to $\pi_{\beta}(H)$. Therefore, M_{β} is a minimal submanifold of a hypersphere in $C^{v \beta}$. Hence M is a product submanifold $M_{1} \times M_{2} \times \cdots \times M_{\alpha}$ embedded in $C_{m}=C^{v 1} \times C^{v 2} \times \cdots \times C^{v \alpha}$, where M_{β} is a totally real submanifold embedded in some $C^{v \beta}$. Thus we have

THEOREM 1. Let M be an m-dimensional complete totally real submanifold embedded in a complex number space C^{m}. If M has parallel mean curvature vector H, then M is either a minimal submanifold or a product submanifold $M_{1} \times M_{2} \times \cdots \times M_{\alpha}$ embedded in $C^{m}=C^{v 1} \times C^{v 2} \times \cdots \times C^{v \alpha}$, where M_{β} is a totally real submanifold embedded in some $C^{v \beta}$ and M_{β} is also a minimal submanifold of a hypersphere of $C^{v \beta}$

THEOREM 2. Let M be an m-dimensional complete totally real submanifold embedded in a complex number space C^{m}. If M has the nonvanishing parallel mean curvature vector and A_{H} has mutually distinct eigenvalues, then M is a product submanifold of circles $S^{1} \times S^{1} \times \cdots \times S^{1}$.

PROOF. By a lemma of Moore [5], $M=M_{1} \times M_{2} \times \cdots \times M_{m}$ is a product immersion embedded in C^{m}, and M_{2} is a totally real submanifold in $C^{n 2}$ and contained in a hypersphere in $C^{n 2}$. Since $n_{1}+n_{2}+\cdots+n_{m}=m, n_{\imath}$ must be 1 . Hence $M_{\imath}=S^{1}$, a circle in a complex space C. (Q.E.D.)

THEOREM 3. Let M be an m-dimensional totally real submanifold of a complex space form $M(c)$ with nonvanishing parallel mean curvature vector H If A_{H} has mutually distinct eigenvalues, then M is flat.

PROOF. Let $e_{1}, e_{2}, \cdots e_{m}$ be eigenvectors of A_{H} corresponding to eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}$ respectively. Since A_{H} is parallel by Lemma 2, we have

$$
A_{H} R(X, Y) e_{\imath}=\lambda_{\imath} R(X, Y) e_{\imath}
$$

for any vector fields X and Y on M, that is $R(X, Y) e_{\imath}$ is an eigenvector of A_{H} corresponding to λ_{\imath}. Taking the inner product with e_{j}, we obtain

$$
\left(\lambda_{2}-\lambda_{\jmath}\right) g\left(R(X, Y) e_{i}, e_{\jmath}\right)=0
$$

because A_{H} is a symmetric operator. Thus M is flat if A_{H} has mutually distinct eigenvalues. (Q.E.D.)
REMARK. Let M be a totally real submanifold of complex space form $M(c)$ with nonvanishing parallel mean curvature vector H. Considering Lemma 1 , we see that $M(c)$ is flat if the sectional curvatures defined by principal vectors of H are nonzero.

ACKNOWLEDGEMENT. This work was partially supported by TGRC-KOSEF.

REFERENCES

1. CHEN, B.-Y., HOUH, C.-S. and LUE, H.-S., Totally real submanifolds, J. Diff. Geom 12 (1977), 473-480.
2. CHEN, B.-Y. and OGIUE, K., On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257-266.
3. KI, U.-H. and NAKAGAWA, H., Compact totally real submanifolds with parallel mean curvature vector in a complex space form, J. Korean Math. Soc. 23 (1986), 141-150.
4. KOBAYASHI, S. and NOMIZU, K., Foundations of Differnetial Geometry I and II, Interscience Publishing, New York, 1963 and 1969.
5. MOORE, J.D., Isometric immersions of Riemannian products, J. Diff. Geom. 5 (1971), 159168.
6. SMYTH, B., Submanifolds of constant mean curvature, Math. Ann. 205 (1973), 265-280.
7. URBANO, F., Totally real submanifolds, Geometry and Topology of Submanifolds, World Scientific, Singapore 1989.
8. YANO, K. and KON, M., Anti-invariant Submanifolds, Marcel Dekker Inc., 1976.
9. YAU, S.T., Submanifolds with constant mean curvature, I and II, Amer. J. Math. 96 (1974), 346-366; 97 (1975), 76-100.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

