MAXIMAL IDEALS IN ALGEBRAS OF VECTOR-VALUED FUNCTIONS

J. W. KITCHEN
Department of Mathematics
Duke University
Durham, NC 27706 USA
and
D. A. ROBBINS
Department of Mathematics
Trinity College
Hartford, CT 06106 USA

(Received October 6, 1994 and in revised form December 21, 1994)

Abstract

Subsuming recent results of the authors [6,7] and J Arhippainen [1], we investigate further the structure and properties of the maximal ideal spaces of algebras of vector-valued functions

KEY WORDS AND PHRASES: lmc algebras, maximal ideals, bundles of topological vector spaces 1991 AMS SUBJECT CLASSIFICATION CODES: 46H10, 46H20, 46J10

1. INTRODUCTION

One way to create new topological algebras from old is to look at algebras \mathcal{A} of functions from a space X which take their values in topological algebras $A_{x}(x \in X)$. If X is itself a topological space (or sometimes even if it is not), these algebras \mathcal{A} can be topologized in various ways. It is natural to ask how the ideal structure of \mathcal{A} is related to the ideal structures of the A_{x} The history of this question dates back at least to 1960 and C. Rickart's book [9] and to 1961 and the paper of J M. G Fell [2]. Among many other results, this latter paper identified the space of irreducible *-representations of section spaces of bundles of C^{*}-algebras The topological algebras of these sources were commutative Banach algebras with identities and C^{*}-algebras, respectively. Among the more recent studies examining the relationships between the ideal structure of \mathcal{A} and the ideal structures of the A_{x} are the papers by J. Arhippainen [1], who looked at commutative locally multiplicatively convex A_{x}, and by the authors ([6] and [7]), for whom the A_{x} were commutative Banach algebras and arbitrary Banach algebras, respectively The references in these papers provide a guide to some of the record.

The purpose of this note is to investigate further the structure and properties of the maximal ideal spaces of algebras of vector-valued functions In it, we subsume results of our own and of J Arhippainen in the works noted above by using the theory of bundles of locally convex topological vector spaces

2. IDENTIFICATION OF MAXIMAL IDEALS

Consider the following situation let X be a completely regular Hausdorff topological space, and denote by $C_{b}(X)$ the space of bounded and continuous complex-valued functions on X Let $\left\{A_{i} \cdot x \in X\right\}$ be a family of non-trivial commutative locally multiplicatively convex (lmc) algebras indexed by X Let A be the disjoint union $\left.\cup \cup A_{t}: x \in X\right\}$ of algebras (which can, if we like, be thought of as the set $\left.\bigcup_{t}, X\left(\{x\} \times A_{t}\right)\right)$, and let $\pi: A \rightarrow X$ be the natural surjection Assume further that we have on the fibered space A a family of seminorms $\left\{\nu_{\imath}: \imath \in \Omega\right\}$ such that, for each $x \in X,\left\{\nu_{1}^{\prime}: \imath \in I\right\}$ (where ν_{l}^{\prime} is the restriction of ν, to A_{r}) is a family of submultiplicative seminorms which generates the topology on A_{1} Assume, finally, that we have an algebra \mathcal{A} of selections ($=$ choice functions) $\sigma: X \rightarrow A$ such that

1) for each $x \in X$, ev, $(\mathcal{A})=\{\sigma(x): \sigma \in \mathcal{A}\}=A_{a}$ (in this case, \mathcal{A} is said to be full),
2) \mathcal{A} is a $C_{b}(X)$-module, and
3) for each $\sigma \in \mathcal{A}$ and for each $\imath \in \ell$, the numerical function $x \mapsto \nu_{1}^{x}(\sigma(x))$ is upper semicontinuous on X

Before going farther, we point out two special cases of this situation If X is compact, and if each A_{J} is a commutative Banach algebra (and the set l is a singleton), then we have the situation in [6] On the other hand, if B is a commutative lmc algebra, and if $\mathcal{A}=C(X, B)$ is the algebra of all continuous B-valued functions on X (so that $A_{x}=B$ for all $x \in X$), then we have the situation described in [1]

Returning now to the general situation, we make \mathcal{A} into a commutative lmc algebra First, we select a compact cover \mathscr{K} of X which is closed under finite unions For each $K \in \mathscr{K}$ and $i \in \ell$ we define a seminorm $\rho_{K, 2}$ on \mathcal{A} by $\rho_{K, 2}(\sigma)=\sup _{x \in K} \nu_{2}^{x}(\sigma(x)) \quad$ Then the $\rho_{K, 2}$ are easily seen to be submultiplicative, so that they generate an Imc topology on \mathcal{A} The sets

$$
V(\sigma, K, i, \epsilon)=\left\{\tau \in \mathcal{A}: \rho_{K .2}(\sigma-\tau)<\epsilon\right\}
$$

form a subbasic system of neighborhoods of $\sigma \in \mathcal{A}$ as $K \in \mathscr{K}, i \in \ell$, and every $\epsilon>0$ vary
Note that different choices of covers \mathscr{K} may lead to different topologies on \mathcal{A} In the constant fiber case $\mathcal{A}=C(X, B)$, described above, we can let $\mathscr{\not}$ be the family of all compact subsets of X, in which case \mathscr{H} has the compact-open topology (the topology of uniform convergence on compact subsets of X) If, at the other extreme, we let \mathscr{K} be the family of finite subsets of X, then \mathcal{A} has the topology of pointwise convergence on X

In the general case, we note further that since \mathcal{A} with the given topology is an lmc algebra, the multiplication on \mathcal{A} is (jointly) continuous in the topology given by the seminorms $\rho_{K, 2}$ (see [8]) Moreover, if we endow $C_{b}(X)$ with the sup norm topology, it is easily seen that the module multiplication $(f, \sigma) \mapsto f \sigma$ from $C_{b}(X) \times \mathcal{A}$ to \mathcal{A} is also jointly continuous, so that \mathcal{A} is in fact a topological $C_{b}(X)$-module

For a subset $J \subset \mathcal{A}$ and $K \in \mathscr{K}$, let $J \mid K=\{\sigma \mid K: \sigma \in J\}$, where $\sigma \mid K$ denotes the restriction of σ to K. Denote the restriction map by rest ${ }_{K}: \mathcal{A} \mapsto \mathcal{A} \mid K$

PROPOSITION 1. Suppose that $J \subset \mathcal{A}$ is an ideal in \mathcal{A} which is also a $C_{b}(X)$-module of \mathcal{A}. Then $J \mid K$ is an ideal in $\mathcal{A} \mid K$ which is also a $C(K)$-module.

PROOF. Evidently, $J \mid K$ is an ideal in $\mathcal{A} \mid K$
Let $\sigma \in J$, and let $f \in C(K)$ We may extend f to $f^{*} \in C_{b}(X)$, see [4, p 90] Then

$$
\operatorname{rest}_{K}\left(f^{*} \sigma\right)=\operatorname{rest}_{K}\left(f^{*}\right) \cdot \operatorname{rest}_{K}(\sigma)=f \cdot(\sigma \mid K) \in J \mid K
$$

since $f^{*} \sigma \in J$

PROPOSITION 2. Suppose that $J \subset \mathcal{A}$ is $a C_{b}(X)$-submodule and a closed proper ideal. Then there extsts $x \in X$ such that $\overline{e v_{1}(J)}=\overline{J_{1}}$ is a closed proper ideal in A_{1}.

PROOF. Fix $K \in \mathcal{K}$, and consider $\mathcal{A} \mid K$ This is a space of choice functions over K, whose seminorm functions $x \mapsto \nu_{l}^{\prime}(\sigma(x))(\sigma \in \mathcal{A}, \imath \in$ g) are then upper semicontinuous over K by restriction, and hence bounded on K By [3, Theorem 59, p 49], there is a bundle $\pi_{K}: A_{K} \rightarrow K$ of lmc topological algebras such that $\Gamma\left(\pi_{K}\right) \simeq \mathcal{A} \mid K$, the topology on $\mathcal{A} \mid K$ is generated by the $\rho_{K},(\imath \in, 9)$

Suppose now that for each $x \in X$, we have $\overline{J_{r}}=A_{i}$, and let $\sigma \in \mathcal{A}$ We will show that every neighborhood V of σ contains an element $\tau \in J$ Since J is closed, this will show that $\sigma \in J$, contrary to the assumption that J is a proper ideal in \mathcal{A} We may assume that V is of the form

$$
V=\bigcap_{p}^{n} V\left(\sigma, K, i_{p}, \epsilon\right),
$$

where the τ 's are indices in .9 From the preceding, $J \mid K$ is a $C(K)$-submodule of $\mathcal{A} \mid K \simeq \Gamma\left(\pi_{\kappa^{\prime}}\right)$ such that $e v_{\lrcorner}(J \mid K)$ is dense in each $A_{t}(x \in K)$ Then, using [3, Theorem $42, \mathrm{p} 39$], $J \mid K$ is dense in $\mathcal{A} \mid K$ By the definition of the topology on $\mathcal{A} \mid K$, this means that there is a $\tau \in J$ such that $\rho_{K, \imath_{p}}(\sigma-\tau)<\epsilon$ for $p=1, \ldots, n$ But this says precisely that $\tau \in V$

PROPOSITION 3. Suppose that $H: \mathcal{A} \mapsto \mathbb{C}$ is a non-trivial continuous multiplicative homomorphism; set $J=\operatorname{ker} H$. Then there exists $x \in X$ such that $\overline{J_{x}}$ is a proper ideal in A_{x}.

PROOF. It suffices to show that J is a $C_{b}(X)$-submodule of \mathcal{A} If it is not, we may choose $\sigma \in J$ and $f \in C_{b}(X)$ such that $f \sigma \notin J \quad$ Since J is in any event an ideal, we have $(f \sigma)^{2}=\left(f^{2} \sigma\right) \sigma \in J \quad$ But $H\left((f \sigma)^{2}\right)=[H(f \sigma)]^{2} \neq 0$, a contradiction

PROPOSITION 4. Let $\triangle(\mathcal{A})$ be the Gelfand space of \mathcal{A} (=space of non-trivial continuous homomorphisms $H: \mathcal{A} \rightarrow \mathbb{C})$. If $H \in \triangle(\mathcal{A})$, then there exist $x \in X, h \in \triangle\left(A_{x}\right)$ such that $H=h \circ e v_{x}$.

PROOF. Let $H \in \triangle\left(A_{x}\right)$, set $J=\operatorname{ker} H$, and choose $x \in X$ such that $\overline{J_{x}}$ is a proper ideal in A_{x} Thus, $\frac{A_{x}}{\overline{J_{x}}} \neq 0$ Since $e v_{x}: \mathcal{A} \rightarrow A_{x}$ maps J into $\overline{J_{x}}$, there is a unique linear map $\phi: \frac{\mathcal{A}}{J} \rightarrow \frac{A_{x}}{\overline{J_{x}}}$ which makes the diagram

commute, where π and π_{x} are the natural surjections Since $e v_{x}: \mathcal{A} \rightarrow A_{x}$ is surjective, the induced map $\phi: \frac{A}{J} \rightarrow \frac{A_{x}}{\overline{J_{x}}}$ is also surjective Thus, ϕ maps the one-dimensional space $\frac{A}{J}$ surjectively onto the nonzero space $\frac{A_{x}}{\overline{J_{x}}}$ It follows that $\frac{A_{x}}{\overline{J_{x}}}$ is one-dimensional, which means that $\overline{J_{x}}$ is a closed regular maximal ideal in A_{x} Hence, $\overline{J_{x}}=\operatorname{ker} h$ for some $h \in \triangle\left(A_{x}\right)$. The map $h \circ e v_{x}: \mathcal{A} \rightarrow \mathbb{C}$ is clearly a non-trivial algebra homomorphism. If $\sigma \in J$, then $e v_{x}(\sigma) \in \overline{J_{x}}=\operatorname{ker} h$, so $\left(h \circ e v_{x}\right)(\sigma)=0$ Hence ker $H=J \subset \operatorname{ker}\left(h \circ e v_{x}\right)$. Because $\operatorname{ker} H$ and $\operatorname{ker}\left(h \circ e v_{x}\right)$ are closed maximal ideals, it follows that ker $H=\operatorname{ker}\left(h \circ e v_{x}\right)$, and hence that $H=h \circ e v_{x}$

COROLLARY 5. Under the situation as described, we may identify $\triangle(\mathcal{A})$ as a point set with the disjoint union of the $\triangle\left(A_{x}\right)$. (For bookkeeping purposes, we may also write $\left.\Delta(\mathcal{A})=\bigcup_{x \in X}\left(\{x\} \times \Delta\left(A_{x}\right)\right).\right)$

PROOF. Since $e v_{x}: \mathcal{A} \rightarrow A_{x}$ is continuous, it follows that, if $x \in X$ and $h \in \triangle\left(A_{x}\right)$, then $h \circ e v_{x} \in \triangle(\mathcal{A})$ By using the same method as in the proof of [6, Proposition 6], it may be shown that the map

$$
\phi: \bigcup_{x \in X}\left(\{x\} \times \triangle\left(A_{x}\right)\right) \rightarrow \triangle(\mathcal{A}),(x, h) \mapsto h \circ e v_{x}=H
$$

is a bijection
In all the above, we need to call on the result for lmc algebras which corresponds to that for Banach algebras namely, in a commutative Imc algebra B, there is a one-to-one correspondence between the set of continuous non-trivial homomorphısms from B to \mathbb{C} and the set of closed regular maximal ideals in B, see [8, Corollaries 7 1, 72 , pp 71-72]

3. TOPOLOGICAL CONSIDERATIONS

So, under the circumstances described, we have a fibering of $\triangle(\mathcal{A})$ by X For $H \in \triangle(\mathcal{A})$, we may write $h \circ e v_{\text {, for some (unique) }} \mathrm{x} \in \mathrm{X}$ and $h \in \triangle\left(A_{t}\right)$ Let $p: \triangle(\mathcal{A}) \rightarrow X$ be the obvious projectıon map, $H=h \circ e v, \mapsto x$

PROPOSITION 6. The projection map p is contimuons when $\triangle(\mathcal{A})$ is given its weak-* topology.
PROOF. It suffices to show that whenever $\left\{H_{n}\right\}=\left\{h_{0} \circ e v_{1,}\right\}$ is a net in $\triangle(\mathcal{A})$ such that $H_{b}=h_{0} \circ e v_{i}, \rightarrow H=h \circ e v_{i}$, we have $f\left(x_{6}\right) \rightarrow f(x)$ for each $f \in C_{b}(X)$, because when X is completely regular and Hausdorff is topology is determined by $C_{b}(X)$, see [4, p 40] Suppose now that $f \in C_{b}(X)$ and that $\sigma \in \mathcal{A}$, with $H(\sigma)=h(\sigma(x)) \neq 0 \quad$ Since $f \sigma \in \mathcal{A}$, and since $h_{\alpha} \circ e v_{r_{\alpha}} \rightarrow h \circ e v_{\text {, }}$ weak-* in $\triangle(\mathcal{A})$, we have

$$
h_{\kappa}\left([f \sigma]\left(x_{o}\right)\right)=h_{o}\left(f\left(x_{\sigma} ; \sigma\left(x_{o}\right)\right)=f\left(x_{n}\right) h\left(\sigma\left(x_{\sigma}\right)\right) \rightarrow h^{\prime}([f \sigma](x))=f(x) h(\sigma(x))\right.
$$

Since $h_{c}\left(\sigma\left(x_{\sigma}\right)\right) \rightarrow h(\sigma(x)) \neq 0$, it follows that $f\left(x_{n}\right) \rightarrow f(x)$ Since $f \in C_{b}(X)$ was arbitrary, we have the desired result

On the other hand, we can look at how $\triangle\left(A_{2}\right)$ embeds into $\triangle(\mathcal{A})$
PROPOSITION 7. (isve $\triangle(\mathcal{A})$ tts weak-* topology and, for each $x \in X$, give $\triangle\left(A_{x}\right)$ tts weak-* topology. Then $\triangle\left(A_{x}\right)$ embeds homeomorphically into $\triangle(\mathcal{A})$.

PROOF. Fix $x \in X \quad$ Evidently, the map $\gamma_{a}: \triangle\left(A_{x}\right) \rightarrow \triangle(\mathcal{A}), h \mapsto h \circ e v_{r}$, is one-to-one if $h_{1} \neq h_{2}$, then we may choose $a \in A_{x}$ such that $h_{1}(a) \neq h_{2}(a)$, and use the fullness of \mathcal{A} to choose $\sigma \in \mathcal{A}$ such that $\sigma(x)=a \quad$ It is then clear that $\left(h_{1} \circ e v_{x}\right)(\sigma) \neq\left(h_{2} \circ e v_{x}\right)(\sigma)$

Now, suppose that we have a net $\left\{h_{\alpha}\right\} \subset \triangle\left(A_{a}\right)$ such that $h_{\alpha} \rightarrow h \in \triangle\left(A_{x}\right)$ when $\triangle\left(A_{x}\right)$ is given its weak-* topology Let $\sigma \in \mathcal{A}$ We then have $\left(h_{\alpha} \circ e v_{x}\right)(\sigma)=h_{o}(\sigma(x)) \rightarrow h(\sigma(x))=\left(h \circ e v_{x}\right)(\sigma)$, ie $\gamma_{x}\left(h_{\alpha}\right) \rightarrow h \circ e v_{x}$ in $\triangle(\mathcal{A})$. It is likewise easy to show that if $\left\{h_{\alpha} \circ e v_{x}\right\}$ is a net in $\gamma_{x}\left(\triangle\left(A_{x}\right)\right)$ which converges weak-* to $h \circ e v_{x} \in \gamma_{x}\left(\triangle\left(A_{x}\right)\right)$, then $h_{\alpha} \rightarrow h$ weak-* in $\triangle\left(A_{x}\right)$

Previous work of the authors [6] has provided examples which demonstrate that the projection map need not be closed, even when each fiber A_{x} is a Banach algebra with identity Moreover, the projection need not be open, even when each fiber A_{x} is a Banach algebra with identity and \mathcal{A} satisfies the even stronger condition that it contain the identity selection Both of these examples use the weak-* topologies

Suppose now that we re-examine the situation when each A_{x} is a commutative Banach algebra and X is compact Under these special conditions, \mathcal{A} is the space of sections of a bundle of Banach algebras $\pi: A \rightarrow X \quad$ We may look at the Seda topology on $\mathcal{M}=\bigcup_{\tau \in X}\left(\{x\} \times \triangle\left(A_{x}\right)\right)=\dot{\bigcup}_{x \in X} \triangle\left(A_{x}\right)$ Recall from the Banach bundle case that the Seda topology is the weak topology on $\mathfrak{S}=\bigcup_{x \in X}\left(\{x\} \times B\left(\left(A_{x}\right)^{*}\right)\right)$ (where $B(Z)$ denotes the closed unit ball of a Banach space Z) which is generated by the conditions $\left(x_{\alpha}, F_{\alpha}\right) \rightarrow(x, F) \in \mathcal{M}$ iff $x_{\alpha} \rightarrow x \in X$ and $F_{\alpha}\left(\sigma\left(x_{\alpha}\right)\right) \rightarrow F(\sigma(x))$ for each $\sigma \in \mathcal{A}$ It is shown elsewhere that \mathfrak{S} is compact in the Seda topology (See [10] and [5] for more information about this topology)

PROPOSITION 8. Let X be a compact Hausdorff space, and suppose that $\mathcal{A}=\Gamma(\pi)$ is the space of sections of the bundle of commutative Banach algebras $\pi: A \rightarrow X$. Then the weak-* topology on $\triangle(\mathcal{A})$ and the (relative) Seda topology on \mathcal{M} are homeomorphic.

PROOF. As above, for $H \in \triangle(\mathcal{A})$, write $H=h \circ e v$, for some $x \in X$ and $h \in \triangle\left(A_{1}\right)$ The map $H \mapsto(x, h)$ is a bijection If $H_{0}=h_{\circ} \circ e v_{1 \circ} \rightarrow H=h \circ e v_{t}$ weak-* in $\Delta(\mathcal{A})$, this says precisely that $H_{0}(\sigma)=h_{\rho}\left(\sigma\left(x_{\sigma}\right)\right) \rightarrow H(\sigma)=h(\sigma(x))$ for each $\sigma \in \mathcal{A}$, above we have shown that $x_{0} \rightarrow x$ Thus, $\left(x_{\sigma}, h_{\sigma}\right) \rightarrow(x, h)$ in the Seda topology The other direction is clear

We may also consider the contmuity of the projection map and the embeddings when $\triangle(\mathcal{A})$ and $\triangle\left(A_{1}\right)$ are endowed with their hull-kernel topologies

PROPOSITION 9. Under the given general circumstances; suppose that $\triangle(\mathcal{A})$ is given tis hullkernel topology, and that each $\triangle\left(A_{I}\right)(x \in X)$ is given tis hull-kernel topology. Then the projection map $p: \triangle(\mathcal{A}) \rightarrow X$ and the embeddings of the $\triangle\left(A_{\mathbf{r}}\right)$ into $\triangle(\mathcal{A})$ are contımuous.

PROOF. To show that the natural projection $p: \triangle(\mathcal{A}) \rightarrow X$ is continuous in the hull-kernel topology, let $\left\{H_{\alpha}\right\}=\left\{h_{\alpha} \circ e v_{x_{\alpha}}\right\}$ be a net in $\triangle(\mathcal{A})$ with $h_{\alpha} \circ e v_{x_{\alpha}} \rightarrow h \circ e v_{x}=H \in \triangle(\mathcal{A})$ in the hullkernel topology We claim that $x_{\alpha} \rightarrow x$

If not, we may then choose an open neighborhood N of x and a subnet $\left\{x_{\alpha^{\prime}}\right\}$ of $\left\{x_{\alpha}\right\}$ such that $x_{o^{\prime}} \notin N \quad$ Choose $a \in A_{x}$ such that $h(a) \neq 0$, and choose $\sigma^{\prime} \in \mathcal{A}$ such that $\sigma^{\prime}(x)=e v_{x}\left(\sigma^{\prime}\right)=a$ Since X is completely regular, we may choose a function $f \in C_{b}(X)$ with $f(X) \subset[0,1]$ and with $f(x)=1$ and $f(X \backslash N)=0$ Set $\sigma=f \sigma^{\prime} \quad$ Since $h_{\alpha^{\prime}} \circ e v_{x_{\alpha^{\prime}}} \rightarrow h \circ e v_{x}$, we have $P=\bigcap_{\alpha^{\prime}} \operatorname{ker}\left(h_{\alpha^{\prime}} \circ e v_{x_{\alpha^{\prime}}}\right) \subset \operatorname{ker}\left(h \circ e v_{x}\right)$ Since $\sigma\left(x_{\alpha^{\prime}}\right)=0$ for all α^{\prime}, we have $\sigma \in P \subset \operatorname{ker}\left(h \circ e v_{x}\right) \quad$ But this is a contradiction, since $\left(h \circ e v_{z}\right)(\sigma)=h(\sigma(x))=h(a) \neq 0$ Hence, $x_{\alpha} \rightarrow x$

Now, fix $x \in X$ For the second part, it suffices to show that for a set $W \subset \triangle\left(A_{x}\right)$, and for $h \in \triangle\left(A_{x}\right)$, we have h in the hull-kernel closure of W iff $H=h \circ e v_{x}$ is in the hull-kernel closure of $\gamma_{r}(W)=\left\{h^{\prime} \circ e v_{x}: h^{\prime} \in W\right\}$

Suppose, then, that h is in the hull-kernel closure of W in $\triangle\left(A_{x}\right)$ Then $\bigcap\left\{\operatorname{ker} h^{\prime}: h^{\prime} \in W\right\} \subset \operatorname{ker} h$, we claim that $\bigcap \operatorname{ker}\left\{h^{\prime} \circ e v_{x}: h^{\prime} \in W\right\} \subset \operatorname{ker}\left(h \circ e v_{x}\right) \quad$ So, let $\sigma \in \mathcal{A}$ be such that $\sigma \in \operatorname{ker}\left(h^{\prime} \circ e v_{x}\right)$ for each $h^{\prime} \in W$ Then $h^{\prime}(\sigma(x))=0$ for each $h^{\prime} \in W$, i e $\sigma(x) \in \operatorname{ker} h^{\prime}$ for all $h^{\prime} \in W$, so that $\sigma(x) \in \operatorname{ker} h \quad$ Hence, $\sigma \in \operatorname{ker}\left(h \circ e v_{x}\right) \quad$ A proof of the reverse inclusion, which uses the fullness of \mathcal{A}, is equally straightforward

We note that these are essentially the proofs used in [7, Propositions 17, 18]
Recall (see [8, p 332]) that a topological algebra B is said to be regular provided that any weak-* closed subset W of $\triangle(B)$ and point of $\triangle(B)$ disjoint from it may be separated by an element of B It happens that B is regular iff the weak-* and hull-kernel topologies coincide on $\triangle(B)$

PROPOSITION 10. Suppose that we are given the general data on \mathcal{A}, as above. If \mathcal{A} is a regular algebra, then so is each A_{x}.

PROOF. Choose $x \in X$ We know that $\triangle(\mathcal{A})$ contains a homeomorphic copy of $\triangle\left(A_{x}\right)$ in the weak-* topology, in particular, $\{x\} \times W=p^{-1}(W)$ is weak*- closed in $\triangle\left(A_{x}\right)$ whenever W is a weak-* closed in $\triangle\left(A_{x}\right)$, where $p: \Delta(\mathcal{A}) \rightarrow \Delta\left(A_{x}\right)$ is the continuous projection map. Hence, if $h \in \triangle\left(A_{x}\right) \backslash W$, then $(x, h) \in \Delta(\mathcal{A}) \backslash p^{-1}(W)$, and so there exists $\sigma \in \mathcal{A}$ which separates (x, h) and $p^{-1}(W)$ Then it is evident that $\sigma(x) \in A_{x}$ separates h and W in $\triangle\left(A_{x}\right)$

Now, if $x \in X$, and if $I_{x} \subset A_{x}$ is an ideal, set $\mathcal{A}\left(x, I_{x}\right)=\left\{\sigma \in \mathcal{A}: \sigma(x) \in I_{x}\right\} \quad$ It is easy to see that $\mathcal{A}\left(x, I_{x}\right)$ is always a closed proper ideal in \mathcal{A} whenever I_{x} is a closed proper ideal of A_{x} (In fact, $\mathcal{A}\left(x, I_{x}\right)$ is also a closed $C_{b}(X)$-submodule of \mathcal{A} when I_{x} is closed)

PROPOSITION 11. Let $J \subset \mathcal{A}$ be a closed ideal which is also a $C_{b}(X)$-submodule of \mathcal{A}. Then $J=\bigcap_{x \in X} \mathcal{A}\left(x, \overline{J_{x}}\right)$.

PROOF. Clearly, $J \subset \bigcap_{x \in X} \mathcal{A}\left(x, \overline{J_{x}}\right)=J^{\prime}$.
To show the reverse inclusion, we use a partition of unity argument similar to that of Theorem 8 of
[1] Let $\sigma \in J^{\prime}$ To show that $\sigma \in J$, it suffices to show that for $K \in \mathscr{K}, i \in \Omega$, and $\epsilon>0$ there is $\tau \in J$ such that $\rho_{K, 2}(\sigma-\tau)<\epsilon$

Fix K, t, and ϵ, and let $x \in K$ be arbitrary Then $\sigma(x) \in \overline{J_{r}}$, and so there exists $\sigma^{\prime} \in J$ such that $\nu_{l}^{\prime}\left(\sigma(x)-\sigma^{\prime}(x)\right)<\epsilon$ since the seminorm functions $x^{\prime} \mapsto \nu_{l}^{\prime^{\prime}}\left(\sigma\left(x^{\prime}\right)-\sigma^{\prime}\left(x^{\prime}\right)\right)$ is upper semicontinuous, there is a neighborhood U_{1} of x such that when $x^{\prime} \in U_{1}$ we have $\nu_{l}^{\prime^{\prime}}\left(\sigma\left(x^{\prime}\right)-\sigma^{\prime}\left(x^{\prime}\right)\right)<\epsilon$

Since K is compact, we may choose a cover $U_{r}, \ldots, U_{r_{p}}$ of K, with corresponding $\sigma_{1}^{\prime}, \ldots, \sigma_{p}^{\prime} \in J$ such that $\nu_{r}^{\prime^{\prime}}\left(\sigma\left(x^{\prime}\right)-\sigma_{r}^{\prime}\left(x^{\prime}\right)\right)<\epsilon$ whenever $x^{\prime} \in U_{t_{r}}(r=1, \ldots, p) \quad$ Now, $\left\{U_{1_{-}} \cap K: r=1, \ldots, p\right\}$ is an open cover of the compact Hausdorff space K, and so there is a partition of unity $\left\{f_{r}: r=1, \ldots, p\right\} \subset C(K)$ subordinate to $\left\{U_{t_{r}} \cap K\right\} \quad$ In particular, $0 \leq f_{r}(x) \leq 1\left(x \in K_{1}\right.$, $\operatorname{supp}\left(f_{1}\right) \subset U_{r_{r}} \bigcap K$ for $r=1, \ldots, p$, and $\sum_{r}^{p} f_{r}(x)=1$ for $x \in K \quad$ As in Proposition 1, we may extend f_{r} to $f_{r}^{*} \in C_{b}(X) \quad$ Then $\tau=\sum_{r}^{p} f_{r}^{*} \sigma_{r}^{\prime} \in J$, and it is easy to check that $\rho_{K .2}(\sigma-\tau)<\epsilon$

COROLLARY 12. Suppose that \mathcal{A} has an identity e, and let $J \subset \mathcal{A}$ be a closed ideal. Then $J=\bigcap_{1, x} \mathcal{A}\left(x, \overline{J_{x}}\right)$.

PROOF. It suffices to note that J is a $C_{b}(X)$-submodule of \mathcal{A} Let $f \in C_{b}(X)$ and $\sigma \in J$ Then $f \sigma=f(e \sigma)=(f e) \sigma \in J$

COROLLARY 13. Let $J \subset \mathcal{A}$ be a closed proper ideal, and let $\langle J\rangle$ denote the closed $C_{b}(X)$ submodule in \mathcal{A} generated by J. Then $\langle J\rangle=\bigcap_{x \in X} \mathcal{A}\left(x, \overline{J_{x}}\right)$.

PROOF. This follows immediately from the method of proof in Proposition 11 \qquad
We point out in closing the crucial role which the assumptions on the space X play Complete regularity of X allows us to extend the functions appearing in the proofs of Propositions 1 and 11 , and provides sufficiently many continuous functions to demonstrate the continuity of the projection map $p: \triangle(\mathcal{A}) \rightarrow X$ in Propositions 6 and 9 . That X is Hausdorff means that each $K \in \mathscr{K}$ is a compact Hausdorff space, and allows us to use the full power of the cited theorems from [3] in the proof of Proposition 2

REFERENCES

[1] ARHIPPAINEN, J, On the ideal structures of algebras of LMC-valued functions, Studia Math. 101 (3) (1992), 311-318.
[2] FELL, J M G , The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280
[3] GIERZ, G., Bundles of topological vector spaces and their duality, Lect. Notes in Math. 955 (Berlin Springer-Verlag), 1982
[4] GILMAN, L and JERISON, M, Rings of Contınuous Functions (New York: Springer-Verlag), 1976
[5] KITCHEN, J.W and ROBBINS, D.A., Integral operators on the section space of a Banach bundle, Internat. J. Math. \& Math. Sci. 16 (1993), 449-458.
[6] KITCHEN, J.W. and ROBBINS, D.A., Bundles of Banach algebras, Internat. J. Math. \& Math. Sci. 17 (1994), 671-680.
[7] KITCHEN, J.W. and ROBBINS, D.A., Bundles of Banach algebra II, Houston J. Math. 20 (1994), 435-451
[8] MALLIOS, A, Topological Algebras. Selected Topics (New York Elsevier), 1986
[9] SEDA, A.K., On the categories Sp(X) and Ban(X), Cahiers Topo. et Géo. Diff. XXIV (1983), 97112

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

