ON A CONJECTURE OF VUKMAN

QING DENG

Department of Mathematics Southwest China Normal University Chongqing 630715, P.R CHINA

(Received October 27, 1993 and in revised form October 30,1995)

ABSTRACT. Let R be a ring A bi-additive symmetric mapping $d: R \times R \to R$ is called a symmetric bi-derivation if, for any fixed $y \in R$, the mapping $x \to D(x,y)$ is a derivation The purpose of this paper is to prove the following conjecture of Vukman

Let R be a noncommutative prime ring with suitable characteristic restrictions, and let $D: R \times R \to R$ and $f: x \to D(x,x)$ be a symmetric bi-derivation and its trace, respectively Suppose that $f_n(x) \in Z(R)$ for all $x \in R$, where $f_{k+1}(x) = [f_k(x), x]$ for $k \ge 1$ and $f_1(x) = f(x)$, then D = 0

KEY WORDS AND PHRASES: Prime ring, centralizing mapping, symmetric bi-derivation.

1991 AMS SUBJECT CLASSIFICATION CODES: Primary 16W25; Secondary 16N60

1. INTRODUCTION

Throughout this paper, R will denote an associative ring with center Z(R). We write [x,y] for xy-yx, and I_a for the inner derivation deduced by a. A mapping $D:R\times R\to R$ will be called symmetric if D(x,y) holds for all pairs $x,y\in R$. A symmetric mapping is called a symmetric biderivation, if D(x+y,z)=D(x,z)+D(y,z) and D(xy,z)=D(x,z)y+xD(y,z) are fulfilled for all $x,y\in R$. The mapping $f:R\to R$ defined by f(x)=D(x,x) is called the trace of the symmetric bi-derivation D, and obviously, f(x+y)=f(x)+f(y)+2D(x,y). The concept of a symmetric bi-derivation was introduced by Gy. Maksa in [1,2]. Some recent results concerning symmetric bi-derivations of prime rings can be found in Vukman [3,4]. In [4], Vukman proved that there are no nonzero symmetric bi-derivations D in a noncommutative prime ring R of characteristic not two and three, such that $[[D(x,x),x],x]\in Z(R)$. The following conjecture was raised. Let R be a symmetric bi-derivation. Suppose that for some integer $n\geq 1$, we have $f_n(x)\in Z(R)$ for all $x\in R$, where $f_{k+1}(x)=[f_k(x),x]$ for k=1,2,..., and $f_1(x)=D(x,x)$. Then D=0.

The purpose of this paper is to prove this conjecture under suitable characteristic restrictions

2. THE RESULTS

THEOREM 1. Let R be a prime ring of characteristic different from two Suppose that R admits a nonzero symmetric bi-derivation. Then R contains no zero divisors.

PROOF. It is sufficient to show that, $a^2 = 0$ for $a \in R$ implies a = 0 We need three steps to establish this

LEMMA A. If $D(a,*) \neq 0$, then $D(a,*) = \mu I_a$, where $\mu \in C$, the extended centroid of R **PROOF.** Since $D(a^2,x) = D(0,x) = 0$, we have

264 QING DENG

$$aD(a,x) + D(a,x)a = 0$$
 for all $x \in R$.

Replacing x by xy, we obtain

$$I_a(x)D(a,y) = D(a,x)I_a(y)$$
 for all $x \in R$;

and replacing y by yz, we get

$$I_a(x)yD(a,z) = D(a,x)yI_a(z), x, y, z \in R.$$
 (2.1)

Since $D(a,*)\neq 0$, we may suppose that $D(a,z)\neq 0$ for a fixed $z\in R$. Obviously $I_a(Z)\neq 0$ By (2 1), and by [5, Lemma 1.3.2], there exist $\mu(x)$ and $\nu(x)$ in C, either $\mu(x)$ or $\nu(x)$ being not zero, such that $\mu(x)I_a(x)+\nu(x)D(a,x)=0$. If $\nu(x)\neq 0$ then $D(a,x)=\frac{-\mu(x)}{\nu(x)}I_a(x)$; on the other hand, if $\nu(x)=0$ then $\mu(x)I_a(x)=0$ and $I_a(x)=0$, using (2.1) and $I_a(z)\neq 0$, so D(a,x)=0. In any event, we have $D(a,x)=\mu(x)I_a(x)$ Hence (2.1) implies $(\mu(x)-\mu(z))I_a(x)yI_a(z)=0$ It follows that either $I_a(x)=0$ or $\mu(x)=\mu(z)$ By (2.1), the former implies D(a,x)=0 and $D(a,x)=\mu(z)I_a(x)$ In both cases, we get $D(a,x)=\mu(z)I_a(x)$ for all $x\in R$, and $0\neq \mu(z)$ being fixed

The fixed element μ in Lemma A is somewhat dependent on a, we write it as μ_a For any given $r \in R$ ara satisfies our original hypotheses on a; therefore for each $r \in R$, either D(ara, *) = 0 or $d(ara, *) = \mu_{ara}I_{ara}$, where $\mu_{ara} \neq 0$.

LEMMA B. If $D(ara, *) \neq 0$, then $\mu_{ara} = \mu_a$.

PROOF. $D(ara,*) \neq 0$ implies $ara \neq 0$ Suppose that D(a,*) = 0, then D(ara,x) = D(a,x)ra + aD(r,x)a + arD(a,x) = aD(r,x)a; but $D(ara,x) = \mu_{ara}I_{ara}(x) = \mu_{ara}(arax - xara)$, so that $\mu_{ara}(arax - xara) = aD(r,x)a$ Right-multiplying the last equation by a, we have $\mu_{ara}araxa = 0$ for all $x \in R$. It follows that ara = 0, a contradiction Therefore $D(a,*) = \mu_a I_a$, and consequently,

$$D(ara, x) = \mu_a I_a(x) ra + aD(r, x) a + ar\mu_a(x);$$

and right-multiplying this equation by a yields

$$D(ara, x)a = \mu_a araxa$$
 for all $x \in R$.

Hence $\mu_{ara}araxa = \mu_aaraxa$, immediately $\mu_{ara} = \mu_a$.

LEMMA C. If $a^2 = 0$, then a = 0.

PROOF. Let $S = \{r \in R \mid D(ara, *) = \mu_{ara}I_{ara}, \mu_{ara} \neq 0\}$ and $T = \{r \in R \setminus D(ara, *) = 0\}$ By Lemma A and B, $R = S \cup T$ and S and T are additive subgroups of R. We conclude that either S = R or T = R.

Suppose that S=R Lemma A gives, either D(a,*)=0 or $D(a,*)=\mu_a I_a$. If D(a,*)=0, then D(ara,x)=aD(r,x)a, for all $r,x\in R$, and D(ara,x)a=0. It follows that $\mu_a araxa=0$. Since $\mu_a=\mu_{ara}\neq 0$, we have a=0 If $D(a,*)=\mu_a I_a$, then the equation

$$D(ara, ya) = D(a, ya)ra + aD(r, ya)a + arD(a, ya)$$

gives $\mu_a a raya = 2\mu_a a ya ra + \mu_a a raya$. Hence we get a ya ra = 0, and a = 0 again

We suppose henceforth that T=R If D(a,*)=0, then D(axa,yz)=aD(xa,yz)=0, and ayD(xa,z)=0. Thus D(xa,z)=D(x,z)a=0, and D(x,y)za=D(x,yz)a=0 Since $D\neq 0$, we then get a=0. If $D(a,*)=\mu_a I_a$, then, right-multiplying the equation D(axa,y)=0 by a, we obtain $\mu_a axaya=axD(a,y)a=0$, and a=0 again. The proof of the theorem is complete

In order to prove Vukman's conjecture, we need the following proposition.

PROPOSITION. Let n be a positive integer; let R be a prime ring with char R=0 or char R>n; and let g be a derivation of R and f the trace of a symmetric bi-derivation D. For i=1,2,...,n, let $F_i(X,Y,Z)$ be a generalized polynomial such that, $F_i(kx,f(kx),g(kx))=k^iF_i(x,f(x),g(x))$ for all $x\in R$ for k=1,2,...,n. Let $a\in R$, and (a) the additive subgroup generated by a. If for all $x\in (a)$,

$$F_a(x, f(x), g(x)) + F_{n-1}(x, f(x), g(x)) + \dots + F(x, f(x), g(x)) \in Z(R), \tag{2.2}$$

then $F_i(a, f(a), g(a)) \in Z(R)$ for i = 1, 2, ..., n

This proposition can be proved by replacing x by a, 2a, ..., na in (2.2) and applying a standard "Van der Monde argument"

THEOREM 2. Let n be a fixed positive integer and R be a prime ring with char R=0 or char R>n+2 Let $f_{k+1}(x)=[f_k(x),x]$ for k>1, and $f_1(x)=f(x)$ the trace of a symmetric biderivation D of R. If $f_n(x)\in Z(R)$ for all $x\in R$, then either D=0 or R is commutative

PROOF. Linearizing $f_n(x) \in Z(R)$, we obtain

$$[[...[f(x)+f(y)+2D(x,y),x-y],...x+y],x+y] \in Z(R);$$

and using the Proposition, we get

$$[...[[f(x),y],x],...,x] + [...[[f(x),x],y],...x] + ... + [...[f(x),x],...y] + 2[...[[D(x,y),x],x],...,x] \in Z(R),$$

equivalently,

$$(-1)^{n-2}I_x^{n-2}([f_1(x),y]) + (-1)^{n-3}I_x^{n-3}([f_s(x),y]) + \dots + [f_{n-1}(x),y] + 2(-1)^{n-1}I_x^{n-1}(D(x,y)) \in Z(R).$$
(2 3)

Noting that

$$(-1)^{n-2}I_x^{n-2}([f_1(x),x^2]) = (-1)^{n-3}([f_2(x),x^2]) = \dots$$

= $[f_{n-1}(x),x^2] = (-1)^{n-1}I_x^{n-1}(D(x,x^2)) = 2f_n(x)x$,

and replacing y by x^2 in (2.3), we then get $2(n+1)f_n(x)x \in Z(R)$. Since $f_n(x) \in z(R)$, it follows that $f_n(x) = 0$

The linearization of $f_n(x) = 0$ gives

$$(-1)^{n-2}I_x^{n-1}([f_1(x),y]) + (-1)^{n-3}I_x^{n-3}([f_2(x),y]) + \dots + [f_{n-1}(x),y] + 2(-1)^{n-1}I_x^{n-1}(D(x,y)) = 0.$$
 (2.4)

Since $I_x^{n-k}([f_{k-1}(x),xy]) = xI_x^{n-1}([f_{k-1}(x),y]) + I_k^{n-k}(f_k(x)y)$ for k=2,3,...,n, and $I_x^{n-1}(D(x,xy)) = xI_x^{n-1}(D(x,y)) + I_x^{n-1}(f_1(x)\cdot y)$. Substituting xy for y in (2.4), we have

$$\begin{split} (-1)^{n-2}I_x^{n-2}(f_2(x)y) + (-1)^{n-3}I_x^{n-3}(f_3(x)y) + \ldots + (-1) \\ (I_x(f_{n-1}(x)y) + 2(-1)^{n-1})I_x^{n-1}(f_1(x)y) &= 0. \end{split}$$

Taking $y=f_{n-2}(x)$, applying $I_x^k(ab)=\sum\limits_{j=0}^k\binom{k}{j}I_x^{k-j}(a)I_x^j(b)$ and noting $I_x^i(f_j(x))=0$ for $i+j\geq n$,

we then conclude that

$$2(-1)^{n-1}\binom{n-1}{1}I_x^{n-2}(f_1(x)I_x(f_{n-2}(x))) + (-1)^{n-2}\binom{n-2}{1}I_x^{n-3}(f_2(x))I_x(f_{n-2}(x)) + \dots \\ + (-1)f_{n-1}(x)I_x(f_{n-2}(x)) = 0.$$

But $(-1)^k I_x^{k-1}(f_{n-k}(x))I_x(f_{n-2}(x))=(f_{n-1}(x))^2$, so $(n+2)(n-1)(f_{n-1}(x))^2=0$, and by the hypotheses on the characteristic, we get $(f_{n-1}(x))^2=0$ Suppose that $D\neq 0$ By Theorem 1, $f_{n-1}(x)=0$, and by induction, $f_2(x)=[f(x),x]=0$ Using Vukman [3, Theorem 1], R is commutative, we complete the proof of Theorem 2

THEOREM 3. Let n > 1 be an integer and R be a prime ring with char R = 0 or char R > n + 1, and let f(x) be the trace of a symmetric bi-derivation D of R Suppose that $[x^2, f(x)] \in Z(R)$ for all $x \in R$ In this case either D = 0 or R is commutative

266 QING DENG

PROOF. Using the condition $[x^n, f(x)] \in Z(R)$, we get $[x^{2n}, f(x^2)] \in Z(R)$, and

$$[x^{2n}, f(x)]x^2 + x^2[x^{2n}, f(x)] + 2x[x^{2n}, f(x)]x \in Z(R).$$
 (2.5)

Noting that $[x^{2n}, f(x)] = 2[x^n, f(x)]x^n$, we now have from (2.5) that $8[x^n, f(x)]x^{n+2} \in Z(R)$. Thus either $[x^n, f(x)] = 0$ or $x^{n+2} \in Z(R)$.

But linearizing $[x^n, f(x)] \in Z(R)$ and applying the Proposition gives

$$\left[x^{n-1}y + x^{n-2}yx + \ldots + yx^{n-1}, f(x)\right] + 2[x^n, D(x, y)] \in Z(R)$$

for all $x, y \in R$, and taking $y = x^3$, yields

$$n[n^{n+2}, f(x)] + 6[x^n, f(x)]x^2 \in Z(R).$$

Suppose that $[x^n,f(x)] \neq 0$, then $x^{n+2} \in Z(R)$ and $[x^n,f(x)]x^2 \in Z(R)$, hence $x^2 \in Z(R)$. Now this condition, together with $x^{n+2} \in Z(R)$, implies either $x^2 = 0$ or $x^n \in Z(R)$, so that in each event, $[x^n,f(x)] = 0$

Linearizing $[x^n, f(x)] = 0$ and using the Proposition, we have

$$[x^{n-1}y + x^{n-2}yx + \dots + yx^{n-1}, f(x)] + 2[x^n, D(x, y)] = 0$$

Replacing y by x^2 yields $n[x^{n+1}, f(x)] = 0$, hence $[x, f(x)]x^n = 0$ If $D \neq 0$, then by Theorem 1, [x, f(x)] = 0, and by Vukman [3, Theorem 1], R is commutative This completes the proof

ACKNOWLEDGMENT. I am indebted to Prof M. N Daif for his help. I would also like to thank the referee for his valuable suggestions.

REFERENCES

- MAKSA, GY., A remark on symmetric biadditive functions having nonnegative diagonalization, Glas. Mat. 15 (1980), 279-282.
- [2] MAKSA, GY, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Canada 9 (1987), 303-307
- [3] VUKMAN, J., Symmetric bi-derivations on prime and semiprime rings, Aequationes Math. 38 (1989), 245-254
- [4] VUKMAN, J, Two results concerning symmetric bi-derivations on prime rings, Aequationes Math. 40 (1990), 181-189.
- [5] HERSTEIN, I.N., Rings with Involution, University of Chicago Press, 1976.

Submit your manuscripts at http://www.hindawi.com

